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CODIMENSION ONE FOLIATIONS ON HOMOGENEOUS VARIETIES

VLADIMIRO BENEDETTI, DANIELE FAENZI, ALAN MUNIZ

Abstract. The aim of this paper is to study codimension one foliations on rational
homogeneous spaces, with a focus on the moduli space of foliations of low degree on
Grassmannians and cominuscule spaces. Using equivariant techniques, we show that
codimension one degree zero foliations on (ordinary, orthogonal, symplectic) Grassman-
nians of lines, some spinor varieties, some Lagrangian Grassmannians, the Cayley plane
(an E6-variety) and the Freudenthal variety (an E7-variety) are identified with restric-
tions of foliations on the ambient projective space. We also provide some evidence that
such results can be extended beyond these cases.

1. Introduction

Let X be a compact connected complex manifold of dimension n. A a codimension-p
holomorphic distribution on X is a rank n ´ p saturated subsheaf of the tangent bundle
F Ă TX ; here saturated means TX{F is torsion free. If moreover F is stable under
the Lie bracket, it is called a foliation. For a fixed line bundle L P PicpXq the space
FolppX,Lq of codimension-p foliations with detpF q “ Lbω_

X is a locally closed subvariety
of PpH0pΩp

XpLqq_q. Being stable under the Lie bracket translates to a closed condition on
the coefficients of the p-form, both are known as the Frobenius integrability condition.

For p “ 1, as we shall explain in greater detail in §2, this condition is conveniently
described by the quadratic map:

ψX : H0pΩ1
XpLqq Ñ H0pΩ3

Xp2Lqq, ω ÞÑ ω ^ dω,

The zero-scheme of ψX inside H0pΩ1
XpLqq is what we call the locus IFpX,Lq of integrable

forms, while we denote by DistpX,Lq the open set of 1-forms not vanishing in codimension
one, as they correspond to distributions satisfying detpF q “ Lb ω_

X . Then

FolpX,Lq :“ Fol1pX,Lq “ DistpX,Lq X IFpX,Lq Ă PpH0pΩ1
XpLqq_q.

The description of FolppX,Lq for given X and L is an interesting problem in the global
theory of holomorphic foliations. The case X “ P

n and p “ 1 is already very challenging.
Note that in this case L » OPnpd ` 2q, with d ě 0, so d is traditionally called the degree
of the foliation. A full description of FolpPn, d ` 2q is only known, at this moment, for
d ď 2. For degree d “ 0 every foliation is given by a pencil of hyperplanes so FolpPn, 2q is
isomorphic to the Grassmannian Gp2, n ` 1q, the inclusion in PpH0pΩp

Pnpp ` 1qq_q being
the Plücker embedding. It is unknown to us when this fact was first established but we
refer to [DC05, Chapitre 3] and [ACM18, Theorem 4.3] for modern proofs. The case d “ 1
was described in 1979 by Jouanolou [Jou79], FolpPn, 3q has 2 irreducible components. The
case d “ 2 was established in 1996 by Cerveau and Lins Neto [CLN96]; FolpPn, 4q has
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6 irreducible components. For d “ 3 there exists, until this date, a partial classification
due to da Costa, Lizarbe and Pereira [dCLP22]; they prove that FolpPn, 5q has at least 24
components, some of them being not generically reduced – a phenomenon that was never
observed before.

Many authors studied the geometry of foliations on other manifolds, especially when
X is of low dimension (see [Bru97]) or when ´c1pF q is positive or numerically trivial (see
in particular [AD13, AD17] for ´c1pF q ample and [LPT18] for c1pF q ” 0). However,
much less seems to be known about the behaviour of foliations under restriction, our
main inspiration being [ACM18], where special attention is paid to the case of complete
intersections.

The aim of our work is to describe the space FolpX, d` 2q of codimension one foliations
on a manifold X which is G-homogeneous for the action of a simple complex Lie group
G, bearing in mind that a prominent role should be played by the representation theory
of G, or of the stabiliser P of a point of X. The spaces we consider are Grassmanians in
their Plücker embedding, or more generally cominuscule Grassmannians, see §3.2, since for
these varieties we only need the representation theory of the semisimple part of P, which
affords a major simplification of our analysis. For a G-homogeneous variety X, there
is an irreducible G-representation V such that X Ă PpV q is the minimal G-equivariant
embedding. All line bundles on X are of the form OXptq for some t P Z, where OXp1q is
the G-linearized hyperplane section bundle of X Ă PpV q. Then, considering the natural
restriction maps i˚p of p-forms from P to X, we get the following result.

Theorem A. Let X Ă PpV q be a cominuscule variety. Then, for d, p ě 0:

i) The restriction map i˚p : H
0pΩp

PpV qpd` 2qq Ñ H0pΩp
Xpd` 2qq is surjective.

ii) The map π : FolpPpV q, 2q Ñ FolpX, 2q induced by i˚1 is injective.
iii) The space of integrable forms IFpX, d` 2q Ă PpH0pΩ1

Xpd` 2qq_q is defined by the
quadratic equations given by the G-equivariant inclusion:

H0pΩ3
Xpd ` 2qq_ Ă S2H0pΩ1

Xpd ` 2qq_,

induced by Ψ_
PpV q ˝ pi˚3q_ “ π˚ ˝ Ψ_

X .

The result above is a summary of statements spread along the paper – for instance
i) is Corollary 3.6, while iii) is Theorem 3.7 – and some of these claims are actually
proved in greater generality – for example ii) is shown in Proposition 2.8 with no need for
homogeneity.

Then we look in more detail at the case of Grassmannians, in particular Grassmannians
of lines, and a few other cominuscule varieties, where our results are particularly neat.

Theorem B. Let X Ă PpV q be a cominuscule variety which is not a linear space nor a
quadric. Then, restriction of 1-forms gives an isomorphism:

FolpX, 2q » FolpPpV q, 2q » Gp2,
2ľ
V q

in the following cases:

i) Grassmannians of lines, X “ Gp2, nq;
ii) spinor varieties OGpn, 2nq, for n “ 4, 5;
iii) the Cayley plane, X “ E6{P1;
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iv) the following four varieties appearing in Freudenthal’s magic square:

LGp3, 6q, Gp3, 6q, OGp6, 12q, E7{P7.

A key point here is that in all cases above except iv) the isomorphism takes place because
the maps i˚1 and i˚3 are isomorphisms (this is shown for items i), ii) and iii) respectively
in Theorems 4.1, 6.1 and 6.4), so Theorem A is enough to conclude. This fact is true as
well for quadrics of dimension at least 3, and these cases essentially cover all cominuscule
Grassmannians for which this happens.

On the other hand, in case iv) we show in Theorem 6.6 that the map i˚1 induces a
linear projection from a distinguished point lying away from FolpPpV q, 2q and that this
map is actually an isomorphism onto FolpX, 2q. We provide a uniform proof for these four
cases, based on the observation that the point used to define the projection corresponds
to G-invariant contact form on V . This is also the reason for the apparently awkward
choice of listing the spinor variety OGp6, 12q among the cases of iv) rather than in ii).

To our knowledge, the only case known previously of Theorem B is Gp2, 5q, see [ACM18].

This leads to the expectation that i˚1 induces an isomorphism FolpX, d ` 2q »
FolpPpV q, d ` 2q for all cominuscule Grassmannians and small d, though the evidence
we provide is only for d “ 0 and mainly Gp3, nq. Indeed, in this case Theorem 4.3 proves
that i˚1 induces an embedding rather than a set-theoretic injection and moreover the ideal
of its image agrees with that of FolpGp3, nq, 2q up to degree 2. We prove more results in
this direction, even slightly more generally than for homogeneous spaces, for instance in
Theorem 5.2 we address the case of isotropic Grassiammians of lines for a skew-symmetric
form of maximal rank. However, one should be warned that i˚1 sometimes induces a proper
inclusion, for instance this happens for the (non-cominuscule) variety of isotropic lines for a
non-degenerate quadratic form, see Proposition 5.4, and for products of projective spaces,
see Proposition 6.11.

The paper is organized as follows. In Section 2 we introduce distributions, foliations
and integrable forms taking values on a given line bundle on a manifold, with a focus
on projective spaces, whereby defining the quadratic equations of integrability and the
restriction maps mentioned above. In Section 3 we start the discussion of homogeneous
spaces, recall the list of cominuscule varieties and provide some basic results about dis-
tributions and foliations over them. In Section 4 we look more closely to Grassmannians
Gpk, nq by first treating the case k “ 2, then moving to k “ 3 and finally analyzing the
special case pk, nq “ p3, 6q. In Section 5 we look at Grassmannians of isotropic lines, while
Section 6 is devoted to other cominuscule spaces like spinor varieties or the Cayley plane.
Finally, in Section 7 we discuss some further directions and open problems. The Appendix
is devoted to some representation-theoretic lemmas needed for our treatment of Gp3, nq.
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17-EURE-0002) and by ANR-20-CE40-0023. This study was financed in part by the
Coordenação de Aperfeiçoamento de Pessoal de Nı́vel Superior - Brasil (CAPES) - Finance
Code 001.
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2. Distributions and Foliations

Let X be a smooth complex projective manifold of dimension n. A codimension p

distribution F on X is a saturated subsheaf F of the tangent sheaf TX of generic rank
n´ p. The inclusion F Ă TX induces an exact sequence of the form

(1) F : 0 ÝÑ F
φ

ÝÑ TX
η

ÝÑ N ÝÑ 0

where N , called the normal sheaf of F , is a torsion free sheaf of rank p. It follows that F ,
called the tangent sheaf of F , must be a reflexive sheaf. Two codimension p distributions
F and F 1 are isomorphic if φpF q “ φ1pF 1q as subsheaves of TX .

Consider the induced morphism ^n´pφ_ : Ωn´p
X Ñ detpF q_; its image is the ideal sheaf

IZ of a subscheme Z of codimension at least 2 in X, twisted by detpF q_; Z is called
the singular scheme of F . The isomorphism

Źn´p TX » Ωp
Xpω_

Xq tells us that ^n´pφ_

defines an element ^n´pφ_ P H0pΩp
Xpω_

X bdetpF q_qq. The induced contraction morphism

^n´pφ_ : TX Ñ Ωp´1
X pω_

X b detpF q_q

has φpF q as its kernel, hence there exists an isomorphism β : imp^n´pφ_q Ñ N such that
β ˝ ^n´pφ_ “ η in (1).

Conversely let ω P H0pΩp
Xpω_

XbdetpF q_qq not vanishing in codimension one, it defines a

codimension p distribution if and only if Fω :“ kerpω : TX Ñ Ωp´1
X pω_

Xqq has (generic) rank
n´p. Due to [dM00, Proposition 1.2.1], rkFω “ n´p if and only if for every (closed) point
x P Xz|Z| there exists an (affine) open neighborhood U of x and α1, . . . , αp P H0pΩ1

U q
such that ω decomposes as

(2) ω|U “ α1 ^ ¨ ¨ ¨ ^ αp.

Such p-forms are called locally decomposable off the singular set – LDS for short.
Therefore we get a set-theoretical bijection, for each L P PicpXq,

"
F ãÑ TX saturated subsheaf of rank
n´ p, detpF q “ L_ b ω_

X

*
ÐÑ

"
rωs P PpH0pΩp

XpLqq_q LDS not
vanishing in codimension one

*

that to φ : F Ñ TX associates ω “ ^n´pφ_ and to ω associates Fω as above. Then we
define the algebraic set

DistppX,Lq :“ trωs P PpH0pΩp
XpLqq_q | ω is LDS, codimSingpωq ě 2u

that parameterizes codimension p distributions with fixed determinant detpF q “ L_ bω_
X .

We remark that DistppX,Lq is not a moduli space in the sense that it does not represent a
functor parameterizing distributions. But it can be stratified into moduli spaces by fixing
the Hilbert polynomial of F , see for instance [Qua15, CJM22].

A distribution is called integrable if it defines a foliation, which means that for each
x P Xz|Z| there exists an unique analytic immersed subvariety S ãÑ X passing through x
such that TSx “ F bOS,x. Due to a theorem of Frobenius, integrability of F is equivalent
to rF,F s Ă F , where r¨, ¨s is the Lie bracket on TX . In terms of differential forms this
integrability condition reads locally as

(3) dαj ^ α1 ^ ¨ ¨ ¨ ^ αp “ 0

where αj are the 1-forms from (2). If integrability holds we simply say that F is a foliation.
Thus we define the (quasi-projective) algebraic set

FolppX,Lq :“ trωs P DistppX,Lq | ω is integrableu
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whose points correspond to foliations on X with determinant detpF q “ L_ b ω_
X .

Notation 2.1. In our cases of interest X will be embedded in some projective space and
we will denote OXp1q “ OPnp1q|X . Hence we will write FolppX, lq :“ FolppX,OX plqq and
when p “ 1 we may just write FolpX, lq :“ Fol1pX,OX plqq; the same for Dist and IF that
will be defined below. Moreover, when X “ P

n it is common to write L “ OPnpd` p` 1q,
the integer d is called the degree of the foliation. Then FolpPn, d ` 2q is the space of
codimension one degree d foliations on P

n.

For our purposes it will be useful to define also the set of general integrable forms

IFppX,Lq :“ trωs P PpH0pΩp
XpLqq_q | ω is integrableu.

Notice that FolppX,Lq “ IFppX,Lq X DistppX,Lq. Moreover, if H0pΩp
XpLp´Dqqq “ 0 for

every D ‰ 0 effective divisor, then FolppX,Lq “ IFppX,Lq.

2.1. Distributions and foliations on a projective space. Let V be a (finite dimen-
sional) complex vector space and let PpV q the associated projective space (of one dimen-
sional quotients); in particular V “ H0pOPpV qp1qq. We will write P

n :“ PpV q, n “ dimV ,
unless we need to specify V . In the later sections we will be interested in describing
distributions and foliations under the action of a semisimple linear algebraic group G, so
that V will be a G-module. In order to do so we first establish a dictionary between the
language of differential forms and representations of SLpV q. For the representation theory
of SLpV q and in particular Schur functors we refer to [Wey03].

