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CODIMENSION ONE FOLIATIONS ON HOMOGENEOUS VARIETIES

VLADIMIRO BENEDETTI, DANIELE FAENZI, ALAN MUNIZ

ABSTRACT. The aim of this paper is to study codimension one foliations on rational
homogeneous spaces, with a focus on the moduli space of foliations of low degree on
Grassmannians and cominuscule spaces. Using equivariant techniques, we show that
codimension one degree zero foliations on (ordinary, orthogonal, symplectic) Grassman-
nians of lines, some spinor varieties, some Lagrangian Grassmannians, the Cayley plane
(an Eg-variety) and the Freudenthal variety (an E7-variety) are identified with restric-
tions of foliations on the ambient projective space. We also provide some evidence that
such results can be extended beyond these cases.

1. INTRODUCTION

Let X be a compact connected complex manifold of dimension n. A a codimension-p
holomorphic distribution on X is a rank n — p saturated subsheaf of the tangent bundle
F < Tx; here saturated means Tx/F is torsion free. If moreover F is stable under
the Lie bracket, it is called a foliation. For a fixed line bundle L € Pic(X) the space
Fol, (X, L) of codimension-p foliations with det(F') = LQwy; is a locally closed subvariety
of P(H°(Q%(L))"). Being stable under the Lie bracket translates to a closed condition on
the coefficients of the p-form, both are known as the Frobenius integrability condition.

For p = 1, as we shall explain in greater detail in §2, this condition is conveniently
described by the quadratic map:

bx: HO(Qx (L) —» HY(QX(20)),  w—w A dw,
The zero-scheme of 1y inside H?(Q4 (L)) is what we call the locus IF(X, L) of integrable

forms, while we denote by Dist(X, L) the open set of 1-forms not vanishing in codimension
one, as they correspond to distributions satisfying det(F) = L ® wy,. Then

Fol(X, L) := Fol, (X, L) = Dist(X, L) n IF(X, L) c P(H°(Q%(L))").

The description of Fol, (X, L) for given X and L is an interesting problem in the global
theory of holomorphic foliations. The case X = P" and p = 1 is already very challenging.
Note that in this case L ~ Opn(d + 2), with d > 0, so d is traditionally called the degree
of the foliation. A full description of Fol(P",d + 2) is only known, at this moment, for
d < 2. For degree d = 0 every foliation is given by a pencil of hyperplanes so Fol(P",2) is
isomorphic to the Grassmannian G(2,n + 1), the inclusion in P(H°(Q%,.(p + 1))¥) being
the Pliicker embedding. It is unknown to us when this fact was first established but we

refer to | , Chapitre 3] and [ , Theorem 4.3] for modern proofs. The case d = 1
was described in 1979 by Jouanolou | |, Fol(P", 3) has 2 irreducible components. The
case d = 2 was established in 1996 by Cerveau and Lins Neto | ]; Fol(P™, 4) has
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6 irreducible components. For d = 3 there exists, until this date, a partial classification
due to da Costa, Lizarbe and Pereira | |; they prove that Fol(P™, 5) has at least 24
components, some of them being not generically reduced — a phenomenon that was never
observed before.

Many authors studied the geometry of foliations on other manifolds, especially when

X is of low dimension (see | ]) or when —c;(F) is positive or numerically trivial (see
in particular [ , | for —c;(F) ample and | | for ¢;(F) = 0). However,
much less seems to be known about the behaviour of foliations under restriction, our
main inspiration being | |, where special attention is paid to the case of complete
intersections.

The aim of our work is to describe the space Fol(X,d + 2) of codimension one foliations
on a manifold X which is G-homogeneous for the action of a simple complex Lie group
G, bearing in mind that a prominent role should be played by the representation theory
of G, or of the stabiliser P of a point of X. The spaces we consider are Grassmanians in
their Pliicker embedding, or more generally cominuscule Grassmannians, see §3.2, since for
these varieties we only need the representation theory of the semisimple part of P, which
affords a major simplification of our analysis. For a G-homogeneous variety X, there
is an irreducible G-representation V' such that X < P(V) is the minimal G-equivariant
embedding. All line bundles on X are of the form Ox(t) for some ¢ € Z, where Ox(1) is
the G-linearized hyperplane section bundle of X < P(V). Then, considering the natural
restriction maps i, of p-forms from P to X, we get the following result.

