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with relaxed Lyapunov–Krasovskii functionals ∗

Ihab Haidar†and Pierdomenico Pepe‡

September 13, 2022

Abstract

This paper gives further insights about the
Lyapunov–Krasovskii characterization of input-to-
state stability (ISS) for switching retarded systems
on the basis of the results in [I. Haidar and P.
Pepe. Lyapunov–krasovskii characterization of the
input-to-state stability for switching retarded sys-
tems. SIAM Journal on Control and Optimization,
59(4):2997–3016, 2021]. We give new characteriza-
tions of the ISS property through the existence of
a relaxed common Lyapunov-Krasovskii functional.
More precisely, we show that the existence of a con-
tinuous Lyapunov-Krasovskii functional whose upper
right-hand Dini derivative satisfies a dissipation in-
equality almost everywhere is necessary and sufficient
for the ISS of switching retarded systems with mea-
surable inputs and measurable switching signals. Dif-
ferent characterization results, using different deriva-
tive notions, are also given.

Keywords: Input-to-state stability; Converse the-
orems; Lyapunov–Krasovskii functionals; retarded
functional differential equations; switching systems.

1 Introduction

The problem of stability of switching systems has
attracted much attention in the literature of con-
trol theory (see, e.g., [1, 2, 15, 16, 20, 26, 28, 30]
and the references therein). The existence of a com-
mon Lyapunov function, i.e., a function which de-
creases uniformly along the trajectories of individual
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subsystems, is a sufficient condition for various sta-
bility notions like uniform asymptotic, exponential,
and input-to-state stability. The existence of a com-
mon Lyapunov function is also necessary for switch-
ing systems which are uniformly stable. Converse
Lyapunov theorems characterizing the stability of a
switching system by the existence of a common Lya-
punov function have been then developed for various
switching dynamics (see, e.g., [3, 19, 29]) for finite-
dimensional systems, [7, 12] for infinite-dimensional
systems, and [6, 8, 9, 10] for retarded systems).

In this paper we give a collection of converse Lya-
punov theorems for switching retarded systems with
measurable switching signals. The novelty of the ob-
tained results lies in the relaxation of the conditions
required by a Lyapunov-Krasovskii functional. We
show that the ISS property of a switching retarded
system can be characterized by the existence of a
continuous (instead of Lipschitz on bounded sets)
Lyapunov-Krasovskii functional whose upper right-
hand Dini derivative satisfies a dissipation inequality
almost everywhere. An important technical tool on
which our arguments are based is the recent equiv-
alence property given in [10, Theroem 1] proving
that a switching retarded system is ISS (with mea-
surable inputs and measurable switching signals) if
and only if it is ISS for all piecewise-constant in-
puts and piecewise-constant switching signals. Recall
that, when dealing with a retarded system, the map
describing the evolution of the state is simply contin-
uous with respect to time (see, e.g., [11, Lemma 2.1]).
Thus a continuous, or even Lipschitz on bounded sets,
Lyapunov–Krasovskii functional V evaluated on the
solution of a retarded system will be in general con-
tinuous and not absolutely continuous with respect
to time. By consequence, the nonpositivity of the
upper right-hand Dini derivative of V holding almost
everywhere, is not sufficient to conclude about the
monotonicity of V along the solutions. Thanks to



the equivalence property mentioned above, this prob-
lem is overcome by restricting the class of inputs and
switching signals to the class of piecewise-constant
ones. Indeed, in this case, the nonpositivity of the
Dini derivative of V along the solutions holds ev-
erywhere instead of almost everywhere permitting to
conclude about its monotonicity (see [5, 21]).

Another contribution of this paper is through the
ISS characterization of switching retarded systems
using different derivative notions of Driver’s and
Dini’s types. Driver’s type derivative (see, e.g.,
[4, 22]), by contrast to Dini’s one, is an appropriate
definition of the derivative of a Lyapunov–Krasovskii
functional that does not involve the solution. In [22]
it is shown that Driver and Dini derivatives coincide
for locally Lipschitz Lyapunov-Krasovskii function-
als. Here we extend this result to switching retarded
systems. Furthermore, we show that the existence
of a Lipschitz on bounded sets Lyapunov-Krasovskii
functional whose Driver derivative satisfies a dissipa-
tion inequality (which is equivalent, by [10, Theorem
2], to ISS) is equivalent to the existence of a contin-
uous Lyapunov functional having its Dini derivative
satisfying a dissipation inequality almost everywhere.
Other Dini’s type derivative definitions, which are
used in the literature of retarded systems (see, e.g.,
[18]), are also used in the collection of our converse
Lyapunov theorems.