First we note that distributions and foliations on P
n can be described via homogeneous

polynomial differential forms. Recall the Euler sequence:

0 ÝÑ Ω1
Pn ÝÑ OPnp´1q b V ÝÑ OPn ÝÑ 0.

Taking exterior powers, twists and global sections we get

(4) H0
`
Ωp
Pnpd ` p` 1q

˘
ãÑ Sd`1V b

pľ
V

ιRÝÑ Sd`2V b
p´1ľ

V

where SkV is the k-th symmetric power of V . We have written V for the vector space
generated by the homogeneous coordinates txju and for the space of their differentials

tdxju. Similarly H0pTPnp´1qq “ V _ is generated by the (rational) vector fields B
Bxj

. The

map ιR is the contraction with the radial vector field R “
ř

j xj
B

Bxj
and it can be written

as the composition

(5) ιR : Sd`1V b
pľ
V

1b∆
ÝÝÝÑ Sd`1V b V b

p´1ľ
V

mb1
ÝÝÝÑ Sd`2V b

p´1ľ
V,

where m : Sd`1V b V Ñ Sd`2V is the multiplication map mpppxq b qpxqq “ ppxqqpxq
with p, q homogeneous polynomials of degrees d ` 1 and 1 respectively; and ∆:

Źp V Ñ

V b
Źp´1 V is the diagonal map given by

∆pdxi1 ^ ¨ ¨ ¨ ^ dxipq “
pÿ

j“1

p´1qj`1xij b dxi1 ^ ¨ ¨ ¨ ^ ydxij ^ ¨ ¨ ¨ ^ dxip .

Therefore the contraction map with the radial vector field is

ιRpppxqdxi1 ^ ¨ ¨ ¨ ^ dxipq “ ppxq
pÿ

j“1

p´1qj`1xijdxi1 ^ ¨ ¨ ¨ ^ ydxij ^ ¨ ¨ ¨ ^ dxip .
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From this discussion we get that H0pΩp
Pnpd ` p ` 1qq are represented by homogeneous

polynomial differential p-forms

ω “
ÿ
Ai1,...,ipdxi1 ^ ¨ ¨ ¨ ^ dxip , such that ιRω “ 0.

On the other hand, computing the Lie derivative of ω with respect to R gives pd` p` 1qω
because of homogeneity. Hence

ω “
1

d ` p` 1
LRpωq “

1

d ` p` 1
pιRdω ` dιRωq “ ιR

1

d` p` 1
dω

and H0pΩp
Pnpd ` p` 1qq can also be seen as the image of

(6) ιR : SrV b
p`1ľ

V ÝÑ Sd`1V b
pľ
V.

Working with polynomial differential forms also simplifies the verification of the LDS
and integrability conditions (2) and (3), since it can be done globally. Indeed, as a conse-
quence of [dM00], ω is LDS if and only if

(7) pιuωq ^ ω “ 0 @u P
p´1ľ

V _

and it is integrable if in addition

(8) pιuωq ^ dω “ 0 @u P
p´1ľ

V _.

Notation 2.2. We denote by ΓλV the Schur functor of a decreasing sequence of integers
λ “ pλ1, ¨ ¨ ¨ , λkq applied to the vector space V . For instance ΓpqqV is just the symmetric

power SqV , while Γp1,¨¨¨ ,1qV “ Γp1kqV is the exterior power
Źk V .

Remark 2.3. The sequence (4) is SLpV q-equivariant, hence we can describe the space
H0pΩp

Pnpd ` p` 1qq in terms of irreducible representations, i.e. Schur functors applied to
V . Indeed, from (5) we deduce that

H0
`
Ωp
Pnpd ` p` 1q

˘
“ Γpd`1,1pqV ;

in particular it is always an irreducible SLpV q-module. This is established using [Wey03,

example 2.1.17 (h)] (and noting that Γpd`1,1pqV “ pKpd`1,1pqV
_q_ “ Lpp`1,1rqV in Wey-

man’s notation). This result can also be obtained by using the Bott-Borel-Weil Theorem.

2.2. The space of integrable 1-forms. Hereafter we fix p “ 1 and let X be a smooth
complex projective variety. Let L P PicpXq and consider ω P H0pΩ1

XpLqq. Let tUαuαPΛ be
an open (affine) covering that trivializes L and write ω “ tωαuαPΛ, where ωα P Ω1

XpUαq are
such that, on Uα XUβ ‰ H, ωα “ gαβωβ for tgαβuα,βPΛ the cocycle of L. The integrability
of ω is measured by the vanishing of ωα ^ dpωαq for each α, see (3). Note that

ωα ^ dpωαq “ g2αβωβ ^ dpωβq

and tωα ^ dpωαquαPΛ defines a section in H0pΩ3
Xp2Lqq that, by abuse of notation, we call

ω ^ dω. Then we may say that

ω is integrable ðñ ω ^ dω “ 0.
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Thus we get a quadratic map ψX : H0pΩ1
XpLqq Ñ H0pΩ3

Xp2Lqq, ω ÞÑ ω ^ dω whose van-
ishing locus is the cone over IFpX,Lq. Consider then the polarization

ΨX : S2H0pΩ1
XpLqq ÝÑ H0pΩ3

Xp2Lqq ,

ω ¨ η ÞÝÑ
1

2
pω ^ dη ` η ^ dωq

so that ΨXpω ¨ ωq “ ψXpωq, and notice that S2H0pΩ1
XpLqq_ “ H0pOPpH0pΩ1

X
pLqq_qp2qq.

Hence dualizing we get that

(9) pimΨXq_
ãÑ S2H0pΩ1

XpLqq_

is precisely the truncation in degree 2 of the homogeneous ideal of IFpX,Lq.

Lemma 2.4. Let X be a smooth complex projective variety and let L P PicpXq. Then the
space of integrable 1-forms IFpX,Lq is defined by the quadratic polynomials from (9).

Proof. By construction pimΨXq_ generates the whole ideal of integrable 1-forms. �

In the case of projective spaces we can say more, ΨPn being always surjective.

Lemma 2.5. Let V » C
n`1, n ě 3, and let l ě 2. Then

ΨPn : S2H0pΩ1
Pnplqq ÝÑ H0pΩ3

Pnp2lqq

is surjective. As a consequence, the ideal of IFpPn, lq is generated by the quadratic poly-
nomials given by

H0pΩ3
Pnp2lqq_

ãÑ S2H0pΩ1
Pnplqq_

Proof. Since pullbacks commute with exterior differential and exterior product of differ-
ential forms, we see that ΨPn is SLpV q-equivariant. From Remark 2.3, H0pΩ3

Pnp2lqq is an
irreducible SLpV q-module and this implies, by Schur’s Lemma, that ΨPn is either surjec-
tive or the zero map. In order to show that it is surjective, it is enough to provide an
element ω P H0pΩ1

Pnplqq such that ω ^ dω ‰ 0.
Consider tx0, . . . , xnu a basis of V and define

ω “ xl´2
0 px0dx1 ´ x1dx0 ` x2dx3 ´ x3dx2q.

It is clear that

ω ^ dω “ x2l´4
0 px0dx1 ^ dx2 ^ dx3 ´ x1dx0 ^ dx2 ^ dx3`

x2dx0 ^ dx1 ^ dx3 ´ x3dx0 ^ dx1 ^ dx2q ‰ 0,

concluding the proof. �

Remark 2.6. In the special case l “ 2 it follows from (6) that we have the diagram

S2
2ľ
V

4ľ
V

S2H0pΩ1
Pnplqq H0pΩ3

Pnp2lqq

ιR

ΨPn

ιR

ΨPn

whose vertical arrows are isomorphisms due to Remark 2.3. Then there exists a unique
choice for the top horizontal arrow in order to make this diagram commutative, this is
precisely the map u¨v ÞÑ u^v. By abuse of notation we also call this map ΨPn . We remark
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that in this case pimΨPnq_ “
Ź4 V _ is generated by the Plücker relations. From (2.4)

we get that FolpPn, 2q » Gp2, V _q. This is essentially the argument of [ACM18, Theorem

4.3]; in fact, they use the more general map Sk
Ź2 V ÞÑ

Ź2k V to get an isomorphism
between the k-th secant variety of Gp2, V _q and the space of so-called class k distributions,
class 0 meaning integrable.

2.3. Distributions and foliations on a projective variety. Now consider a smooth
subvariety i : X ãÑ P

n and denote OXp1q “ i˚OPnp1q. The embedding i induces the
pullback (restriction) of twisted differential forms i˚p : Ω

p
Pnpkq Ñ Ωp

Xpkq. This morphism
is surjective since we can express i˚p “ ^pi˚1 b 1 and i˚1 is the composition of the two
surjections appearing in the following sequences:

0 ÝÑ N_
X ÝÑ Ω1

Pn b OX ÝÑ Ω1
X ÝÑ 0,(10)

0 ÝÑ Ω1
Pn b IX ÝÑ Ω1

Pn ÝÑ Ω1
Pn b OX ÝÑ 0.(11)

Taking global sections gives us

(12) i˚p : H
0pPn,Ωp

Pnplqq ÝÑ H0pΩp
Xplqq

for each p and l and it also induces a rational map between projective spaces

πp : PpH0pPn,Ωp
Pnplqq_q PpH0pΩp

Xplqq_q.

Since pullbacks commute with exterior products and exterior differentials, the closure of
the image of IFppPn, lq is contained in IFppX, lq:

πppIFppPn, lqq Ă IFppX, lq.

For p ě 2 and general X the integrability condition is not easy to check. To study it for
p “ 1, we write the commutative diagram:

(13)

S2H0pPn,Ω1
Pnplqq S2H0pΩ1

Xplqq

H0pPn,Ω3
Pnp2lqq H0pΩ3

Xp2lqq.

ΨPn

S2i˚1

ΨX

i˚3

To simplify notation we write W l
X :“ H0pΩ1

Xplqq_ and π “ π1, so that IFpX, lq Ă PpW l
Xq

and the rational map we are concerned with is π : PpW l
Pnq 99K PpW l

Xq. Hence the dual of
(13) can be written as

(14)

H0pPpW l
Pnq,O

PpW l
Pn

qp2qq H0pPpW l
Xq,O

PpW l
X

qp2qq

H0pPn,Ω3
Pnp2lqq_ H0pΩ3

Xp2lqq_.

S2i˚1
Ψ_

Pn Ψ_
X

If i˚1 is surjective then every twisted 1-form in H0pΩ1
Xplqq is the pullback of an element

of H0pPn,Ω1
Pnplqq. This raises the question of whether the integrable 1-forms on X as well

come from integrable 1-forms on P
n; in other words, when do we have the equality

πpIFpPn, lqq “ IFpX, lq?

In this direction we have the following result.
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Lemma 2.7. Let X be a smooth complex projective variety and let l ě 2 be an integer.
Assume there exists an embedding i : X ãÑ P

n such that i˚1 : H
0pPn,Ω1

Pnplqq Ñ H0pΩ1
Xplqq

and i˚3 : H
0pPn,Ω3

Pnp2lqq Ñ H0pΩ3
Xp2lqq are surjective. Then

(1) ΨX is surjective and the ideal of IFpX, dq is generated by the quadratic equations

Ψ_
XpH0pΩ3

Xp2lqq_q Ă S2H0pΩ1
Xplqq_.

(2) If the square (14) is cartesian then we have equality on the degree 2 part of the
ideals:

pI
πpIFpPn,lqqq2 “ pIIFpX,lqq2.

We remark that an analogous statement holds without assuming the surjectivity of i˚3
but instead replacing H0pΩ3

Xp2lqq by imΨX in (13). However the surjectivity of both
maps hold in our cases of interest.

Note also that if πpIFppPn, lqq is defined by quadrics and p2q holds then we get an isomor-

phism IFpPn, lq » IFpX, lq. However the image πpZq via a linear projection π : Pn
99K P

m

of a variety Z Ă P
n defined by quadrics does not need to be defined by quadrics. For

instance, if Z is a rational normal curve of degree ě 4 and π is a projection from a point,
then πpZq is cut out by quadrics and cubics, see[AR02, Example 4.3].

Proof of Lemma 2.7 . Notice that since i˚1 is surjective, so is S2i˚1 . Adding that ΨPn is
surjective, due to Lemma 2.5, we see that imΨX “ im i˚3 “ H0pΩ3

Xp2lqq.
From Lemma 2.4 we know that the vertical arrows of (14) are the inclusions of the

ideals of IFpPn, lq and IFpX, lq, proving our first assertion.
For the moment denote Y :“ IFpPn, lq and Z :“ IFpX, lq. By definition,

pI
πpY q

q2 “ pIY q2 XH0pO
PpW l

X
qp2qq,

i.e. pI
πpY q

q2 is the pullback of Ψ_
Pn by S2i˚1 . By the universal property of pullback diagrams,

(14) is cartesian if and only if the natural inclusion

H0pΩ3
Xp2lqq_ “ pIZq2 Ă pI

πpY q
q2

is an equality. �

Proposition 2.8. Let X be a smooth projective variety such that PicpXq “ Z with a
very ample generator OXp1q. Consider the embedding i : X ãÑ PpH0pOXp1qqq. Then the
restricted pullback map

π : FolpPpH0pOXp1qqq, 2q Ñ FolpX, 2q

is injective.

Proof. Fix P :“ PpH0pOXp1qqq. Then we have H0pP,OPp1qq “ H0pOXp1qq. It follows that
π is well-defined on FolpPn, 2q. Indeed, if π were not defined at rωs with ω “ fdg ´ gdf

then X would be contained in some hyperplane of the pencil generated by f and g, but
that is not possible.