Theorem A. Let X < P(V) be a cominuscule variety. Then, for d,p = 0:
i) The restriction map iy HO(Q%;(V)(d +2)) = HY(OK (d + 2)) is surjective.
ii) The map m: Fol(P(V),2) — Fol(X,2) induced by i} is injective.
iii) The space of integrable forms IF(X,d + 2) = P(HY(Q (d +2))V) is defined by the
quadratic equations given by the G-equivariant inclusion:
HY(Q%(d+2))Y < SPHY(Qk(d +2))",
induced by Wy o (i5)V = o U¥.

The result above is a summary of statements spread along the paper — for instance
i) is Corollary 3.6, while iii) is Theorem 3.7 — and some of these claims are actually
proved in greater generality — for example ii) is shown in Proposition 2.8 with no need for
homogeneity.

Then we look in more detail at the case of Grassmannians, in particular Grassmannians
of lines, and a few other cominuscule varieties, where our results are particularly neat.

Theorem B. Let X < P(V) be a cominuscule variety which is not a linear space nor a
quadric. Then, restriction of 1-forms gives an isomorphism:

Fol(X,2) ~ Fol(P(V),2) ~ G(2, \ V)

in the following cases:
i) Grassmannians of lines, X = G(2,n);
i1) spinor varieties OG(n,2n), for n = 4,5;
ii1) the Cayley plane, X = Eg/P1;
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iv) the following four varieties appearing in Freudenthal’s magic square:
LG(3,6), G(3,6), 0G(6,12), E/P;.

A key point here is that in all cases above except iv) the isomorphism takes place because
the maps ] and i§ are isomorphisms (this is shown for items i), ii) and iii) respectively
in Theorems 4.1, 6.1 and 6.4), so Theorem A is enough to conclude. This fact is true as
well for quadrics of dimension at least 3, and these cases essentially cover all cominuscule
Grassmannians for which this happens.

On the other hand, in case iv) we show in Theorem 6.6 that the map 4 induces a
linear projection from a distinguished point lying away from Fol(P(V'),2) and that this
map is actually an isomorphism onto Fol(X,2). We provide a uniform proof for these four
cases, based on the observation that the point used to define the projection corresponds
to G-invariant contact form on V. This is also the reason for the apparently awkward
choice of listing the spinor variety OG(6,12) among the cases of iv) rather than in ii).

To our knowledge, the only case known previously of Theorem B is G(2, 5), see | ]

This leads to the expectation that i} induces an isomorphism Fol(X,d + 2) =~
Fol(P(V),d + 2) for all cominuscule Grassmannians and small d, though the evidence
we provide is only for d = 0 and mainly G(3,n). Indeed, in this case Theorem 4.3 proves
that 4] induces an embedding rather than a set-theoretic injection and moreover the ideal
of its image agrees with that of Fol(G(3,n),2) up to degree 2. We prove more results in
this direction, even slightly more generally than for homogeneous spaces, for instance in
Theorem 5.2 we address the case of isotropic Grassiammians of lines for a skew-symmetric
form of maximal rank. However, one should be warned that ¢} sometimes induces a proper
inclusion, for instance this happens for the (non-cominuscule) variety of isotropic lines for a
non-degenerate quadratic form, see Proposition 5.4, and for products of projective spaces,
see Proposition 6.11.

The paper is organized as follows. In Section 2 we introduce distributions, foliations
and integrable forms taking values on a given line bundle on a manifold, with a focus
on projective spaces, whereby defining the quadratic equations of integrability and the
restriction maps mentioned above. In Section 3 we start the discussion of homogeneous
spaces, recall the list of cominuscule varieties and provide some basic results about dis-
tributions and foliations over them. In Section 4 we look more closely to Grassmannians
G(k,n) by first treating the case k = 2, then moving to k = 3 and finally analyzing the
special case (k,n) = (3,6). In Section 5 we look at Grassmannians of isotropic lines, while
Section 6 is devoted to other cominuscule spaces like spinor varieties or the Cayley plane.
Finally, in Section 7 we discuss some further directions and open problems. The Appendix
is devoted to some representation-theoretic lemmas needed for our treatment of G(3,n).
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2. DISTRIBUTIONS AND FOLIATIONS

Let X be a smooth complex projective manifold of dimension n. A codimension p
distribution F on X is a saturated subsheaf F' of the tangent sheaf T'x of generic rank
n — p. The inclusion F' < Tx induces an exact sequence of the form

(1) F:0—F 2Ty 5N —0
where N, called the normal sheaf of %, is a torsion free sheaf of rank p. It follows that F,
called the tangent sheaf of Z, must be a reflexive sheaf. Two codimension p distributions
F and %' are isomorphic if ¢(F) = ¢'(F’) as subsheaves of Tx.