The paper is organized as follows. Section 2
presents the notation, definitions and assumptions in
use. The statements and proofs of our main results
are presented in Section 3. The obtained results are
discussed in Section 4

2 Switching retarded systems

In this section we list the notation, definitions, and
the main assumptions in use.

2.1 Notation

Throughout the paper, we adopt the following nota-
tion: R denotes the set of real numbers, R+ the set of
non-negative real numbers, and R the extended real
line. By (Rn, ‖ · ‖) we denote the n-dimensional Eu-
clidean space, where n is a positive integer and ‖ · ‖
is the Euclidean norm. Given r > 0, B(0, r) denotes
the closed ball of (Rn, ‖ · ‖) of center 0 and radius r.
By 1I we denote the indicator function of a nonempty
subset I of R.

Given ∆ > 0, C := (C([−∆, 0],Rn), ‖ · ‖∞) denotes
the Banach space of continuous functions mapping
[−∆, 0] into R

n, where ‖ · ‖∞ is the norm of uniform
convergence. For a function x : [−∆, b) → R

n, with
0 < b ≤ +∞, for t ∈ [0, b), xt : [−∆, 0] → R

n de-
notes the history function defined by xt(θ) = x(t+θ),
−∆ ≤ θ ≤ 0. For a positive real H and given φ ∈ C,
CH(φ) denotes the subset {ψ ∈ C : ‖φ − ψ‖∞ ≤ H}.
We simply denote CH(0) by CH .
A measurable function u : R+ → R

m, m pos-
itive integer, is said to be essentially bounded if
ess supt≥0 |u(t)| < +∞. We use the symbol ‖ · ‖∞
to indicate the essential supremum norm of an essen-
tially bounded function. For given times 0 ≤ t1 < t2,
u[t1,t2) : R+ → R

m indicates the function given
by u[t1,t2) = u(t)1[t1,t2)(t) for t ≥ 0. A function
u : R+ → R

m is said to be locally essentially bounded
if, for any t > 0, u[0,t) is essentially bounded.
A function α : R+ → R+ is said to be of class K

if it is continuous, strictly increasing and α(0) = 0;
it is said to be of class K∞ if it is of class K and
unbounded. A continuous function β : R+ × R+ →
R+ is said to be of class KL if β(·, t) is of class K for
each t ≥ 0 and, for each s ≥ 0, β(s, ·) is nonincreasing
and converges to zero as t tends to +∞.
With the symbol ‖ · ‖a we indicate any semi-norm

in C such that, for some positive constants γa and γa,
the following inequalities hold:

γa|φ(0)| ≤ ‖φ‖a ≤ γa‖φ‖∞, ∀φ ∈ C.

2.2 Definitions and assumptions

Let us consider the switching control system de-
scribed by the following retarded functional differ-
ential equation

Σ :
ẋ(t) = fσ(t)(xt, u(t)), a.e. t ≥ 0,
x(θ) = x0(θ), θ ∈ [−∆, 0],

where: x(t) ∈ R
n; n is a positive integer; ∆ is a posi-

tive real (the maximum involved time delay); x0 ∈ C
is the initial state; the function σ : R+ → S is the
switching signal; S is a nonempty set; u : R+ → R

m,
m positive integer, is a Lebesgue measurable locally
essentially bounded input signal.
We introduce the following two assumptions:

Assumption 1 For each s ∈ S, fs(0, 0) = 0. More-
over, fs(·, ·) is uniformly (with respect to s ∈ S) Lip-
schitz on bounded subsets of C × R

m, i.e., for any
H > 0 there exists LH > 0 such that for every



ϕ, ψ ∈ CH and u, v ∈ B(0, H), the following inequal-
ity holds for all s ∈ S

|fs(ϕ, u)− fs(ψ, v)| ≤ LH (‖ϕ− ψ‖∞ + |u− v|) .

We denote by U the set of Lebesgue measurable
locally essentially bounded inputs from R+ to R

m

and by UPC the subset of right-continuous piecewise-
constant ones. We denote also by S the set of mea-
surable signals σ : R+ → S and by SPC the subset of
right-continuous piecewise-constant ones.