Now let ω “ fdg ´ gdf and ω1 “ f 1dg1 ´ g1df 1 such that their image define the same
foliation, i.e. i˚1ω “ λi˚1ω

1 for some λ P C
˚. Passing to the pencils we see that there exists

a Möbius transformation τ such that f 1

g1 |X “ τpf
g

|Xq. Hence, up to composing with τ´1,

we may assume that f 1

g1 |X “ f
g

|X , which means

fg1 ´ f 1g P H0pP,IXp2qq.
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Observe that fg1 ´ f 1g is a quadratic polynomial of rank 4; here we mean the rank of the
associated symmetric (Hessian) matrix. To conclude we claim that under our hypothesis
there exist no quadric of rank ď 4 in the ideal of X. We will prove this claim in Lemma
2.9. �

Lemma 2.9. Let X be a smooth projective variety such that PicpXq “ Z with a very
ample generator OXp1q. Consider the embedding i : X ãÑ P “ PpH0pOXp1qqq. Then there
is no element in H0pP,IXp2qq of rank ď 4.

Proof. Assume, aiming at a contradiction, that there exists q P H0pP,IXp2qqzt0u of rank
ď 4. Then, there exist linear polynomials a, b, c, d P H0pP,OPp1qq such that q “ ad ´ bc.
Then define the morphism

A : OXp´1q‘2

˜
a|X b|X
c|X d|X

¸

ÝÝÝÝÝÝÝÝÝÑ O
‘2
X

whose generic rank is equal to one since q P H0pP,IXp2qq and H0pP,IXp1qq “ 0. Hence
imA is a rank one torsion free sheaf. Since X is smooth (integral and locally factorial)
imA “ IZplq for some subscheme Z Ă X of codimension ě 2 and l P Z. Moreover,
kerA “ OXp´2´ lq. From OXp1q being a generator of PicpXq we deduce that l P t´1, 0u
and we have two possibilities:

(1) l “ ´1: Then kerA “ OXp´2´lq “ OXp´1q and the inclusion kerA ãÑ OXp´1q‘2

is given by a constant vector pu, vq P H0pOXq‘2. Up to multiplying A on the left
with some element of GLp2,Cq we can assume that pu, vq “ p1, 0q, thus

„
a|X
c|X


“

ˆ
a|X b|X
c|X d|X

˙ „
1
0


“

„
0
0


.

Since H0pP,OPp1qq “ H0pOXp1qq we have that a “ c “ 0 whence q “ 0.
(2) l “ 0: Then imA “ IZ and the inclusion IZ ãÑ O

‘2
X must factor as

IZ ãÑ OX ãÑ O
‘2
X ,

and the map on the right is given by a constant vector that we may assume to
be p1, 0q. It follows that c|X “ d|X “ 0 and, as in the previous case, this implies
q “ 0.

�

We remark that we did not use that X is smooth but only that a rank one reflexive
sheaf is locally free. This holds for X an integral and locally factorial variety, see [Har80,
Proposition 1.9] for a proof.

3. Homogeneous spaces

We will focus now on homogeneous varieties, i.e., varieties which admit a transitive
action of a Lie group. Using this action it will be possible, in some cases, to understand
what are the codimension one minimal degree foliations on these varieties. Let us give
a brief introduction to homogeneous varieties before studying 1-forms and foliations on
them; we refer to [Ott95] for more details.

Let G be a Lie group over C and X a projective G-homogeneous variety. Then X

is the product of an abelian variety by a rational variety. Let us suppose that X is
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rational, so that we get rid of the abelian factor. One can then replace G by its image
inside the automorphism group of X and thus suppose that G is a semisimple affine
Lie group. By the transitivity assumption, the stabilizers of all the points in X are
conjugated to some subgroup P Ă G. The fact that X is projective is equivalent to the
fact that P is parabolic, i.e. that P contains a Borel (maximal connected solvable algebraic)
subgroup of G. Sometimes we will write X “ G{P to make the group and the parabolic
subgroup explicit. Recall finally that X has Picard number equal to one if and only if P is
maximal (for inclusion); we will call such varieties generalized Grassmannians, following
the literature.

Example 3.1. Let us fix G “ SLpn`1q. Then a Borel subgroup B Ă G is given by upper
triangular matrices. A parabolic subgroup P containing B can be written as a product
P “ DB, where

D :“ tpg1, ¨ ¨ ¨ , gk`1q P GLi1 ˆ ¨ ¨ ¨ ˆ GLik´ik´1
ˆGLn`1´ik | detpg1q ¨ ¨ ¨ detpgk`1q “ 1u

is a subgroup of block diagonal matrices of fixed size given by an integer sequence
1 ď i1 ă ¨ ¨ ¨ ă ik ď n. The quotient X :“ G{P is then a Flag variety Flpi1, ¨ ¨ ¨ , ik, n` 1q
parametrizing flags rCi1 Ă ¨ ¨ ¨ Ă C

iks contained in a pn`1q-dimensional vector space. The
quotient G{B is thus the complete flag variety Flp1, 2, ¨ ¨ ¨ , n ` 1q, while Grassmannians
and projective spaces are obtained by setting k “ 1 and correspond to maximal para-
bolic subgroups. A similar description via flags of isotropic subspaces exists for rational
homogeneous varieties for the classical groups Spp2nq and SOpmq.

We hereafter assume that G is a semisimple affine Lie group over C. Let α1 . . . , αr

be the set of fundamental roots of G. An irreducible representation of G is uniquely
determined by its dominant weight, which has the form λ “

řr
i“1 aiλi, where tλ1, . . . , λru

is the set of fundamental weights of G, and ai P Zě0; such a representation will be
denoted by Vλ. As it is made explicit by Example 3.1 in the case G “ SLpn ` 1q, a
parabolic subgroup P is defined by the choice of a subset of simple roots of G; moreover P
is maximal if this subset consists of a single root. For instance, the parabolic P such that
SLpn ` 1q{P “ Flpi1, ¨ ¨ ¨ , ik, n ` 1q is defined by the choice of the subset tαi1 , . . . , αiku of
simple roots, while the Grassmannian Gpk, n`1q is defined by the choice of the root tαku.

A vector bundle on X whose total space admits an action of G which extends the action
on X is called homogeneous, or G-equivariant. There exists an equivalence of categories
between homogeneous vector bundles on X “ G{P and representations of P. Given a
representation V of P one can construct a vector bundle on X by E :“ G ˆP V , and one
can check that the fiber of E over the point stabilized by P is isomorphic to V ; see [Ott95,
§9] for more details.

From now on, for any semisimple group G, let us suppose that P is maximal (i.e. X is
a generalized Grassmannian) and defined by the k-th root αk. Then the set of dominant
weights for the irreducible representations of the semisimple part of P is precisely the set
of weights of the form λ “

řr
i“1 aiλi, where ai P Z and ai ě 0 for i ‰ k. An irreducible

representation of P is uniquely defined by its restriction to the semisimple part of P,
and thus ultimately to such a dominant weight λ. Vector bundles on X arising from an
irreducible representation of P are called irreducible, and direct sum of those are called
completely reducible. The irreducible bundle associated with the weight λ is denoted by
Eλ. If ak ě 0, we have H0pEλq » Vλ, owing to the Borel-Weil Theorem [Ott95, Theorem
10.11].
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We use the following convention. We set λ0 “ λm`1 “ 0 and, given a formal expression
λ “

ř
iPZ aiλi, we put Eλ “ 0 and Vλ “ 0 if there is j ‰ k such that aj ă 0, or if aj ‰ 0

for some j ă 0 or j ą m` 1. For instance we have:

S2Vλk
»

à
jPZě0

Vλk´2j`λk`2j
.

Any G-equivariant vector bundle E over X has a filtration by completely reducible
bundles.

3.1. Grassmannians. Let te1, . . . , enu be the canonical basis of V and denote by li the
weight of ei with respect to the natural action of slpV q. Then αij “ li ´ lj are the roots
and λi “ l1 ` ¨ ¨ ¨ ` li are the fundamental weights.

Consider Gpk, V q the Grassmaniann of k-dimensional quotients of V . It comes with the
tautological sequence

0 ÝÑ U ÝÑ V b OGpk,V q ÝÑ Q ÝÑ 0

where Q is the rank k tautological quotient bundle and U is the rank n ´ k tautological

subbundle. In particular, the Plücker embedding is given by
Źk

Q “ OGpk,V qp1q.
The Grassmannian Gpk, V q can be seen as a homogeneous space SLpnq{Pk hence ho-

mogeneous bundles correspond to representations of Pk. Moreover the irreducible ones
correspond to weights which are dominant for the Levi factor of Pk, which is the maximal
reductive subgroup of Pk.

We also have that, according to [Wey03, P. 60],

Ωm
Gpk,V q “

mľ
pQ_ b Uq “

à

|µ|“m

Γµ
Q

_ b Γµ1
U .

Therefore one can prove the following result, see [Wey03, (2.3.3) Corollary].

Lemma 3.2. We have the following equalities:

H0pΩ1
Gpk,V qpd ` 2qq “Vλk´1`dλk`λk`1

,

H0pΩ3
Gpk,V qp2d ` 4qq “V3λk´1`2dλk`λk`3

‘ Vλk´2`λk´1`2dλk`λk`1`λk`2

‘ Vλk´3`2dλk`3λk`1
.

3.2. Cominuscule spaces. We want to study foliations on a few more homogeneous
spaces. In order to restrict to a simpler situation, we will consider X a cominuscule
homogeneous variety for a group G. These are varieties embedded in PpVλq via the positive
generator of the Picard group, where Vλ is a cominuscule representation. The definition
of a cominuscule representation is somewhat technical and not very useful in our context.
However, there is a very explicit equivalent definition of a cominuscule variety which is
more geometric friendly, see [BS19, Corolary 36].

Definition 3.3. A rational homogeneous variety X “ G{P is called a cominuscule vari-
ety (or space) if TX is a completely reducible vector bundle. X is called a cominuscule
Grassmannian if TX is irreducible.

Remark 3.4. The distinction between cominuscule varieties and cominuscule Grassman-
nians is motivated by the following fact. Since G is semisimple, it is the product of simple
groups G “ G1 ˆ ¨ ¨ ¨ ˆGk and the same holds for X “ G1{P1 ˆ ¨ ¨ ¨ ˆGk{Pk. We can sup-
pose that all Pi’s are strictly contained in each Gi. Since the tangent bundle of a product
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is the direct sum of the tangent bundles of the single factors, in order to have that TX is
irreducible the only possibility is that k “ 1. Otherwise stated, if TX is irreducible then
one can suppose that G is simple. Moreover cominuscule varieties which are a quotient of
a simple group are classified [BS19, Table 2] and consist of:

(1) Grassmannians Gpk, nq “ SLpnq{Pk;
(2) Quadrics Qn “ SOpn` 2q{P1 Ă P

n`1;
(3) spinor varieties OGpn, 2nq for the group Dn;
(4) Lagrangian Grassmannians IGpn, 2nq;
(5) The Cayley plane E6{P1 ;
(6) The Freudenthal variety E7{P7.

These are all generalized Grassmannians (i.e. P is a maximal parabolic subgroup). As
a result of this discussion, we deduce that TX is irreducible if and only if X is a comi-
nuscule variety which is a generalized Grassmannian, hence our definition of cominuscule
Grassmannian.

In what follows, we will start by studying foliations on (ordinary) Grassmannians and
then we will study foliations on the remaining cominuscule Grassmannians. We will see
that the hypothesis that TX is irreducible will be very useful in order to understand the
integrability condition on these spaces.

Lemma 3.5. Let X Ă P
n be a homogeneous G-variety. Consider M a homogeneous

G-bundle on P
n and N a homogeneous G-bundle on X such that

(1) N is completely reducible;
(2) M is globally generated;
(3) there exists a surjective (G-equivariant) morphism M ։ N .

Then the induced morphism on global sections H0pPn,Mq Ñ H0pX,Nq is also surjective.

Proof. From the hypotheses we have

H0pPn,Mq b OPn M N “
à
µ

Eµ.

Up to composing further with a canonical projection N ։ Eµ we may assume N “ Eµ

irreducible and we get an equivariant map

H0pPn,Mq b OPn Eµ

that must factor through H0pX,Eµq “ Vµ. In particular, the induced map on global
sections is not zero and the surjectivity follows from Schur’s Lemma. �

Corollary 3.6. Let i : X “ G{P Ñ PpVλq be a G-equivariant embedding of a (rational)
homogeneous variety. Suppose that Ω1

X is completely reducible. Then the induced pullback
maps

i˚p : H
0pΩp

PpVλqpd` p` 1qq ÝÑ H0pΩp
Xpd ` p` 1qq

are surjective for every p ě 1 and d ě 0. In particular, this is true for cominuscule
varieties.

Proof. Notice that for any d ě 0 the vector bundle Ωp
Pnpd ` p ` 1q is globally generated

and homogeneous with respect to the action of G Ă SLpV q; moreover i˚p : Ω
p
Pnpd`p`1q Ñ
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Ωp
Xpd ` p ` 1q is surjective and G-equivariant, since i is an equivariant embedding. By

hypothesis Ω1
X is completely reducible, the result then follows from Lemma 3.5. �

Later on we will use this result, together with Lemma 2.7, in order to obtain the equa-
tions of the set of integrable forms/foliations on cominuscule spaces. To make the com-
putations and the results more explicit, we will study each case independently; however,
let us start with a general result.

Theorem 3.7. Let X “ G{P Ă PpVλq be a cominuscule variety. The space of codimension
one degree d integrable forms IFpX, d`2q Ă PpH0pΩ1

Xpd`2qq_q is defined by the quadratic
equations given by the G-equivariant inclusion

(15) H0pΩ3
Xpd ` 2qq_ Ă S2H0pΩ1

Xpd` 2qq_

induced by Ψ_
PpVλq ˝ pi˚3q_ “ π˚ ˝ Ψ_

X .

Proof. As we have already recalled, the ideal of the space of integrable forms is generated
by the quadratic equations in the image of Ψ_

X . By the surjectivities in Corollary 3.6 and
Lemma 2.7, Ψ_

X is an isomorphism onto its image. Moreover Ψ_
X is clearly G-equivariant

since X is a G-homogeneous space. �

Notice that Proposition 2.8 applies to generalized Grassmannians (since their Picard
number is equal to one). Let us rewrite this result for cominuscule Grassmannians for the
sake of convenience.

Proposition 3.8. Let i : X “ G{P ãÑ PpVλq be a primitive embedding of a cominuscule
Grassmannian. Then the projection map π : FolpPpVλq, 2q ÝÑ FolpX, 2q is injective.