Consider the induced morphism A" P¢Y : QP — det(F)V; its image is the ideal sheaf
Zz of a subscheme Z of codimension at least 2 in X, twisted by det(F)Y; Z is called

the singular scheme of .#. The isomorphism N"PTx ~ QX (wY) tells us that A" P¢Y

defines an element A" P¢¥ € HO(Q4 (wy ®det(F)")). The induced contraction morphism
APV Tx — Q% N WY ®@ det(F))

has ¢(F') as its kernel, hence there exists an isomorphism : im(A™ P¢Y) — N such that

Bo A"PyY =nin (1).

Conversely let w € HO(Q% (wy®det(F)")) not vanishing in codimension one, it defines a
codimension p distribution if and only if F}, := ker(w: Tx — Qg{l(w}()) has (generic) rank
n—p. Due to | , Proposition 1.2.1], rkF,, = n—p if and only if for every (closed) point
z € X\|Z| there exists an (affine) open neighborhood U of z and oy, ...,q, € HO(Q})
such that w decomposes as
(2) W =a1 A A .

Such p-forms are called locally decomposable off the singular set — LDS for short.
Therefore we get a set-theoretical bijection, for each L € Pic(X),

F'— Tx saturated subsheaf of rank | = f[w]e P(H°(Q%(L))¥) LDS not
n—p, det(F) = LY Quy vanishing in codimension one

that to ¢: F — Tx associates w = A" P¢Y and to w associates F,, as above. Then we
define the algebraic set

Dist,(X, L) := {[w] € P(H*(Q%(L))¥) | w is LDS, codim Sing(w) > 2}

that parameterizes codimension p distributions with fixed determinant det(F) = LY QwY.
We remark that Dist, (X, L) is not a moduli space in the sense that it does not represent a
functor parameterizing distributions. But it can be stratified into moduli spaces by fixing
the Hilbert polynomial of F', see for instance [ , ].

A distribution is called integrable if it defines a foliation, which means that for each
x € X\|Z| there exists an unique analytic immersed subvariety S < X passing through z
such that T, = F®Og,. Due to a theorem of Frobenius, integrability of .# is equivalent
to [F,F] c F, where [-,-] is the Lie bracket on Tx. In terms of differential forms this
integrability condition reads locally as

(3) dajrnap A Aap =0

where o are the 1-forms from (2). If integrability holds we simply say that .7 is a foliation.
Thus we define the (quasi-projective) algebraic set

Fol,(X, L) := {|w] € Dist,,(X, L) | w is integrable}
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whose points correspond to foliations on X with determinant det(F) = LY @ wy.

Notation 2.1. In our cases of interest X will be embedded in some projective space and
we will denote Ox (1) = Opn(1)|x. Hence we will write Fol, (X, 1) := Fol, (X, Ox(l)) and
when p = 1 we may just write Fol(X, 1) := Fol; (X, Ox(l)); the same for Dist and IF that
will be defined below. Moreover, when X = P" it is common to write L = Opn(d+p+ 1),
the integer d is called the degree of the foliation. Then Fol(P",d + 2) is the space of
codimension one degree d foliations on P”.

For our purposes it will be useful to define also the set of general integrable forms
IF,(X,L) = {[w] e P(H*(Q5(L))") | w is integrable}.

Notice that Fol,(X, L) = IF,(X, L) n Dist,(X, L). Moreover, if HY(Q% (L(—D))) = 0 for
every D # 0 effective divisor, then Fol,(X,L) = IF,(X, L).

2.1. Distributions and foliations on a projective space. Let V be a (finite dimen-
sional) complex vector space and let P(V') the associated projective space (of one dimen-
sional quotients); in particular V' = HO(OP(V)(l)). We will write P" :=P(V), n =dimV,
unless we need to specify V. In the later sections we will be interested in describing
distributions and foliations under the action of a semisimple linear algebraic group G, so
that V' will be a G-module. In order to do so we first establish a dictionary between the
language of differential forms and representations of SL(V'). For the representation theory
of SL(V') and in particular Schur functors we refer to | ].