Assumption 2 For each φ ∈ C, σ ∈ S and u ∈ U ,
the function t 7→ fσ(t)(φ, u(t)), t ∈ R+, is Lebesgue
measurable.

Under Assumption 1 and Assumption 2, the exis-
tence and uniqueness of a solution for system Σ as
well as its continuous dependence on the initial state
is guaranteed by the theory of systems described by
retarded functional differential equations (see, e.g.,
[11, 14]). This can be reformulated by the following
lemma.

Lemma 1 For any φ ∈ C, u ∈ U and σ ∈ S, there
exists, uniquely, a locally absolutely continuous so-
lution x(t, φ, u, σ) of Σ in a maximal time interval
[0, b), with 0 < b ≤ +∞. If b < +∞, then the solu-
tion is unbounded in [0, b). Moreover, for any ε > 0,
for any c ∈ (0, b), there exists δ > 0 such that, for
any ψ ∈ Cδ(φ), the solution x(t, ψ, u, σ) exists in [0, c]
and, furthermore, the following inequality holds

|x(t, φ, u, σ) − x(t, ψ, u, σ)| ≤ ε, ∀ t ∈ [0, c].

Let us recall the following definition about Driver’s
form derivative of a continuous functional V : C →
R+. This definition is a variation of the one given
in [4, 22, 24] for retarded functional differential equa-
tions without switching.

Definition 1 For a continuous functional V : C →
R+, its Driver’s form derivative, D+

(1)V : C × R
m →

R, is defined, for the switching system Σ, for φ ∈ C
and u ∈ R

m, as follows,

D+
(1)V (φ, u) = sup

s∈S
lim sup
h→0+

V
(

φ
Σ,s
h,u

)

− V (φ)

h
,

where φ
Σ,s
h,u ∈ C is defined, for h ∈ [0,∆) and θ ∈

[−∆, 0], as follows

φ
Σ,s
h,u(θ) =

{

φ(θ + h), θ ∈ [−∆,−h)
φ(0) + (θ + h)fs(φ, u), θ ∈ [−h, 0].

Let us also recall the following definition about Dini
derivative of a continuous functional V : C → R+.
This definition is the one given in [11] for retarded
functional differential equations without switching.

Definition 2 Given initial state φ ∈ C, u ∈ U and
σ ∈ S, for a continuous functional V : C → R+ its
Dini derivative D+

(2)V : [0, b) → R is defined, for the

switching system Σ, as follows,

D+
(2)V (t) = lim sup

h→0+

V (xt+h)− V (xt)

h
,

where x(·) is the solution of Σ starting from φ and
associated with u and σ over a maximal time interval
[0, b).

Definition 3 For a continuous functional V : C →
R+, its S-Dini derivative, D+

(3)V : C ×U ×S → R, is

defined, for the switching system Σ, for φ ∈ C, u ∈ U
and σ ∈ S, as follows,

D+
(3)V (φ, u, σ) = lim sup

h→0+

V (xh(φ, u, σ)) − V (φ)

h
,

where xh(φ, u, σ) is the solution of Σ starting from φ

and associated with u and σ.

Definition 4 For a continuous functional V : C →
R+, its mode-Dini derivative, D+

(4)V : C × IRm ×S →

R, is defined, for the switching system Σ, for φ ∈ C,
v ∈ IRm and s ∈ S, as follows,

D+
(4)V (φ, v, s) = lim sup

h→0+

V (xh(φ, v, s)) − V (φ)

h
,

where xh(φ, v, σ) is the solution of Σ starting from φ

and associated with u(t) ≡ v and σ(t) ≡ s, t ≥ 0.

Definition 5 For a continuous functional V : C →
R+, its sup-mode-Dini derivative, D+

(5)V : C× IRm →

R, is defined, for the switching system Σ, for φ ∈ C
and v ∈ IRm, as follows,

D+
(5)V (φ, v) = sup

s∈S
D+

(4)V (φ, v, s).

We give in the following the definition of ISS of
system Σ.

Definition 6 We say that system Σ is M-ISS (PC-
ISS, respectively), if there exist a function β ∈ KL
and a class K function γ such that, for any x0 ∈ C,
u ∈ U (UPC, respectively) and σ ∈ S (SPC, respec-
tively), the corresponding solution exists in R+ and,
furthermore, satisfies the inequality

|x(t, x0, u, σ)| ≤ β(‖x0‖∞, t)+γ(‖u[0,t)‖∞), ∀ t ≥ 0.