Remark 3.9. Notice that H0pΩ1
PpVλqp2qq “ H0pΩ1

Xp2qq‘W forW :“ ker i˚1 . To show that

π is an embedding it would be enough to show that each fibre of π intersects FolpPpVλq, 2q
at precisely one (reduced) point.

The restriction of π to FolpPpVλq, 2q is an embedding if and only if PpW_q X
Sec1pFolpPpVλqq “ H. Now recall that FolpPpVλq, 2q » Gp2, V _

λ q in its Plücker embed-
ding and Sec1pGp2, V _

λ qq correspond to skew-symmetric matrices of rank ď 4. Then π is

an embedding if and only if all the elements in W Ă
Ź2 Vλ have rank ě 6. We will show

that this fact holds for X “ Gp3, nq and some other cases, but we do not know a uniform
proof of this fact for any cominuscule Grassmannian.

4. Distributions and Foliations on Gpk, nq

In this section we study the spaces IFpGpk, nq, lq of integrable 1-forms on a Grass-
mannian Gpk, nq of k-dimensional quotients of the vector space V » C

n. The Plücker
embedding i realizes Gpk, V q SLpV q-equivariantly as a subvariety of PpVλk

q. We are going
to consider the induced maps

i˚p : H
0pΩp

PpVλk
qpd ` p` 1qq ÝÑ H0pΩp

Gpk,V qpd ` p` 1qq,

which are surjective due to Corollary 3.6. We will prove, in particular, that they induce
isomorphisms between the spaces of degree zero foliations for Gp2, nq, n ě 4.
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4.1. The case of Grassmannians of lines Gp2, nq. Let us denote throughout this
section by X the Grassmannian Gp2, V q. The following result shows that the situation
concerning foliations on Grassmannians of lines is completely analogous to the case of
projective spaces.

Theorem 4.1. Let V be a finite dimensional complex vector space. Then

i˚p : H
0pΩp

PpVλ2
q
pp` 1qq ÝÑ H0pΩp

Xpp ` 1qq

is an isomorphism for p “ 1, 3. In particular we have the isomorphism

π : Gp2, V _
λ2

q “ FolpPpVλ2
q, 2q

„
ÝÑ FolpX, 2q.

Proof. We already observed that the maps i˚1 and i˚3 are surjective. We only need to prove
that both source and target have the same decomposition as irreducible SLpV q-modules.
On the one hand, Lemma 3.2 says that

H0pΩ1
Xp2qq “ Vλ1`λ3

and H0pΩ3
Xp4qq “ V3λ1`λ5

‘ Vλ1`λ3`λ4
.

On the other hand, it follows from [Wey03, Proposition 2.3.9], which is a consequence of
the Littlewood-Richardson rule, that

H0pΩ1
PpVλ2

qp2qq “
2ľ ˜

2ľ
V

¸
“ Vλ1`λ3

, and

H0pΩ3
PpVλ2

qp4qq “
4ľ ˜

2ľ
V

¸
“ V3λ1`λ5

‘ Vλ1`λ3`λ4
.

Therefore i˚1 and i˚3 are isomorphisms. It then follows that

π : PpH0pΩ1
PpVλ2

qp2qq_q ÝÑ PpH0pΩ1
Xp2qq_q

is an isomorphism that takes FolpPpVλ2
q, 2q to FolpX, 2q. �

Remark 4.2. The case n “ dimV “ 5 was already treated in [ACM18, Theorem 1.5,
item (5.a)] of Araujo, Corrêa and Massarenti. Their proof relies on a previous result of
Araujo and Druel about del Pezzo foliations and could not be generalized. One could
also try to use our strategy to investigate distributions of class k ě 1, see [ACM18] for a
definition.

4.2. The case of Gp3, nq. Let us denote throughout this section byX the variety Gp3, V q.
In this section we aim to prove the following result.

Theorem 4.3. Let V be a finite dimensional complex vector space. Then the map

π : FolpPpVλ3
q, 2q ÝÑ FolpX, 2q

is an embedding. Moreover, the homogeneous ideals of πpFolpPpVλ3
q, 2qq and FolpX, 2q

agree in degree two, i.e.
pIπpFolpPpVλ3

q,2qqq2 “ pIFolpX,2qq2.

First let us give a rough idea of the proof. Due to Proposition 3.8 π is well-defined and
injective. The idea to prove that it is an embedding comes from Remark 3.9; we will prove
that the intersection between ker i˚1 and the space of rank ď 4 matrices is t0u by studying
SLpV q-orbits. The second part boils down, owing to Lemma 2.7, to proving that the
square (14) is cartesian in this case; this will be done explicitly by ad hoc computations.
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From Lemma 3.2 we know that

H0pΩ1
Xp2qq “ Vλ2`λ4

and H0pΩ3
Xp4qq “ V3λ2`λ6

‘ Vλ1`λ2`λ4`λ5
‘ V3λ4

.

Moreover one can check (for instance with [vLCL92]) that

H0pΩ1
PpVλ3

qp2qq “
2ľ
Vλ3

“Vλ6
‘ Vλ2`λ4

“ Vλ6
‘H0pΩ1

Xp2qq,(16)

H0pΩ3
PpVλ3

qp4qq “
4ľ
Vλ3

“Vλ12
‘ Vλ3`λ9

‘ Vλ2`λ10
‘ V2λ6

‘ Vλ4`λ8
‘

‘ V2λ2`λ8
‘ Vλ2`λ3`λ7

‘ Vλ1`λ4`λ7
‘ Vλ2`λ4`λ6

‘(17)

‘H0pΩ3
Gpk,V qp4qq.

In particular, neither i˚1 nor i˚3 are injective. Furthermore (by [vLCL92] again) we can
compute

S2Vλ2`λ4
“ V2λ6

‘ Vλ4`λ8
‘ V3λ4

‘ Vλ3`λ4`λ5
‘ V ‘2

λ2`λ4`λ6
‘ Vλ2`λ3`λ7

‘

‘V2λ2`λ8
‘ V2λ2`2λ4

‘ V3λ2`λ6
‘ Vλ1`λ5`λ6

‘ Vλ1`λ4`λ7
‘ Vλ1`2λ3`λ5

‘

‘Vλ1`λ2`λ4`λ5
‘ Vλ1`λ2`λ3`λ6

‘ V2λ2`2λ5
‘ V2λ1`λ3`λ7

(18)

and also

S2
2ľ
Vλ3

“ Vλ12
‘ V ‘2

2λ6
‘ V ‘3

λ4`λ8
‘ V3λ4

‘ Vλ3`λ9
‘ Vλ3`λ4`λ5

‘ V ‘2
λ2`λ10

‘

‘V ‘3
λ2`λ4`λ6

‘ V ‘2
λ2`λ3`λ7

‘ V ‘2
2λ2`λ8

‘ V2λ2`2λ4
‘ V3λ2`λ6

‘ Vλ1`λ5`λ6
‘

‘V ‘2
λ1`λ4`λ7

‘ Vλ1`λ3`λ8
‘ Vλ1`2λ3`λ5

‘ Vλ1`λ2`λ9
‘ Vλ1`λ2`λ4`λ5

‘

‘Vλ1`λ2`λ3`λ6
‘ V2λ1`2λ5

‘ V2λ1`λ3`λ7
.

(19)

Let us write diagram (14) in this case:

(20)

S2
2ľ
V _
λ3

S2V _
λ2`λ4

4ľ
V _
λ3

H0pΩ3
Xp4qq_

π˚

Ψ_
PpVλ3

q Ψ_
X

.

Note that π˚ comes from the decomposition
Ź2 Vλ3

“ Vλ6
‘ Vλ2`λ4

hence it is just the
inclusion of a direct summand. On the other hand, recall that from Remark 2.6 the map
ΨPpVλ3

q is the multiplication map pa ^ bq ¨ pc ^ dq ÞÑ a ^ b ^ c ^ d, hence its dual is the

diagonal (or comultiplication) map

(21) Ψ_
PpVλ3

qpa^ b^ c ^ dq “ pa^ bq ¨ pc ^ dq ´ pa^ cq ¨ pb ^ dq ` pa^ dq ¨ pb ^ cq,

see for instance [Wey03, Proposition 1.1.2].

Proposition 4.4. The square (20) is cartesian.

Proof. We want to show that the square (20) is cartesian, i.e.

π˚pS2V _
λ2`λ4

q X Ψ_
PpVλ3

qp
4ľ
V _
λ3

q “ π˚ ˝ Ψ_
XpH0pΩ3

Xp4qq_q.
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Since the maps are SLpV q-equivariant, Schur’s Lemma implies that we can show the
equality above for each weight individually, i.e. we only need to prove that

π˚pV _
µ q X Ψ_

PpVλ3
qpV

_
µ q “ π˚ ˝ Ψ_

XpV _
µ q

for each weight µ.
First we deal with the weights 3λ2 ` λ6, λ1 ` λ2 ` λ4 ` λ5 and 3λ4 appearing in

H0pΩ3
Xp4qq_. We remark that they appear only once (there is only one irreducible direct

summand of each weight) in each term of the square (20). Indeed, check the decomposi-
tions (16), (17), (18) and (19). Hence π˚pV _

µ q X Ψ_
PpVλ3

qpV
_
µ q and π˚ ˝ Ψ_

XpV _
µ q can only

be the unique V _
µ appearing in S2

Ź2 V _
λ3
.

For a weight µ not appearing in H0pΩ3
Xp4qq_ we need to show that

(22) π˚pV _
µ q X Ψ_

PpVλ3
qpV

_
µ q “ t0u.

Notice moreover that we only need to verify the weights appearing in both S2V _
λ2`λ4

andŹ4 V _
λ3
. From (17) and (18) we see that common weights (not in

Ź4 V _
λ3
) are:

2λ6, λ4 ` λ8, 2λ2 ` λ8, λ2 ` λ3 ` λ7, λ1 ` λ4 ` λ7 and λ2 ` λ4 ` λ6.

We claim that (22) holds for each one of these weights, concluding the proof of the propo-
sition. The proof of the claim will be given in Lemmas A.4, A.5, A.6, A.7, A.8 and
A.9. �

Proof of Theorem 4.3. The second part follows from Lemma 2.7 and Proposition 4.4, we
only need to prove the first.

As already recalled, it follows from Proposition 3.8 that π is injective and from Remark
3.9 we only need to show that the center of projection PpV _

λ6
q Ă PpH0pΩ1

PpVλ3
qp2qq_q

does not intersect the first secant variety to FolpPpVλ3
q, 2q “ Gp2, V _

λ3
q. Note that inside

H0pΩ1
PpVλ3

qp2qq “
Ź2 Vλ3

the affine cone over Gp2, V _
λ3

q and its secant varieties are precisely

SeckpGp2, V _
λ3

qq “

$
&
%v P

2ľ
Vλ3

| vk`2 “ v ^ ¨ ¨ ¨ ^ vlooooomooooon
k`2 times

“ 0

,
.
-

where Sec0pGp2, V _
λ3

qq :“ Gp2, V _
λ3

q. Then let

Z :“ Vλ6
X Sec1pGp2, V _

λ3
qq “ tv P Vλ6

| v3 “ 0u.

We want to show that Z “ t0u. Notice that Z is a closed algebraic subset of Vλ6
invariant

under the action of SLpV q. On the other hand, the unique closed (hence minimal) PGLpV q-
orbit in PpVλ6

q is PGLpV q ¨ rw6s, where w6 is the highest weight vector, see [FH91, Claim
23.52]. Due to Remark A.3, w10

6 ‰ 0 therefore w6 R Z and Z “ t0u. �

Remark 4.5. Theorem 4.3 raises the question whether it is true that FolpPpVλ3
q, 2q Ñ

FolpX, 2q is an isomorphism for any n. For n “ 6 we show in Subsection 6.5 that
FolpPpVλ3

q, 2q » FolpGp3, 6q, 2qred , where Xred denotes the underlying reduced structure
of X.
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5. Foliations for Grassmannians of isotropic lines

In the previous section we have shown that foliations on Grassmannians of lines Gp2, nq

coincide with foliations on the ambient projective space Pp
Ź2

C
nq. In this section we

study Grassmannians of lines for the symplectic and the orthogonal groups. These are not
cominuscule varieties, but their inclusion inside Gp2, nq will allow us to understand their
codimension one foliations. Let us give a brief introduction to these varieties. As rational
homogeneous varieties, they can be seen as quotients X “ G{P2, where G is one of the
classical groups B,C,D and P2 is the parabolic subgroup of G defined by the 2nd simple
root α2 (in Bourbaki’s notation).

If G is of type C then G “ SppV q, where V is an even dimensional vector space

endowed with a maximal-rank skew-symmetric two-form w P
Ź2 V . Then SppV q{P2 is

the variety parametrizing isotropic lines inside V _ which are isotropic with respect to
w. This is clearly a subvariety of Gp2, V q and it is a homogeneous variety by classical
linear algebra. Beware that if V is odd dimensional then w has corank equal to one (since
its rank must be even) and the set of lines inside V which are isotropic with respect to
w is not a homogeneous space. Indeed this set is composed of two orbits: the dense
orbit of lines not containing the one-dimensional kernel of w and the closed orbit of lines
containing the kernel of w. However, in both the even and the odd dimensional case,
the isotropy condition is a codimension one condition and the set of lines isotropic with
respect to w is a hyperplane section of Gp2, V q inside its Plücker embedding (notice thatŹ2 V – H0pGp2, V q,Op1qq).

If G is of type B or D, then G “ SOpV q, where V is a vector space endowed with a
non-degenerate symmetric two-form q P S2V : if G is of type B then V is odd dimensional,
while if G is of type D then V is even dimensional. SOpV q{P2 is the variety parametrizing
isotropic lines inside V _ which are isotropic with respect to q. This is clearly a subvariety
of Gp2, V q and it is a homogeneous variety by classical linear algebra.