First we note that distributions and foliations on P” can be described via homogeneous
polynomial differential forms. Recall the Euler sequence:

0— Q]%Dn I O]PWL(—l) ®V e O]}Dn — 0.

Taking exterior powers, twists and global sections we get

D p—1
(4) HO QL. (d+p+1) = SV e AV -5 52y g AV

where S¥V is the k-th symmetric power of V. We have written V for the vector space
generated by the homogeneous coordinates {x;} and for the space of their differentials
{dz;}. Similarly HO(Tpn(—1)) = V'V is generated by the (rational) vector fields %. The
map (g is the contraction with the radial vector field R = ) j a;ja%j and it can be written
as the composition

p—1

p p—1
(5) r: STV @ AV sty v e AV 8L sty e AV,

where m: SV @ V. — S92V is the multiplication map m(p(z) ® q(z)) = p(x)q(x)
with p, ¢ homogeneous polynomials of degrees d + 1 and 1 respectively; and A: APV —
V ® AP'V is the diagonal map given by
P
A(dxiy, A~ ANday,) = Z(—l)jﬂazij ®dxiy Ao Adwg; A A dT,.
j=1

Therefore the contraction map with the radial vector field is

p
Lr(p(z)dziy A -+ A day,) = p(x) Z(—l)jﬂa;ijdxil A ndrig A A dg,.
j=1
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From this discussion we get that H°(Q%, (d + p + 1)) are represented by homogeneous
polynomial differential p-forms

w = ZAil,...,ipdﬂfil A -+ Adwg,, such that tgrw = 0.
On the other hand, computing the Lie derivative of w with respect to R gives (d+p+ 1)w
because of homogeneity. Hence
1 1 1

W = mﬁ]{(&)) = m(b}{dw + dLR(U) = LRmdw

and H°(QL,.(d + p+ 1)) can also be seen as the image of

p+1 D

(6) e SV N\V— STV AV

Working with polynomial differential forms also simplifies the verification of the LDS
and integrability conditions (2) and (3), since it can be done globally. Indeed, as a conse-
quence of | |, wis LDS if and only if

p—1
(7) (tyw) Aw =0 Vue/\V"
and it is integrable if in addition

p—1
(8) (tyw) Adw =0 Vue/\Vv.

Notation 2.2. We denote by T'*V the Schur functor of a decreasing sequence of integers
A= (A1, -, M) applied to the vector space V. For instance '@V is just the symmetric

power SV, while T Dy = TV is the exterior power /\k V.

Remark 2.3. The sequence (4) is SL(V')-equivariant, hence we can describe the space
HO(QP, (d+ p+ 1)) in terms of irreducible representations, i.e. Schur functors applied to
V. Indeed, from (5) we deduce that

HO(QP,(d +p+ 1)) = DLy,

in particular it is always an irreducible SL(V')-module. This is established using [ ,
example 2.1.17 (h)] (and noting that T'(@+L1M)Y — (K(g+1,1mV"Y)Y = Lpg1,1m)V in Wey-
man’s notation). This result can also be obtained by using the Bott-Borel-Weil Theorem.

2.2. The space of integrable 1-forms. Hereafter we fix p = 1 and let X be a smooth
complex projective variety. Let L € Pic(X) and consider w € HY(Q%(L)). Let {Us}aen be
an open (affine) covering that trivializes L and write w = {wq }ae, Where w, € Q% (U,) are
such that, on Uy nUg # &, wa = gapws for {gag}a,gea the cocycle of L. The integrability
of w is measured by the vanishing of w, A d(w,) for each a, see (3). Note that

Wa A d(wg) = giﬁ(,ug A d(wp)

and {wa A d(wa)}aea defines a section in H?(23%(2L)) that, by abuse of notation, we call
w A dw. Then we may say that

w is integrable <= w A dw = 0.
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Thus we get a quadratic map ¢x: H°(QL (L)) — H°(Q3%(2L)),w — w A dw whose van-
ishing locus is the cone over IF(X, L). Consider then the polarization

Wy SPHO(Qx (L) — HO(QX(2L))
1
w-n— i(wAdn—i-n/\dw)

so that Uy (w - w) = ¥x(w), and notice that S2HO(QL (L))" = HO(OP(HO(Qk(L))v)(2)).
Hence dualizing we get that
9) (im W)Y > S*H(Qx (L))"
is precisely the truncation in degree 2 of the homogeneous ideal of IF(X, L).