3 Main results

The following theorem gives different characteriza-
tions of the input-to-state stability property of sys-
tem Σ.

Theorem 1 The following statements are equiva-
lent:

1) System Σ is PC-ISS;

2) System Σ is M-ISS;

3) there exist a Lipschitz on bounded sets functional
V : C → R+, functions α1, α2, α3 ∈ K∞, and
α4 ∈ K such that the following inequalities hold
for every φ ∈ C and u ∈ R

m:

(i) α1(|φ(0)|) ≤ V (φ) ≤ α2(‖φ‖a),

(ii) D+
(1)V (φ, u) ≤ −α3(‖φ‖a) + α4(|u|);

4) there exist a continuous functional V : C → R+,
functions α1, α2, α3 ∈ K∞, and α4 ∈ K such
that, for any φ ∈ C, any u ∈ U and any σ ∈ S,
the following inequalities hold:

(i) α1(|φ(0)|) ≤ V (φ) ≤ α2(‖φ‖a),

(ii) D+
(3)V (xt, u, σ) ≤ −α3(‖xt‖a) + α4(|u(t)|),

a.e. t ∈ [0, b),

where x(·) is the solution of Σ starting from
φ and associated with u and σ over the
maximal interval of definition [0, b), u(τ) =
u(t + τ) and σ(τ) = σ(t + τ), for all τ ∈
[0, b− t).
Furthermore if u ∈ UPC and σ ∈ SPC then

(iii) D+
(3)V (xt, u, σ) ≤ −α3(‖xt‖a) + α4(|u(t)|),

∀ t ∈ [0, b),

where x(·) is the solution of Σ starting from
φ and associated with u and σ over the
maximal interval of definition [0, b), u(τ) =
u(t + τ) and σ(τ) = σ(t + τ), for all τ ∈
[0, b− t);

5) there exist a continuous functional V : C → R+,
functions α1, α2, α3 ∈ K∞, and α4 ∈ K such
that, for any φ ∈ C, any u ∈ U and any σ ∈ S,
the following inequalities hold:

(i) α1(|φ(0)|) ≤ V (φ) ≤ α2(‖φ‖a),

(ii) D+
(2)V (t) ≤ −α3(‖xt‖a)+α4(|u(t)|), a.e. t ∈

[0, b),

where x(·) is the solution of Σ starting from

φ and associated with u and σ over the max-
imal interval of definition [0, b).
Furthermore if u ∈ UPC and σ ∈ SPC then

(iii) D+
(2)V (t) ≤ −α3(‖xt‖a) + α4(|u(t)|), ∀ t ∈

[0, b),

where x(·) is the solution of Σ starting from φ

and associated with u and σ over the maximal
interval of definition [0, b);

6) there exist a continuous functional V : C → R+,
functions α1, α2, α3 ∈ K∞, and α4 ∈ K such
that, for any φ ∈ C, any u ∈ UPC and any σ ∈
SPC, the following inequalities hold:

(i) α1(|φ(0)|) ≤ V (φ) ≤ α2(‖φ‖a),

(ii) D+
(3)V (xt, ū, σ̄) ≤ −α3(‖φ‖a) + α4(|u(t)|),

∀ t ∈ [0, b),

where x(·) is the solution of Σ starting from φ

and associated with u and σ over the maximal
interval of definition [0, b), u(τ) = u(t + τ) and
σ(τ) = σ(t+ τ), for all τ ∈ [0, b− t);

7) there exist a continuous functional V : C → R+,
functions α1, α2, α3 ∈ K∞, and α4 ∈ K such
that, for any φ ∈ C, any u ∈ IRm and any s ∈ S,
the following inequalities hold:

(i) α1(|φ(0)|) ≤ V (φ) ≤ α2(‖φ‖a),

(ii) D+
(4)V (φ, u, s) ≤ −α3(‖φ‖a) + α4(|u|);

8) there exist a continuous functional V : C → R+,
functions α1, α2, α3 ∈ K∞, and α4 ∈ K such
that, for any φ ∈ C and any u ∈ IRm the follow-
ing inequalities hold:

(i) α1(|φ(0)|) ≤ V (φ) ≤ α2(‖φ‖a),

(ii) D+
(5)V (φ, u) ≤ −α3(‖φ‖a) + α4(|u|).