5.1. Symplectic Grassmannians of lines. In this section we will show that the ana-
logue of Theorem 4.1 holds for hyperplane sections inside Gp2, V q. As already recalled,
these varieties are the so-called symplectic Grassmannians of lines: they are stabilized by
the symplectic group SppV q. When dimpV q is even, they are homogeneous spaces for the
simple group SppV q. Due to the homogeneity condition, the situation when dimpV q is
even is easier to study, and we start with this situation. Let us denote throughout this
section by X the variety IGp2, V q.

Let therefore n “ dimpV q be an even integer. Let w P
Ź2 V be the symplectic form

defining X :“ IGp2, V q and the group SppV q. More explicitly w can be seen as a section

of
Ź2

Q – Op1q, where Q is the quotient tautological bundle, whose zero locus inside
Gp2, V q is X. The dual tautological bundle U_ of X admits the following decomposition:

0 Ñ pQ_qK{Q_ Ñ U
_ Ñ Q Ñ 0,

where pQ_qK is the subbundle of V _ b OX corresponding to the orthogonal with respect
to the two-form w of Q_. Similarly, the cotangent bundle of X admits the following
decomposition

(23) 0 Ñ S2
Q

_ Ñ Ω1
X Ñ pQ_qK{Q_ b Q

_ Ñ 0.
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The two-form w defines a trivial SppV q-subrepresentation of
Ź2 V , and the correspond-

ing quotient will be denoted by
Źx2y V . Thus X is contained in the projective space

Pp
Źx2y V q Ă Pp

Ź2 V q.

Lemma 5.1. We have the following isomorphisms:

H0pΩ1
Xp2qq –

2ľ x2yľ
V ;

H0pΩ3
Xp4qq –

4ľ x2yľ
V.

Proof. Apply the Borel-Weil-Bott Theorem to the cohomology of the exact sequence (23).
�

The previous lemma allows, together with diagram (14), to directly deduce that

FolpX, 2q – FolpPp
Źx2y V q, 2q – Gp2,

Źx2y V _q. However, since the same statement holds
when n is odd (and in this case we cannot use the Borel-Weil-Bott Theorem), we will give
a more general proof of the following theorem (we use the same notations as before, even
though in this case n can either be even or odd):

Theorem 5.2. For X :“ IGp2, V q, we have:

FolpX, 2q » FolpPp

x2yľ
V q, 2q – GpN ´ 2,

x2yľ
V q.

Proof. Since SppV q is not always (semi)simple, we will prove the result by using the
inclusion X Ă Gp2, V q. This inclusion gives the (twisted) conormal exact sequence

0 Ñ Op1q|X Ñ Ω1
Gp2,V qp2q|X Ñ Ω1

Xp2q Ñ 0.

By the Borel-Weil-Bott Theorem and the exact sequence

0 Ñ Op´1q Ñ OGp2,V q Ñ OX Ñ 0,

one deduces that

H0pΩ1
Xp2qq – Vλ1`λ3

{

x2yľ
V “

2ľ 2ľ
V {

x2yľ
V “

2ľ x2yľ
V.

In order to compute the cohomology of Ω3
Xp4q one can take the exterior powers of the

(twisted) conormal sequence, and use the fact that, for an exact sequence

0 Ñ M Ñ N Ñ L Ñ 0,

there exists a filtration of
ŹkN by terms of the form

ŹpM b
Źq L, for p` q “ k. As a

result, one obtains that

H0pΩ3
Xp4qq – Vλ1`λ3`λ4

‘ V3λ1`λ5
{W –

4ľ 2ľ
V {W,

where:

W “ V2λ3
‘ V2λ1`λ4

{
2ľ x2yľ

V –
3ľ 2ľ

V {
2ľ x2yľ

V.
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These results are obtained by applying the Borel-Weil-Bott Theorem; a more careful use
of this theorem shows that these quotients are the natural ones induced by

0 Ñ Cw Ñ
2ľ
V Ñ

x2yľ
V Ñ 0;

thus H0pΩ3
Xp4qq –

Ź4 Źx2y V . Therefore, as in the proof of Theorem 3.7 we obtain that

the equations defining FolpX, 2q are the same as those defining GpN ´ 2,
Źx2y V q; the

result follows. �

5.2. Orthogonal Grassmannians of lines. Let us denote throughout this section by X
the variety OGp2, V q. Let n “ dimpV q and q P S2V be the quadratic form defining X :“
OGp2, V q and the group SOpV q inside Gp2, V q and SLpV q respectively. More explicitly, q
can be seen as a section of the bundle S2Q, where Q is the quotient tautological bundle,
whose zero locus inside Gp2, V q is X itself. The dual tautological bundle U_ of X admits
the following decomposition:

0 Ñ pQ_qK{Q_ Ñ U
_ Ñ Q Ñ 0,

where pQ_qK is the subbundle of V _ b OX corresponding to the orthogonal with respect
to the two-form q of Q_. Similarly, the cotangent bundle of X admits the following
decomposition

(24) 0 Ñ
2ľ

Q
_ Ñ Ω1

X Ñ pQ_qK{Q_ b Q
_ Ñ 0.

The variety X is contained in the projective space PpVλ2
q – Pp

Ź2 V q.

Lemma 5.3. We have the following isomorphisms:

H0pΩ1
Xp2qq –

2ľ 2ľ
V – Vλ1`λ3

‘ Vλ2
;

H0pΩ3
Xp4qq – Vλ1`λ3`λ4

‘ Vλ1`λ2`λ3
‘ V3λ1`λ5

‘ V2λ2
‘ V2λ3

‘ V2λ1`λ4
.

Proof. Apply the Borel-Weil-Bott Theorem to the cohomology of the exact sequence (24).
�

Let us set N “ npn´ 1q{2.

Proposition 5.4. The space of codimension one minimal degree foliations FolpX, 2q Ă

PpH0pΩ1
Xp2qq_q – Pp

Ź2 V _
λ2

q is defined by the quadratic equations given by the inclusion

H0pΩ3
Xp4qq_ Ă S2

Ź2 V _
λ2
, with:

H0pΩ3
Xp4qq “ Vλ1`λ3`λ4

‘ Vλ1`λ2`λ3
‘ V3λ1`λ5

‘ V2λ2
‘ V2λ3

‘ V2λ1`λ4
.

Moreover we have a strict inclusion:

FolpPpVλ2
q, 2q – FolpGp2, V q, 2q – GpN ´ 2, Vλ2

q Ĺ FolpX, 2q.

Proof. By Lemma 2.7 we just need to prove that the natural morphisms

i˚1 : H
0pΩ1

Pp
Ź

2 V q
p2qq –

2ľ 2ľ
V Ñ H0pΩ1

Xp2qq,

i˚3 : H
0pΩ3

Pp
Ź

2 V q
p4qq –

4ľ 2ľ
V Ñ H0pΩ3

Xp4qq
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are surjective. For this one can use the conormal sequence associated to X Ă Gp2, V q
to see that H0pΩ1

Gp2,V qp2q|X q Ñ H0pΩ1
Xp2qq since the twisted conormal bundle S2Q_p2q

has trivial H1. Then the Koszul complex for X Ă Gp2, V q and Borel-Weil-Bott allows
to show that H0pGp2, V q,Ω1

Gp2,V qp2qq Ñ H0pX,Ω1
Gp2q|Xq is surjective. All together this

shows that i˚1 is surjective. A similar argument holds for i˚3 . �

6. Foliations on other cominuscule spaces

As we recalled in Remark 3.4, cominuscule Grassmannians consist of: Grassmanni-
ans, quadrics, spinor varieties OGpn, 2nq for the group Dn, Lagrangian Grassmannians
IGpn, 2nq, E6{P1 and E7{P7. In Section 4 foliations on Grassmannians were studied. For
a quadric hypersurface Q Ă P

n we also have the isomorphism FolpQ, 2q – FolpPn, 2q, this
is a particular case of [ACM18, Theorem 5.6] which holds for general (weighted) complete
intersections. Let us see what happens to the other cominuscule Grassmannians.

6.1. spinor varieties. Let us denote throughout this section by X the variety OGpn, 2nq.
Thus X :“ OGpn, 2nq “ Dn{Pn is a spinor variety of type D. This variety parametrizes
(one of the two isomorphic connected components of) n-dimensional quotient spaces of
a 2n-dimensional space which are isotropic with respect to a symmetric non-degenerate
two-form. If q denotes the symmetric form, X can be seen as the zero locus of q, seen
as a section of S2Q, inside Gpn, 2nq. From the normal sequence one can check that the

tangent bundle TX is equal to
Ź2

Q, where we denoted by Q as well the restriction to X
of the tautological quotient bundle on Gpn, 2nq. One gets:

Ω1
Xp2q “ Eλn´2

, H0pΩ1
Xp2qq “ Vλn´2

;

Ω3
Xp4q “ E2λn´3

‘ Eλn´4`2λn´1
, H0pΩ3

Xp4qq “ V2λn´3
‘ Vλn´4`2λn´1

.

The spinor variety is primitively embedded in PpVλn
q. We denote by N :“ dimpVλn

q.

Theorem 6.1. The space of codimension one minimal degree foliations FolpX, 2q Ă
PpH0pΩ1

Xp2qq_q – PpV _
λn´2

q is defined by the quadratic equations given by the inclusion

H0pΩ3
Xp4qq_ “ pE2λn´3

‘ Eλn´4`2λn´1
q_ Ă S2V _

λn´2
.

Moreover, when n “ 4, 5, these equations are exactly the equations of FolpPpVλn
q, 2q –

GpN ´ 2, Vλn
q, thus identifying the two spaces of foliations.

Remark 6.2. The last assertion is a new result only for n “ 5 because for n “ 4 the
spinor variety X is just a six-dimensional quadric.

Proof. By Corollary 3.6, the morphisms

i˚k : H
0pΩk

PpVλn qpk ` 1qq Ñ H0pΩk
Xpk ` 1qq

are surjective for k “ 1, 3 and any n ě 6, and they are isomorphisms for k “ 1, 3 and
n “ 4, 5 by a dimension argument. By applying Lemma 2.7 the result follows. �
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6.2. Lagrangian Grassmannians. Let us denote throughout this section by X the vari-
ety IGpn, 2nq. Thus X :“ IGpn, 2nq “ Cn{Pn is the symplectic Grassmannian of maximal
isotropic quotient spaces. This variety parametrizes n-dimensional quotient spaces of a
2n-dimensional space which are isotropic with respect to a skew-symmetric non-degenerate
two-form. If w denotes the skew-symmetric form, X can be seen as the zero locus of w,
seen as a section of

Ź2
Q, inside Gpn, 2nq. From the normal sequence one can check that

the tangent bundle TX is isomorphic to S2Q, where we denoted by Q as well the restriction
to X of the tautological quotient bundle on Gpn, 2nq. One gets:

Ω1
Xp2q “ E2λn´1

, H0pΩ1
Xp2qq “ V2λn´1

;

Ω3
Xp4q “ E3λn´2`λn

‘ Eλn´3`3λn´1
, H0pΩ3

Xp4qq “ V3λn´2`λn
‘ Vλn´3`3λn´1

.

The variety X is primitively embedded in PpVλn
q.

Proposition 6.3. The space of codimension one minimal degree foliations FolpX, 2q Ă
PpH0pΩ1

Xp2qq_q – PpV _
2λn´1

q is defined by the quadratic equations given by the inclusion

H0pΩ3
Xp4qq_ “ pV3λn´2`λn

‘ Vλn´3`3λn´1
q_ Ă S2V _

2λn´1
.

Proof. By Corollary 3.6, the morphisms i˚k : H
0pPpVλn

q,Ωk
PpVλn qpk` 1qq Ñ H0pΩk

Xpk` 1qq

are surjective for k “ 1, 3 and any n ě 3, but never isomorphisms. By applying Lemma
2.7 we deduce the result. �

6.3. The Cayley plane. The Cayley plane is the E6-homogeneous variety E6{P1. Set
X “ E6{P1 for the current subsection. The tangent bundle TX is isomorphic to Eλ2

. One
gets:

Ω1
Xp2q “ Eλ3

, H0pΩ1
Xp2qq “ Vλ3

;

Ω3
Xp4q “ Eλ2`λ5

, H0pΩ3
Xp4qq “ Vλ2`λ5

.

The variety X “ E6{P1 is primitively embedded in PpVλ1
q “ P

26, for dimpVλ1
q “ 27. One

checks with [vLCL92] that:

H0pΩ1
PpVλ1

qp2qq –
2ľ
Vλ1

– Vλ3
– H0pΩ1

Xp2qq,

H0pΩ3
PpVλ1

qp4qq –
4ľ
Vλ1

– Vλ2`λ5
– H0pΩ3

Xp4qq.

For X “ E6{P1, we deduce the following theorem, affording a complete description of
the space of codimension one minimal degree foliations

FolpX, 2q Ă PpH0pΩ1
Xp2qq_q – PpV _

λ3
q – Pp

2ľ
V _
λ1

q.

Theorem 6.4. For X “ E6{P1, we get:

FolpX, 2q » FolpPpVλ1
q, 2q – Gp25, Vλ1

q.

Proof. The maps i˚k for k “ 1, 3 are isomorphisms; the result follows from Lemma 2.7. �
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6.4. The Freudenthal variety. The Freudenthal variety is the E7-homogeneous variety
X “ E7{P7. The tangent bundle TX is Eλ1

. One gets:

Ω1
Xp2q “ Eλ6

, H0pΩ1
Xp2qq “ Vλ6

;

Ω3
Xp4q “ Eλ4

, H0pΩ3
Xp4qq “ Vλ4

.

The variety E7{P7 is primitively embedded in PpVλ7
q.

Proposition 6.5. Set X “ E7{P7. Then the space of codimension one minimal degree
foliations FolpX, 2q Ă PpH0pΩ1

Xp2qq_q – PpV _
λ6

q is defined by the quadratic equations given
by the inclusion

H0pΩ3
Xp4qq_ “ pVλ4

q_ Ă S2V _
λ6
.