Lemma 2.4. Let X be a smooth complex projective variety and let L € Pic(X). Then the
space of integrable 1-forms IF(X, L) is defined by the quadratic polynomials from (9).
Proof. By construction (im Wx )" generates the whole ideal of integrable 1-forms. O

In the case of projective spaces we can say more, ¥pn being always surjective.

Lemma 2.5. Let V ~C"*!', n >3, and let | > 2. Then
Upn: SZHO (O (1)) — HO(Q2.(20))

is surjective. As a consequence, the ideal of IF(P" 1) is generated by the quadratic poly-
nomials given by
HO(Q3.(20)Y — SZH (O (1))

Proof. Since pullbacks commute with exterior differential and exterior product of differ-
ential forms, we see that Wpn is SL(V)-equivariant. From Remark 2.3, H°(Q3,(20)) is an
irreducible SL(V')-module and this implies, by Schur’s Lemma, that Wpnr is either surjec-
tive or the zero map. In order to show that it is surjective, it is enough to provide an
element w € HY(L, (1)) such that w A dw # 0.
Consider {xq,...,z,} a basis of V' and define
w = a:lo_2(x0da:1 — x1dxo + xodrs — x3dTo).

It is clear that

w A dw = $3l74(:170dx1 A drg A drs — x1drg A dro A drs+

xodzo A dxy A drg — x3dTg A dXy A dXg) # 0,

concluding the proof. O

Remark 2.6. In the special case [ = 2 it follows from (6) that we have the diagram

2 4
2 AV Ve AV
o o

SZHO(OL. (1) ~E% HO(O2, (21))

whose vertical arrows are isomorphisms due to Remark 2.3. Then there exists a unique
choice for the top horizontal arrow in order to make this diagram commutative, this is
precisely the map u-v — u Av. By abuse of notation we also call this map Wpr. We remark
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that in this case (im Wpn)¥ = A*V" is generated by the Pliicker relations. From (2.4)
we get that Fol(P",2) ~ G(2,V"). This is essentially the argument of | , Theorem
4.3]; in fact, they use the more general map S* /\2 V — /\% V' to get an isomorphism
between the k-th secant variety of G(2,V ) and the space of so-called class k distributions,
class 0 meaning integrable.

2.3. Distributions and foliations on a projective variety. Now consider a smooth
subvariety i: X < P" and denote Ox(1) = i*Opn(1). The embedding 7 induces the

pullback (restriction) of twisted differential forms 4% : Qp, (k) — Q% (k). This morphism

is surjective since we can express i; = APif ® 1 and i} is the composition of the two

surjections appearing in the following sequences:
(10) 0— NY — Qpn ® Ox — Q% — 0,
(11) 0— U ®Tx — v — U ® Ox — 0.
Taking global sections gives us
(12) i HO(B", O (1) — HO(Q% (1))
for each p and [ and it also induces a rational map between projective spaces
mp: P(HO(P", Q5. (1)) -~ > P(H(Q% (1))
Since pullbacks commute with exterior products and exterior differentials, the closure of
the image of IF,(P", 1) is contained in IF,(X,1):
mp(IF, (P, 1)) < IF, (X, 1).
For p = 2 and general X the integrability condition is not easy to check. To study it for
p = 1, we write the commutative diagram:
S?i
SPHO(B", Qpn (1)) — S*H (2% (1))
(13) iqun qu ¥
HO(P", 02.(21)) 5 HO(Q%(21)).

To simplify notation we write Wk := HO(Q%(1))¥ and 7 = my, so that IF(X, 1) c P(W})
and the rational map we are concerned with is 7: P(Wg,) --» P(WY). Hence the dual of
(13) can be written as

H(P(Wa), Opw,,)(2)) e HO(P(WY), Opaw1(2))
(14) ¥y ] ! \I,)VJ

HO (B, Qa (20)) HO(QX (20))".

If i} is surjective then every twisted 1-form in H°(Q4 (1)) is the pullback of an element
of HO(P™, QL. (1)). This raises the question of whether the integrable 1-forms on X as well
come from integrable 1-forms on P"; in other words, when do we have the equality

T(IF (P, 1)) = IF(X,1)?