Before giving the proof of Theorem 1 let us un-
derline what we have mentioned in the introduc-
tion concerning the absolute continuity problem of
Lyapunov–Krasovskii functionals. In fact, since we
deal with a retarded system, the map describing the
evolution of the state is simply continuous with re-
spect to time. Thus a continuous (even Lipschitz on
bounded sets) Lyapunov–Krasovskii functional evalu-
ated on the solution of such a system will be in general
continuous and not absolutely continuous with re-
spect to time (we highlight that this problem is over-
come in [23] by restricting the class of initial states



to continuously differentiable ones; this does not yield
any loss of generality because, as it is shown in the
same paper, the ISS property holds with continu-
ous initial states if and only if it holds with contin-
uously differentiable ones). By consequence, we can-
not directly use the standard comparison lemma [17,
Lemma 4.4] in the proof of the sufficiency parts (i.e.,
the ones implying the ISS) of Theorem 1. Instead,
exploiting the equivalence between M-ISS and PC-
ISS given by Theorem 1, one can use the following
comparison lemma from [21].

Lemma 2 [21, Lemma 1] For each continuous and
positive definite function α, there exists a class KL
function βα with the following property: if, for T > 0
(or T = +∞), y : [0, T ) → R+ is a continuous non-
negative function which satisfies the inequality

D+y(t) ≤ −α(y(t)), ∀ t ∈ [0, T ), (1)

where D+y denotes the upper-right Dini derivative of
y, with y(0) = y0 ∈ R+, then it holds that

y(t) ≤ βα(y0, t), ∀ t ∈ [0, T ). (2)

Proof of Theorem 1. The proof of 1) =⇒ 2) is
given in [10, Theorem 3.1]. The proof of 2) =⇒ 3)
is given in [10, Theorem 3.2]. Concerning the proof
of 3) =⇒ 4), let V be the Lipschitz on bounded sets
functional given by point 3). Let x(·) be the solution
of Σ associated with some φ ∈ C, u ∈ U and σ ∈ S
over a maximal time interval of definition [0, b). Fol-
lowing the same steps of the proof of [22, Theorem
2] (see also [4]) given for retarded non-switching sys-
tems, one can verify that the following equality holds
for almost every t ∈ [0, b)

lim sup
h→0+

V (xh(xt, ū, σ̄)) − V (xt)

h

= lim sup
h→0+

V
(

(xt)
Σ,σ(t)
h,u(t)

)

− V (xt)

h
. (3)

Indeed, Observe that

V
(

(xt)
Σ,σ(t)
h,u(t)

)

− V (xt)

h

=
V
(

(xt)
Σ,σ(t)
h,u(t)

)

− V (xh(xt, ū, σ̄))

h

+
V (xh(xt, ū, σ̄))− V (xt)

h
,

it is sufficient to prove that for almost every t ∈ [0, b)
we have

lim sup
h→0+

V
(

(xt)
Σ,σ(t)
h,u(t)

)

− V (xh(xt, ū, σ̄))

h
= 0. (4)

For this, using the fact that V is Lipschitz on bounded
sets, there exists L = L(xt) such that

∣

∣

∣
V
(

(xt)
Σ,σ(t)
h,u(t)

)

− V (xh(xt, ū, σ̄))
∣

∣

∣

≤ L
∥

∥

∥
(xt)

Σ,σ(t)
h,u(t) − xh(xt, ū, σ̄)

∥

∥

∥

∞

= L sup
θ∈[0,h]

∥

∥

∥

∥

∥

θfσ(t)(xt, u(t))−

∫ t+θ

t

fσ(τ)(xτ , u(τ))dτ

∥

∥

∥

∥

∥

= L sup
θ∈[0,h]

∥

∥

∥

∥

∥

∫ t+θ

t

(

fσ(t)(xt, u(t))− fσ(τ)(xτ , u(τ))
)

dτ

∥

∥

∥

∥

∥

≤ L sup
θ∈[0,h]

∫ t+θ

t

∥

∥fσ(t)(xt, u(t))− fσ(τ)(xτ , u(τ))
∥

∥ dτ

= L

∫ t+h

t

∥

∥fσ(t)(xt, u(t))− fσ(τ)(xτ , u(τ))
∥

∥ dτ.

Under Assumption 2, using the Lebesgue’s Differ-
entiation Theorem it follows that for almost every
t ∈ [0, b) we have

lim
h→0+

1

h

∫ t+h

t

∣

∣fσ(t)(xt, u(t)− fσ(τ)(xτ , u(τ))dτ)
∣

∣ = 0.