Proof. By Corollary 3.6 the morphisms

i˚1 : H
0pΩ1

PpVλ7
qp2qq –

2ľ
Vλ7

Ñ Vλ6
– H0pΩ1

Xp2qq

and

i˚3 : H
0pΩ3

PpVλ7
qp4qq –

4ľ
Vλ7

Ñ Vλ4
– H0pΩ3

Xp4qq

are both surjective, but not injective for a dimension argument. By applying Lemma 2.7
we deduce the statement of the proposition. �

6.5. Some varieties from the Freudenthal magic square. Let X be one of the fol-
lowing manifolds appearing in the third row of the Freudenthal magic square, see [LM01]:
IGp3, 6q, Gp3, 6q, OGp6, 12q or E7{P7. These are all cominuscule Grassmannians sharing

the property that
Ź2 Vλ “ C ‘ H0pΩ1

Xp2qq and
Ź4 Vλ “

Ź2 Vλ ‘ H0pΩ1
Xp2qq. We will

denote by FolpX, 2qred the classical variety FolpX, 2q Ă PpH0pΩ1
Xp2qq_q endowed with the

reduced scheme structure. We can prove the following result.

Theorem 6.6. Let X Ă PpVλq be the natural embedding. The projection

π : FolpPpVλq, 2q ÝÑ FolpX, 2qred

is an isomorphism. In particular FolpX, 2qred » Gp2, V _
λ q.

Let us break the proof into several steps. Let us begin with a better understanding of
the trivial factor in

Ź2 Vλ. Let us denote by w a of such trivial factor.

Let us recall the common construction of varieties from the third row of the Freudenthal
magic square (we refer again to [LM01]). Let Y be one among the following adjoint
varieties G1{P1 for an exceptional group G1: F4{P1, E6{P2, E7{P1, E8{P8. These are
also the varieties from the fourth row of the Freudenthal magic square. From the general
theory of homogeneous vector bundles, it follows that the fiber of the tangent bundle of Y
at a point stabilized by P1 is a P1-representation W 1. Notice that the semisimple factor of
P1 is the group G for X “ G{P respectively equal to IGp3, 6q, Gp3, 6q, OGp6, 12q, E7{P7.
Thus G acts on W 1 and it turns out that, as a G-representation, W 1 “ C‘W for a certain
G-representation W . The variety X is constructed as the minimal G-orbit in PpW q, hence
W is the representation Vλ appearing in the embedding X Ă PpVλq.

Lemma 6.7. A form w P
Ź2 Vλ generating the trivial G-sub-representation is non-

degenerate.
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Proof. Adjoint varieties are contact manifolds (see for instance [BM19]) with contact struc-
ture given by θ P H0pΩ1

Y p1qq. Being a contact structure means that the induced distribu-
tion is regular:

(25) 0 ÝÑ F ÝÑ TY
θ

ÝÑ OY p1q ÝÑ 0,

and the OY -bilinear map
Ź2 F Ñ OY p1q defined by u ^ v ÞÑ dθpu, vq “ θpru, vsq is

nondegenerate.
From our previous discussion, taking fibers gives Fx bkpxq “ Vλ. On the other hand θx

is P 1-invariant, hence G-invariant. Since G is semisimple, dθx defines a trivial one dimen-
sional G-subrepresentation of

Ź2 V _
λ . One can check (for instance with LiE [vLCL92])

that this trivial factor is unique, thus w is also nondegenerate.
�

Proposition 6.8. The map π : FolpPpVλq, 2q ÝÑ FolpX, 2q is an embedding.

Proof. As in the proof of Theorem 4.3, we only need to show that the center of projection
PpCwq Ă PpH0pΩ1

PpVλqp2qq_q does not intersect the first secant variety to FolpPpVλq, 2q “

Gp2, V _
λ q. However, the secant variety of Gp2, V _

λ q is the set of forms of rank at most four
(again, refer to the proof of Theorem 4.3). Then the result follows from Lemma 6.7. �

In view of Proposition 6.8 we only need to show that π is surjective. Recall the com-
mutative diagram

(26)

H0pΩ1
PpVλqp2qq “

2ľ
Vλ H0pΩ1

Xp2qq

H0pΩ3
PpV λqp4qq “

4ľ
Vλ H0pΩ3

Xp4qq.

ψPpVλq

i˚1

ψX

i˚3

where ψY pvq “ ΨY pv ¨ vq is the quadratic map associated to ΨY , Y being here PpVλq or
X. Also recall that the cone over FolpX, 2q Ă PpH0pΩ1

Xp2qq_q is precisely the vanishing
locus of ψX .

Next, as already noticed, one can check with [vLCL92] that for all varieties in the third
row of the Freudenthal magic square we have:

H0pΩ1
PpVλqp2qq “

2ľ
Vλ “ C ‘H0pΩ1

Xp2qq, and

H0pΩ3
PpVλqp4qq “

4ľ
Vλ “

2ľ
Vλ ‘H0pΩ3

Xp4qq,

with H0pΩ1
Xp2qq being an irreducible representation. Let us denote by w and w1 the

highest weight vectors in
Ź2 Vλ, with Cw being the trivial representation. Now we are

ready to proceed to the proof of Theorem 6.6.

Proof of Theorem 6.6. As discussed above we only need to prove that π is surjective. We
start with v P

Ź2 Vλ such that ψX ˝ i˚1pvq “ 0. Since w generates ker i˚1 , it is enough to

show that there exists a P C and u P
Ź2 Vλ such that

v “ aw ` u, and u ^ u “ 0.
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Recall that, owing to Remark 2.6, ψPnpvq “ v ^ v. Using the commutativity of (26) we
may assume that

ψPnpvq “ v ^ v P ker i˚3 “ C ‘H0pΩ1
Xp2qq Ă

4ľ
Vλ

And we claim that v ^ v P ker i˚3 implies that w divides v ^ v, i.e., there exists x P
Ź2 Vλ

such that v ^ v “ w ^ x.
Let g be the Lie algebra of G. To prove this claim we recall the universal enveloping

algebra Upgq “
À

ně0 g
bn{I, where I is the ideal generated by x b y ´ y b x “ rx, ys

for every x, y P g, and gb0 “ C. We can see the elements of Upgq as (non-commutative)
polynomials on the elements of g. For more details we refer to [Ser06, Chapter III]. Any
g-module affords an induced Upgq-action and the property that we will use is the following.
If vµ P Vµ is the highest weight vector then Vµ “ Upgq ¨ vµ, see [Ser06, Chapter VII].

Now note that w ^ w,w ^ w1 P
Ź4 Vλ are highest weight vectors of weights 0 and the

highest weight of H0pΩ1
Xp2qq, respectively. Then for v ^ v P C ‘ H0pΩ1

Xp2qq Ă
Ź4 Vλ

there exist P pXq, QpXq P Upgq such that

v ^ v “ P pXq ¨ pw ^ wq `QpXq ¨ pw ^ w1q.

Note that g ¨ w “ Cw, hence P pXq ¨ w “ pw and QpXq ¨ w “ q w, for some p, q P C.
Developing the expression above we get

v ^ v “ 2p pw ^ wq ` q pw ^ w1q ` w ^ pQpXq ¨ w1q

“ w ^
`
2pw ` pq `QpXqq ¨ w1

˘
.

Then define x :“ 2pw ` pq `QpXqq ¨ w1 P
Ź2 Vλ.

Next we claim that if w divides v ^ v then there exists a P C and u P
Ź2 Vλ such that

v “ aw ` u and u ^ u “ 0, concluding the proof of the theorem. The proof of this claim
will be given in Lemma 6.9. �

Lemma 6.9. Let v,w P
Ź2

C
2n such that wn ‰ 0. Suppose that w divides v ^ v, i.e.,

there exists u P
Ź2

C
2n such that v ^ v “ w ^ u. Then there exist a P C and y P

Ź2
C
2n

such that

v “ aw ` y and y ^ y “ 0.

Proof. Given z P
Źk

C
2n define the set Kr

z :“ tx P
Źr

C
2n | x ^ z “ 0u. It follows from

[DK11, Theorem 1] that w divides v ^ v if and only if K2n´4
w Ă K2n´4

v^v .
Consider the pencil of 2-forms v` tw. Since each bilinear alternating form corresponds

to a skew-symmetric matrix, we get a pencil A` tB of 2nˆ2n matrices. Recall that linear
change of coordinates P P GLp2n,Cq on C

2n correspond to a congruence P T pA ` tBqP .
Owing to [Tho91, Theorem 1], one has that A ` tB is, up to congruence, a block-

diagonal matrix whose blocks depend on invariants of the pencil. Since wn ‰ 0 we have
that detB ‰ 0, hence the only blocks that can appear have the form

Bpa,mq :“

„
0 pa ` tq∆m ` Λm

´pa` tq∆m ´ Λm 0



2mˆ2m
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where

∆m “

»
—–
0 1

. .
.

1 0

fi
ffifl

mˆm

, Λm “

»
———–

0 0
0 1

. .
.
. .
.

0 1 0

fi
ffiffiffifl

mˆm

.

The only invariants are the elementary divisors pa ` tq2m of detpA ` tBq. Fix an integer
partition λ1 ě λ2 ě ¨ ¨ ¨ ě λr, λ1 ` ¨ ¨ ¨ ` λr “ n, and complex numbers a1, . . . , ar P C and
define

Mptq “ ppi,j ` tqi,jq :“ Bpa1, λ1q ‘ ¨ ¨ ¨ ‘Bpar, λrq.

Moreover, v “
ř

iăj pi,jei ^ ej and w “
ř

iăj qi,jei ^ ej ; note that v depends on a1, . . . , ar
but w does not.

We note that if either λ1 ě 3 or λ2 ě 2 then K2n´4
w Ć K2n´4

v^v . Indeed, if λ1 ě 3 then

w “
λ1ÿ

j“1

ej ^ e2λ1`1´j ` w1 and v “ a1

λ1ÿ

j“1

ej ^ e2λ1`1´j `
λ1ÿ

j“1

ej`1 ^ e2λ1`1´j ` v1

where w1 and v1 only involve ej for j ě 2λ1 ` 1. Then take φ “
Ź

jRt2,3,2λ1´1,2λ1u ej. It

follows that φ P K2n´4
w but φ ^ v ^ v “ ˘1. Similarly, if λ1 “ λ2 “ 2 we have

w “ e1 ^ e4 ` e2 ^ e3 ` e5 ^ e8 ` e6 ^ e7 ` w1 and

v “ a1pe1 ^ e4 ` e2 ^ e3q ` a2pe5 ^ e8 ` e6 ^ e7q ` e2 ^ e4 ` e6 ^ e8 ` v1,

where w1 and v1 only involve ej for j ě 9. Then φ “
Ź

jRt2,4,6,8u ej P K2n´4
w zK2n´4

v^v .

Therefore we only need to deal with the partitions p2, 1n´2q and p1nq.
For the partition p2, 1n´2q we get

w “ e1 ^ e4 ` e2 ^ e3 `
nÿ

j“3

e2j´1 ^ e2j and

v “ a1pe1 ^ e4 ` e2 ^ e3q ` e2 ^ e4 `
nÿ

j“3

aj´1pe2j´1 ^ e2jq.

Imposing K2n´4
w Ă K2n´4

v^v implies a1 “ a2 “ ¨ ¨ ¨ “ an´1, hence v “ a1w ` e2 ^ e4 and we
are done.

For the partition p1nq we get

w “
nÿ

j“1

e2j´1 ^ e2j and v “
nÿ

j“1

ajpe2j´1 ^ e2jq

and imposing K2n´4
w Ă K2n´4

v^v we get that at least n´ 1 of the n coefficients ai must be
equal. Hence, up to reordering, we have v “ a2w` pa2 ´a1qpe1 ^ e2q and we are done. �

Remark 6.10. It is still not clear to us whether FolpX, 2q, seen as a scheme defined by
the quadratic equations H0pΩ3

Xp2qq_ Ă S2H0pΩ1
Xp2qq_ (see Theorem 3.7), is already a

reduced scheme. We also remark that experimental computations with Macaulay2 [GS]
were crucial to discover the lemma above.
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6.6. Some products of projective spaces. We give now a description of what happens
for some examples of cominuscule spaces which are not Grassmannians. Clearly the easiest
case to treat is that of product of projective spaces X :“ PpUq ˆ PpV q – P

m ˆ P
n.

This variety embeds in PpU b V q – P
N´1 via the Segre embedding, where N “ pm `

1qpn ` 1q. Let
Ź4pU b V q_ be the space of quadrics defining FolpPpU b V q, 2q – GpN ´

2, U bV q. These quadrics can be decomposed in direct sum of SLpUq ˆ SLpV q-irreducible
representations, among which one factor is Γ2,2U_ b Γ2,2V _; we denote by J the direct
sum of irreducible representations of

Ź4pU b V q_ not showing up in Γ2,2U_ b Γ2,2V _.
Moreover let us denote by OXp1, 1q the ample bundle defining the Segre embedding. We
have the following result.

Proposition 6.11. The space of codimension one minimal degree foliations FolpX, 2q Ă

PpH0pΩ1
Xp2, 2qq_q – Pp

Ź2pU b V q_q is defined by the quadratic equations given by the
inclusion

H0pΩ3
Xp4, 4qq_ “ J Ĺ

4ľ
pU b V q_ Ă S2

2ľ
pU b V q_.

Thus we have a scheme theoretical strict inclusion of FolpPpU bV q, 2q – GpN ´ 2, U bV q
inside FolpX, 2q.

Proof. Since the cotangent bundle of a product PpUq ˆ PpV q is the direct sum of the
cotangent bundles of the factors Ω1

PpUq ‘ Ω1
PpV q, we also deduce that

Ω3
X “ Ω3

PpUq ‘ pΩ2
PpUq b Ω1

PpV qq ‘ pΩ1
PpUq b Ω2

PpV qq ‘ Ω3
PpV q.

From the Borel-Weil-Bott Theorem we deduce that

H0pΩ1
Xp2, 2qq “ p

2ľ
U b S2V q ‘ pS2U b

2ľ
V q

and

H0pΩ3
Xp4, 4qq “ p

4ľ
U b S4V q ‘ pΓ3,1U b Γ2,1,1V q ‘ pΓ2,1,1U b Γ3,1V q ‘ pS4U b

4ľ
V q.

We claim that
Ź2pU b V q – H0pΩ1

Xp2, 2qq and
Ź4pU b V q – H0pΩ3

Xp4, 4qq ‘ pΓ2,2U b
Γ2,2V q, thus showing that H0pΩ3

Xp4, 4qq_ “ J and proving the statement of the proposi-
tion.

The computation of
ŹipU b V q is an application of the Littlewood-Richardson rule to

the case of exterior powers. In terms of Young diagrams

iľ
pU b V q “

à
λ

ΓλU b Γλ1
V,

where the direct sum runs over all Young diagrams of size i with at most m` 1 rows and
n ` 1 columns, and λ1 is the Young diagram obtained from λ by exchanging rows and
columns. The claim follows. �

We believe that the situation is not easier for other cominuscule spaces. For instance
if X :“ P

1 ˆ P
1 ˆ P

1 Ă P
7 then the morphism i˚1 : H

0pP7,Ω1
P7p2qq Ñ H0pΩ1

Xp2, 2, 2qq is
already not injective.
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7. Further directions

Let us list some possible open questions and research directions that arise from this
work. We will denote by X a cominuscule Grassmannian. We could explicitly recover the
space of foliations FolpX, 2q of some X by showing that it is equal to the space of foliations
of the ambient projective space (see Theorems 4.1, 6.1, 6.4). A natural question is:

Question 7.1. Is πpFolpPpVλq, 2qq isomorphic to FolpX, 2q for any cominuscule Grass-
mannian X?

For Grassmannians Gp3, nq we could prove some results going in the direction of a
positive answer to this question. These results concerned the ideal defining foliations and
the properties of π and give rise to the following questions, which are weaker than 7.1:

Question 7.2. Is the ideal of πpFolpPpVλq, 2qq equal to the ideal of FolpX, 2q?

For X “ Gp3, nq we have already proved the equality in degree 2, i.e. for quadrics
(Theorem 4.3).

Question 7.3. Is the restriction of π to FolpPpVλq, 2q injective? Is it dominant?

We have already shown that this restriction is an embedding for X “ Gp3, nq (The-
orem 4.3) and that it is a dominant embedding for the varieties in the third row of the
Freudenthal magic square (Theorem 6.6).

Question 7.4. Is FolpX, 2q smooth or at least reduced?

If we knew this was true, we would get from Theorem 6.6 that FolpPpVλq, 2q – FolpX, 2q
for X one of the varieties appearing in the third row of the Freudenthal magic square.

In some cases (see Theorem 3.7, 6.1, Proposition 5.4, 6.3, 6.5) we were able to provide
the equations of the space of foliations FolpX, 2q. These equations are often equivariantly
unique, meaning that the irreducible representations they involve are unique in their re-
spective ambient representation spaces. This naturally brings out the following problem:

Question 7.5. Is it possible to recover FolpX, 2q as a G-variety solely from a description
of its G-equivariant ideal?

For instance, take the case of Grassmannians Gp3, nq; the question (which is now a
priori independent of the understanding of foliations on Gp3, nq) is whether one can find
a geometric description of the variety defined by the quadrics

pV3λ4
‘ V3λ2`λ6

‘ Vλ1`λ2`λ4`λ5
q_ Ă S2V _

λ2`λ4
– H0pPpV _

λ2`λ4
q,OPpV _

λ2`λ4
qp2qq

inside the projective space PpV _
λ2`λ4

q. Another remarkable example is that of Pm ˆ P
n:

what is the variety inside Pp
Ź2pUbV q_q defined by J Ă S2

Ź2pUbV q_ (in the notation
of Section 6.6) and containing GpN ´ 2, U b V q? This kind of questions shows that there
exists a very interesting bidirectional interplay between the study of foliations and the
equivariant geometric theory.
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Appendix A. Technical lemmas in the proof of Proposition 4.4

We collected in this appendix some lemmas which are necessary to prove Proposition
4.4. From the square (20) we can derive the following diagram:

(27)

V _
λ6

¨
2ľ
V _
λ3

S2
2ľ
V _
λ3

S2V _
λ2`λ4

4ľ
V _
λ3

ξ π˚

Ψ_
PpVλ3

q .

The top row comes from the second symmetric power of the decomposition
Ź2 V _

λ3
“

V _
λ6

‘ V _
λ2`λ4

, in particular it is exact. Then to show that (22) holds for some µ it is

enough to show, owing to Schur’s Lemma, that ξ ˝ Ψ_
PpVλ3

qpV
_
µ q ‰ t0u.

In order to properly describe the map ξ and do subsequent computations, let us fix
some notation. Fix a basis te1, . . . , enu of V _ such that each ei is a weight vector for the

action of slpV _q. We write ei1,...,ik for the element ei1 ^ ¨ ¨ ¨ ^ eik P V _
λk

“
Źk V _. In

particular, if σ P Sk is a permutation,

eiσp1q,...,iσpkq
“ p´1qσei1,...,ik

and ei1,...,ik “ 0 if ir “ is for some pair of indices r and s. Even though we only need
ei1,...,ik with i1 ă i2 ă ¨ ¨ ¨ ă ik in the definition of V _

λk
, it will be useful to consider all

possible indices in view of the induced slpV _q action.
Let li denote the weight of ei, then each ei1,...,ik has weight li1 ` ¨ ¨ ¨ ` lik for the induced

slpV _q action. If αr,s “ lr ´ ls is a root, then let Xr,s P slpV _q be the corresponding
element: Xr,spetq “ 0 if t ‰ s and Xr,spesq “ er. Then the induced action gives

Xr,spei1,...,ikq “ 0 if s R I or tr, su Ă I,

Xr,spe...,s,...q “ e...,r,... if s P I and r R I

where I “ ti1, . . . , iku.

Remark A.1. Let us denote by ă the lexicographic order. A basis of V _
λ6

is given by

tei1,¨¨¨ ,i6u with 1 ď i1 ă ¨ ¨ ¨ ă i6 ď n, while a basis of
Ź2 V _

λ3
is given by tei1,i2,i3 ^ej1,j2,j3u

with 1 ď i1 ă i2 ă i3 ď n, 1 ď j1 ă j2 ă j3 ď n and pi1, i2, i3q ă pj1, j2, j3q. Notice that
the elements of the latter basis for which ti1, i2, i3uXtj1, j2, j3u ‰ 0 belong to V _

λ2`λ4
. As a

consequence of this, the elements tei1,i2,i3 ^ ej1,j2,j3 ¨ ek1,¨¨¨ ,k6u with the previous conditions

are a generating set of
Ź2 V _

λ3
¨ V _

λ6
, and those such that ti1, i2, i3u X tj1, j2, j3u ‰ 0 are

linearly independent in V _
λ2`λ4

b V _
λ6

Ă
Ź2 V _

λ3
¨ V _

λ6
.

Lemma A.2. The map ξ : S2
Ź2 V _

λ3
Ñ V _

λ6
¨

Ź2 V _
λ3

from (27) is defined by

ξppei,j,k ^ el,m,nq ¨ peo,p,q ^ er,s,tqq “ ei,j,k,l,m,n ¨ peo,p,q ^ er,s,tq ` eo,p,q,r,s,t ¨ pei,j,k ^ el,m,nq

Proof. First we note that the unique (up to scalar multiple) SLpV _q-equivariant mapŹ2 V _
λ3

Ñ V _
λ6

is the multiplication mpei1,i2,i3 ^ ej1,j2,j3q “ ei1,i2,i3,j1,j2,j3 . Then ξ can be
described as the composition

ξ : S2
2ľ
V _
λ3

δ
ÝÑ

2ľ
V _
λ3

b
2ľ
V _
λ3

mb1
ÝÑ V _

λ6
¨

2ľ
V _
λ3
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where δpu ¨ vq “ pub v ` v b uq. Therefore

ξppa ^ bq ¨ pc^ dqq “ pmb 1qppa ^ bq b pc ^ dq ` pc ^ dq b pa ^ bqq

“ mpa^ bq ¨ pc ^ dq `mpc ^ dq ¨ pa ^ bq

and

ξppei,j,k ^ el,m,nq ¨ peo,p,q ^ er,s,tqq “ ei,j,k,l,m,n ¨ peo,p,q ^ er,s,tq ` eo,p,q,r,s,t ¨ pei,j,k ^ el,m,nq.

�

Remark A.3. For further computations it will be useful to have the highest weight vectors
of

Ź2 V _
λ3

“ V _
λ6

‘ V _
λ2`λ4

. Firstly notice that

w2,4 :“ e1,2,3 ^ e1,2,4

is the unique vector in
Ź2 V _

λ3
of weight λ2 ` λ4, hence it must be cyclic. For λ6 we may

use the diagonal map δ : V _
λ6

ãÑ
Ź2 V _

λ3
from which we define

w6 :“ δpe1,2,3,4,5,6q “
ÿ

σPS6

p´1qσeσ1,σ2,σ3
^ eσ4,σ5,σ6

where p´1qσ denotes the sign of the permutation σ. Also note that

w10
6 “ w6 ^ ¨ ¨ ¨ ^ w6looooooomooooooon

10 times

‰ 0

but w11
6 “ 0.

Now we are ready to prove the technical bulk of Proposition 4.4.

Lemma A.4. The equality (22) holds for µ “ 2λ6.

Proof. From Remark A.3 we have that w6 P
Ź2 V _

λ3
is a highest weight vector of weight

λ6. Then

w6 ^ w6 “
ÿ

σ,τPS6

p´1qσp´1qτ eσ1,σ2,σ3
^ eσ4,σ5,σ6

^ eτ1,τ2,τ3 ^ eτ4,τ5,τ6 P
4ľ
V _
λ3

is also a highest weight vector of weight 2λ6. We then compute

Ψ_
PpVλ3

qpw6 ^ w6q “
ÿ

σ,τPS6

p´1qσp´1qτ rpeσ1,σ2,σ3
^ eσ4,σ5,σ6

q ¨ peτ1,τ2,τ3 ^ eτ4,τ5,τ6q

´peσ1,σ2,σ3
^ eτ1,τ2,τ3q ¨ peσ4,σ5,σ6

^ eτ4,τ5,τ6q ` peσ1,σ2,σ3
^ eτ4,τ5,τ6q ¨ peσ4,σ5,σ6

^ eτ1,τ2,τ3qs.

Observe that

ξppeσ1,σ2,σ3
^ eσ4,σ5,σ6

q ¨ peτ1,τ2,τ3 ^ eτ4,τ5,τ6qq “ p´1qσe1,2,3,4,5,6 ¨ peτ1,τ2,τ3 ^ eτ4,τ5,τ6q

`p´1qτ e1,2,3,4,5,6 ¨ peσ1,σ2,σ3
^ eσ4,σ5,σ6

q

and also notice that ξppeσ1,σ2,σ3
^ eτ1,τ2,τ3q ¨ peσ4,σ5,σ6

^ eτ4,τ5,τ6qq ‰ 0 if and only if
tτ1, τ2, τ3u “ tσ4, σ5, σ6u. In this case there exist (unique) ρ1, ρ2 P S3 such that
ρ1pτ1, τ2, τ3q “ pσ4, σ5, σ6q and ρ2pτ4, τ5, τ6q “ pσ1, σ2, σ3q hence

ξppeσ1,σ2,σ3
^ eτ1,τ2,τ3q ¨ peσ4,σ5,σ6

^ eτ4,τ5,τ6qq “

“ p´1qρ1p´1qρ2ξppeσ1,σ2,σ3
^ eσ4,σ5,σ6

q ¨ peσ4,σ5,σ6
^ eσ1,σ2,σ3

qq “

“ ´2p´1qρ1p´1qρ2p´1qσe1,2,3,4,5,6 ¨ peσ1,σ2,σ3
^ eσ4,σ5,σ6

q “

“ 2p´1qτ e1,2,3,4,5,6 ¨ peσ1,σ2,σ3
^ eσ4,σ5,σ6

q
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The last equality comes from the fact that the joint (or concatenated) permutation pρ1 |
ρ2q P S6 satisfies pρ1 | ρ2qτ “ pσ4, σ5, σ6, σ1, σ2, σ3q hence p´1qpρ1|ρ2q “ p´1qρ1p´1qρ2 “
´p´1qτ p´1qσ. Analogously, we have

ξppeσ1,σ2,σ3
^ eτ4,τ5,τ6q ¨ peσ4,σ5,σ6

^ eτ1,τ2,τ3qq “

“ ´2p´1qρ
1
1p´1qρ

1
2p´1qσe1,2,3,4,5,6 ¨ peσ1,σ2,σ3

^ eσ4,σ5,σ6
q “

“ ´2p´1qτ e1,2,3,4,5,6 ¨ peσ1,σ2,σ3
^ eσ4,σ5,σ6

q

for (unique) ρ1
1, ρ

1
2 such that ρ1

1pτ4, τ5, τ6q “ pσ4, σ5, σ6q and ρ1
2pτ1, τ2, τ3q “ pσ1, σ2, σ3q,

hence p´1qρ
1
1p´1qρ

1
2 “ p´1qτ p´1qσ . Therefore

ξ ˝ Ψ_
PpVλ3

qpw6 ^ w6q “ A´B ` C

where

A “
ÿ

σ,τPS6

p´1qσp´1qτ rp´1qσe1,2,3,4,5,6 ¨ peτ1,τ2,τ3 ^ eτ4,τ5,τ6q`

` p´1qτ e1,2,3,4,5,6 ¨ peσ1,σ2,σ3
^ eσ4,σ5,σ6

qs “

“ 6! 2 e1,2,3,4,5,6 ¨ w6 “ 1440 e1,2,3,4,5,6 ¨ w6,

B “
ÿ

σPS6

ÿ

τPS6

tτ1,τ2,τ3u“tσ4,σ5,σ6u

p´1qσp´1qτ2p´1qτ e1,2,3,4,5,6 ¨ peσ1,σ2,σ3
^ eσ4,σ5,σ6

q “

“ 72 e1,2,3,4,5,6 ¨ w6,

C “
ÿ

σPS6

ÿ

τPS6

tτ1,τ2,τ3u“tσ1,σ2,σ3u

´p´1qσp´1qτ2p´1qτ e1,2,3,4,5,6 ¨ peσ1,σ2,σ3
^ eσ4,σ5,σ6

q “

“ ´72 e1,2,3,4,5,6 ¨ w6.