Therefore, equality (3) holds for almost every t ∈
[0, b). Now observe that

lim sup
h→0+

V
(

(xt)
Σ,σ(t)
h,u(t)

)

− V (xt)

h
≤ D+

(1)V (xt, u(t))

≤ −α3(‖xt‖a) + α4(|u(t)|). (5)

From (3) together with (5) it follows that

D+
(3)V (xt, ū, σ̄) ≤ −α3(‖xt‖a) + α4(|u(t)|), a.e.t ∈ [0, b).

Hence the proof of 3) =⇒ 4). Notice that, given any
initial state φ ∈ C, u ∈ U and σ ∈ S, the following
equality holds for all t ∈ [0, b)

D+
(2)V (t) = D+

(3)V (xt, u, σ), (6)

the proof of 4) =⇒ 5) =⇒ 6) is obvious. The
proof of 6) =⇒ 7) follows from the fact that, for
each s ∈ S and v ∈ IRm, we have D+

(4)V (φ, v, s) =



D+
(3)V (φ, ū, σ̄) with u(·) ≡ v and σ(·) ≡ s. The proof

of 7) =⇒ 8) is obvious. Concerning the proof of
8) =⇒ 1), let φ ∈ C, u ∈ UPC, σ ∈ SPC, and let x(·)
be the corresponding solution over a maximal interval
of time [0, b), 0 < b ≤ +∞. Let w : [0, b) → R+ be
the function which is defined by

w(t) = V (xt(φ, u, σ)), ∀ t ∈ [0, b).

Knowing that u and σ are piecewise-constants, then
for a sufficiently small h > 0 we have σ|[t,t+h)

≡ σ(t)
and u|[t,t+h)

≡ u(t). By inequality (ii) of point 8), the
following holds for every t ∈ [0, b)

D+w(t) ≤ −α3(‖xt(φ, u(t), σ(t))‖a) + α4(|u(t)|).

Let the input u(t) be such that supt≥0 |u(t)| = v, for a
suitable v ≥ 0. By analogous reasoning as in [25, 24],
one can prove the existence of c ∈ (0, b] such that

D+w(t) ≤ −α(w(t)), ∀ t ∈ [0, c), (7)

|x(t, φ, u(t), σ(t))| ≤ γ(v), ∀ t ∈ [c, b), (8)

where α = 1
2α3 ◦ α

−1
2 and γ = α2 ◦ α

−1
3 ◦ 2α4. Since

t 7→ w(t) is continuous, from Lemma 2 it holds the
existence of a class KL function βα such that

|w(t)| ≤ βα(w(0), t), ∀ t ∈ [0, c),

from which it follows that

|x(t, φ, u, σ)| ≤ β(‖φ‖∞, t), ∀ t ∈ [0, c), (9)

with β(r, t) = α−1
1 ◦ βα(α2(γar), t). By consequence,

inequalities (8) and (9) lead to the following inequal-
ity

|x(t, φ, u, σ)| ≤ β(‖φ‖∞, t)+γ(v), ∀ t ∈ [0, b). (10)

It follows, from Lemma 1, that b = +∞. By
causality arguments, and given the arbitrarity of
ϕ ∈ C, u ∈ UPC and σ ∈ SPC, the PC-ISS of system
Σ is proved. �

We highlight that, for the cases of nonlinear finite-
dimensional and retarded non-switching systems, the
result stated in Theorem 1 concerning the equivalence
between items 1) and 2) can be also deduced by [13,
Theorem 3.3], which concerns piecewise-continuous
and right-continuous inputs, and by density argu-
ments (see the reasoning used in [23, Proposition 3]
for equivalence of ISS with respect to dense sets of
initial states).

4 Conclusions

In this paper we give a collection of converse Lya-
punov theorems for ISS of nonlinear switching re-
tarded systems. In particular, we show that the ex-
istence of continuous (instead of locally Lipschitz)
Lyapunov-Krasovskii functional whose upper right-
hand Dini derivative satisfies a dissipation inequal-
ity almost everywhere is necessary and sufficient for
the ISS of switching retarded systems. This equiv-
alence property is obtained for a very general class
of Lebesgue measurable switching signals. Different
derivative notions, which are usually used in the lit-
erature of retarded systems, are also used to establish
our converse theorems. Future developments may
concern the problem of the input-to-state stabiliza-
tion and of the input delay tolerance (see, e.g., [27]
and [31]) for switching retarded systems.
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