Therefore ξ ˝ Ψ_
PpVλ3

qpw6 ^ w6q “ 1296 e1,2,3,4,5,6 ¨ w6 ‰ 0. �

Lemma A.5. The equality (22) holds for µ “ λ2 ` λ4 ` λ6.

Proof. As in the previous lemma, we get from Remark A.3 that the highest weight vector
in

Ź6 V _
λ3

of weight λ2 ` λ4 ` λ6 is w2,4 ^ w6. Then

Ψ_
PpVλ3

qpw2,4 ^ w6q “ Ψ_
PpVλ3

qpe1,2,3 ^ e1,2,4 ^
ÿ

σPS6

p´1qσeσ1,σ2,σ3
^ eσ4,σ5,σ6

q “

“ pe1,2,3 ^ e1,2,4q ¨
ÿ

σPS6

p´1qσeσ1,σ2,σ3
^ eσ4,σ5,σ6

q`

´
ÿ

σPS6

p´1qσpe1,2,3 ^ eσ1,σ2,σ3
q ¨ pe1,2,4 ^ eσ4,σ5,σ6

q`

`
ÿ

σPS6

p´1qσpe1,2,3 ^ eσ4,σ5,σ6
q ¨ pe1,2,4 ^ eσ1,σ2,σ3

q.

Notice that mpe1,2,3 ^ e1,2,4q “ e1,2,3,1,2,4 “ 0. By the same reason we also have that
ξppe1,2,3 ^ ei,j,kq ¨ pe1,2,4 ^ el,m,nqq ‰ 0 if and only if either ti, j, ku “ t4, 5, 6u or tl,m, nu “
t3, 5, 6u. Following the same strategy of the proof of Lemma A.4 we arrive at

ξ ˝ Ψ_
PpVλ3

qpw2,4 ^ w6q “ 576 e1,2,3,4,5,6 ¨ w2,4 ‰ 0.

�
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Lemma A.6. The equality (22) holds for µ “ λ4 ` λ8.

Proof. Consider V _
λ4`λ8

Ă V _
λ4

bV _
λ8

generated by the highest weight vector e1,2,3,4be1,...,8.
Now consider the diagonal maps:

V _
λ4

ãÑ pV _qb4 : e1,2,3,4 ÞÝÑ
ÿ

σPS4

p´1qσeσ1
b eσ2

b eσ3
b eσ4

;

V _
λ8

ãÑ pV _
λ2

qb4 : e1,...,8 ÞÝÑ
ÿ

τPS8

p´1qτ eτ1,τ2 b eτ3,τ4 b eτ5,τ6 b eτ7,τ8 .

After applying the multiplication maps V _ b V _
λ2

Ñ V _
λ3

and pV _
λ3

qb4 Ñ
Ź4 V _

λ3
we get a

copy of V _
λ4`λ8

inside
Ź4 V _

λ3
determined by

w4,8 “
ÿ

σPS4

ÿ

τPS8

p´1qσp´1qτ eσ1,τ1,τ2 ^ eσ2,τ3,τ4 ^ eσ3,τ5,τ6 ^ eσ4,τ7,τ8 .

Let us show that ξ ˝ Ψ_
PpVλ3

qpw4,8q ‰ 0. First notice that, by symmetry,

Ψ_
PpVλ3

qpw4,8q “
ÿ

σPS4

ÿ

τPS8

p´1qσp´1qτ eσ1,τ1,τ2 ^ eσ2,τ3,τ4 ¨ eσ3,τ5,τ6 ^ eσ4,τ7,τ8

and

ξ ˝ Ψ_
PpVλ3

qpw4,8q “ 6
ÿ

σPS4

ÿ

τPS8

p´1qσp´1qτ eσ1,τ1,τ2 ^ eσ2,τ3,τ4 ¨ eσ3,σ4,τ5,τ6,τ7,τ8 .

In order to show that this element is different from zero, let us show that one of its coeffi-
cients in the basis described in Remark A.1 is nonzero. More precisely, let us compute its
coefficient with respect to the element e1,2,3 ^e2,1,4 ¨e3,4,5,6,7,8. To compute this coefficient,
we need to isolate the permutations σ and τ such that eσ1,τ1,τ2 ^eσ2,τ3,τ4 ¨eσ3,σ4,τ5,τ6,τ7,τ8 “
˘e1,2,3 ^ e2,1,4 ¨ e3,4,5,6,7,8. In order for this to happen, σ must send t1, 2u to t1, 2u (there
are two possibilities since we need to take into account the order) and t3, 4u to t3, 4u (2
possibilities). If σ1 “ 1 then either τ must send t1, 2u to t2, 3u (2 possibilities), t3, 4u to
t1, 4u (2 possibilities) and t5, 6, 7, 8u to t5, 6, 7, 8u (4! possibilities) or it must send t1, 2u
to t2, 4u (2 possibilities), t3, 4u to t1, 3u (2 possibilities) and t5, 6, 7, 8u to t5, 6, 7, 8u (4!
possibilities); similarly if σ1 “ 2. Since all these terms come with a ` sign, we obtain that
the coefficient in question is equal to 283 ‰ 0. �

Lemma A.7. The equality (22) holds for µ “ 2λ2 ` λ8.

Proof. Consider V _
2λ2`λ8

Ă V _
λ2

bV _
λ2

bV _
λ8

determined by e1,2be1,2be1,...,8. Then consider
the diagonal map

V _
λ8

ãÑ V _ b V _ b V _
λ3

b V _
λ3

: e1,...,8 ÞÝÑ
ÿ

σPS8

p´1qσeσ1
b eσ2

b eσ3,σ4,σ5
b eσ6,σ7,σ8

.

Aplying multiplication maps V _ b V _
λ2

Ñ V _
λ3

and pV _
λ3

qb4 Ñ
Ź4 V _

λ3
we get V _

2λ2`λ8
ĂŹ4 V _

λ3
determined by

w2,2,8 “
ÿ

σPS8

p´1qσe1,2,σ1
^ e1,2,σ2

^ eσ3,σ4,σ5
^ eσ6,σ7,σ8

.
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Let us show that ξ ˝ Ψ_
PpVλ3

qpw2,2,8q ‰ 0. Firstly by Lemma A.2 one computes

Ψ_
PpVλ3

qpw2,2,8q “

ÿ

σPS8

p´1qσre1,2,σ1
^ e1,2,σ2

¨ eσ3,σ4,σ5
^ eσ6,σ7,σ8

´ 2e1,2,σ1
^ eσ3,σ4,σ5

¨ e1,2,σ2
^ eσ6,σ7,σ8

s

and

ξ ˝ Ψ_
PpVλ3

qpw2,2,8q “
ÿ

σPS8

p´1qσreA ` eB ` eCs,

where eA “ e1,2,σ1
^ e1,2,σ2

¨ eσ3,σ4,σ5,σ6,σ7,σ8
, eB “ ´2e1,2,σ1

^ eσ3,σ4,σ5
¨ e1,2,σ2,σ6,σ7,σ8

,
eC “ ´2e1,2,σ2

^ eσ6,σ7,σ8
¨ e1,2,σ1,σ3,σ4,σ5

. In order to show that ξ ˝ Ψ_
PpVλ3

qpw2,2,8q ‰ 0, we

want to show that the coefficient of ξ˝Ψ_
PpVλ3

qpw2,2,8q corresponding to the element e1,2,3^

e1,2,4 ¨ e1,2,5,6,7,8 with respect to the basis of Remark A.1 is nonzero. Proceeding similarly
to the previous proof, one can show that the coefficients of

ř
σPS8

p´1qσeA,
ř

σPS8
p´1qσeB ,ř

σPS8
p´1qσeC are respectively 2 ¨ 6!, 4 ¨ 3!4!, 4 ¨ 3!4!, and the final coefficient is equal to

2534 ‰ 0. �

Lemma A.8. The equality (22) holds for µ “ λ2 ` λ3 ` λ7.

Proof. Consider V _
λ2`λ3`λ7

Ă V _
λ2

b V _
λ3

b V _
λ7

determined by e1,2 b e1,2,3 b e1,...,7. Then
consider the diagonal map

V _
λ7

ãÑ V _ b V _
λ3

b V _
λ3

: e1,...,7 ÞÝÑ
ÿ

σPS7

p´1qσeσ1
b eσ2,σ3,σ4

b eσ5,σ6,σ7
.

Aplying multiplication maps V _ b V _
λ2

Ñ V _
λ3

and pV _
λ3

qb4 Ñ
Ź4 V _

λ3
we get V _

λ2`λ3`λ7
ĂŹ4 V _

λ3
determined by

w2,3,7 “ e1,2,3 ^
ÿ

σPS7

p´1qσe1,2,σ1
^ eσ2,σ3,σ4

^ eσ5,σ6,σ7
.

Let us show that ξ ˝ Ψ_
PpVλ3

qpw2,3,7q ‰ 0. A direct computation shows that

Ψ_
PpVλ3

qpw2,3,7q “

ÿ

σPS7

p´1qσre1,2,3 ^ e1,2,σ1
¨ eσ2,σ3,σ4

^ eσ5,σ6,σ7
´ 2e1,2,3 ^ eσ2,σ3,σ4

¨ e1,2,σ1
^ eσ5,σ6,σ7

s

and

ξ ˝ Ψ_
PpVλ3

qpw2,3,7q “
ÿ

σPS7

p´1qσreA ` eB ` eCs,

where eA “ e1,2,3 ^ e1,2,σ1
¨ eσ2,σ3,σ4,σ5,σ6,σ7

, eB “ ´2e1,2,3 ^ eσ2,σ3,σ4
¨ e1,2,σ1,σ5,σ6,σ7

, eC “
´2e1,2,σ1

^eσ5,σ6,σ7
¨e1,2,3,σ2,σ3,σ4

. In order to show that ξ ˝Ψ_
PpVλ3

qpw2,3,7q ‰ 0, we want to

show that the coefficient of ξ ˝ Ψ_
PpVλ3

qpw2,3,7q corresponding to the element e1,2,3 ^ e1,2,7 ¨

e1,2,3,4,5,6 with respect to the basis of Remark A.1 is nonzero. As in the previous proofs,
one can show that the coefficients of

ř
σPS7

p´1qσeA,
ř

σPS7
p´1qσeB ,

ř
σPS7

p´1qσeC are

respectively 6!, 2 ¨ 3!4!, ´3!4!, and the final coefficient is equal to 2533 ‰ 0. �

Lemma A.9. The equality (22) holds for µ “ λ1 ` λ4 ` λ7.
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Proof. Consider V _
λ1`λ4`λ7

Ă V _
λ1

b V _
λ4

b V _
λ7

determined by e1 b e1,2,3,4 b e1,...,7. Then
consider the diagonal maps

V _
λ7

ãÑ V _ b V _
λ3

b V _
λ3

: e1,...,7 ÞÝÑ
ÿ

σPS7

p´1qσeσ1
b eσ2,σ3,σ4

b eσ5,σ6,σ7
;

V _
λ4

ãÑ V _ b V _
λ3

: e1,2,3,4 ÞÝÑ
ÿ

σPS4

p´1qσeσ1
b eσ2,σ3,σ4

.

Aplying multiplication maps V _ b V _
λ2

Ñ V _
λ3

and pV _
λ3

qb4 Ñ
Ź4 V _

λ3
we get V _

λ1`λ4`λ7
ĂŹ4 V _

λ3
determined by

w1,4,7 “
ÿ

σPS4

ÿ

τPS7

p´1qσp´1qτ e1,σ1,τ1 ^ eσ2,σ3,σ4
^ eτ2,τ3,τ4 ^ eτ5,τ6,τ7 .

Let us show that ξ ˝ Ψ_
PpVλ3

qpw1,4,7q ‰ 0. Firstly notice that Ψ_
PpVλ3

qpw1,4,7q “

“
ÿ

σPS4

ÿ

τPS7

p´1qσp´1qτ re1,σ1,τ1^eσ2,σ3,σ4
¨eτ2,τ3,τ4^eτ5,τ6,τ7´2e1,σ1,τ1^eτ2,τ3,τ4 ¨eσ2,σ3,σ4

^eτ5,τ6,τ7s

and

ξ ˝ Ψ_
PpVλ3

qpw1,4,7q “
ÿ

σPS4

ÿ

τPS7

p´1qσp´1qτ reA ` eB ` eC s,

where eA “ e1,σ1,τ1 ^ eσ2,σ3,σ4
¨ eτ2,τ3,τ4,τ5,τ6,τ7 , eB “ ´2e1,σ1,τ1 ^ eτ2,τ3,τ4 ¨ eσ2,σ3,σ4,τ5,τ6,τ7 ,

eC “ ´2eσ2,σ3,σ4
^ eτ5,τ6,τ7 ¨ e1,σ1,τ1,τ2,τ3,τ4 . In order to show that ξ ˝ Ψ_

PpVλ3
qpw1,4,7q ‰ 0,

we want to show that the coefficient of ξ ˝ Ψ_
PpVλ3

qpw1,4,7q corresponding to the element

e1,2,3 ^ e1,2,4 ¨ e1,3,4,5,6,7 with respect to the basis of Remark A.1 is nonzero. Similarly to
the previous proofs, one can compute that the coefficient of

ř
σPS4

ř
τPS7

p´1qσp´1qτ eA
is equal to 12 ¨ 6!, the coefficient of

ř
σPS4

ř
τPS7

p´1qσp´1qτ eB is equal to 4 ¨ p3!q3 and

the coefficient of
ř

σPS4

ř
τPS7

p´1qσp´1qτ eC is equal to 4 ¨ p3!q2 ¨ 4!, thus giving a total

coefficient of 25345 ‰ 0. �
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Institut de Mathématiques de Bourgogne, UMR CNRS 5584, Université de Bourgogne et
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