In this direction we have the following result.
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Lemma 2.7. Let X be a smooth complex projective variety and let [ = 2 be an integer.
Assume there exists an embedding i: X — P™ such that i : HO(P",QL.(1)) — H°(Q (1))
and i%: HO(P™,Q3,.(21)) — HO(Q3(21)) are surjective. Then

(1) ¥x is surjective and the ideal of IF(X,d) is generated by the quadratic equations

(OO (20)") = SHOQK (1),
(2) If the square (14) is cartesian then we have equality on the degree 2 part of the
ideals:
(Im)z = (hir(x,1))2-

We remark that an analogous statement holds without assuming the surjectivity of i3
but instead replacing H°(Q3%(20)) by im ¥y in (13). However the surjectivity of both
maps hold in our cases of interest.

Note also that if 7(IF,(P",[)) is defined by quadrics and (2) holds then we get an isomor-
phism IF(P", 1) ~ IF(X,1). However the image 7(Z) via a linear projection m: P" --» P™
of a variety Z < P™ defined by quadrics does not need to be defined by quadrics. For
instance, if Z is a rational normal curve of degree > 4 and 7 is a projection from a point,

then 7(Z) is cut out by quadrics and cubics, see] , Example 4.3].

Proof of Lemma 2.7 . Notice that since if is surjective, so is S%i¥. Adding that Wpn is
surjective, due to Lemma 2.5, we see that im ¥ x = imi} = H(Q3(20)).

From Lemma 2.4 we know that the vertical arrows of (14) are the inclusions of the
ideals of IF(P™,[) and IF(X,1), proving our first assertion.

For the moment denote Y :=IF(P",l) and Z := IF(X,[). By definition,

(=) = (Iv)2 o HO Qo1 (2)).

ie. (Im)g is the pullback of ¥y, by S 2i¥. By the universal property of pullback diagrams,

(14) is cartesian if and only if the natural inclusion

HO(QX (20) = (z)2 < (Izy)2

is an equality. O
Proposition 2.8. Let X be a smooth projective variety such that Pic(X) = Z with a
very ample generator Ox(1). Consider the embedding i: X — P(H°(Ox(1))). Then the
restricted pullback map

7: Fol(P(H°(Ox(1))),2) — Fol(X,?2)
18 injective.
Proof. Fix P := P(H(Ox(1))). Then we have H(P, Op(1)) = H°(Ox(1)). It follows that
7 is well-defined on Fol(P",2). Indeed, if m were not defined at [w] with w = fdg — gdf
then X would be contained in some hyperplane of the pencil generated by f and g, but
that is not possible.

Now let w = fdg — gdf and W’ = f'dg’ — ¢'df’ such that their image define the same
foliation, i.e. ifw = Aijw’ for some A € C*. Passing to the pencils we see that there exists

a Mobius transformation 7 such that £—:| X = T(£| x). Hence, up to composing with 771,

!
we may assume that %\ X = §| x, which means

fg — f'ge HO(P,Ix(2)).
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Observe that fg' — f’g is a quadratic polynomial of rank 4; here we mean the rank of the
associated symmetric (Hessian) matrix. To conclude we claim that under our hypothesis
there exist no quadric of rank < 4 in the ideal of X. We will prove this claim in Lemma
2.9. 0

Lemma 2.9. Let X be a smooth projective variety such that Pic(X) = Z with a very
ample generator Ox (1). Consider the embedding i: X — P = P(H°(Ox(1))). Then there
is no element in HO(P,Ix(2)) of rank < 4.

Proof. Assume, aiming at a contradiction, that there exists ¢ € H°(P, Zx (2))\{0} of rank
< 4. Then, there exist linear polynomials a,b,c,d € H*(P, Op(1)) such that ¢ = ad — be.

Then define the morphism
(& %)
c d
A: Ox(—1)%2 lxdlx O?f

whose generic rank is equal to one since ¢ € HY(P,Zx(2)) and H°(P,Zx(1)) = 0. Hence
im A is a rank one torsion free sheaf. Since X is smooth (integral and locally factorial)
imA = Zz(l) for some subscheme Z < X of codimension > 2 and | € Z. Moreover,
ker A = Ox(—2—1). From Ox(1) being a generator of Pic(X) we deduce that [ € {—1,0}
and we have two possibilities:
(1) 1 = —1: Thenker A = Ox(—2-1) = Ox(—1) and the inclusion ker A — Ox (—1)¥?
is given by a constant vector (u,v) € H?(Ox)®2. Up to multiplying A on the left
with some element of GL(2,C) we can assume that (u,v) = (1,0), thus

alx | _ (alx blx\|1]| _ [0
clx clx dlx/)|0 0]
Since H(P, Op(1)) = H°(Ox (1)) we have that a = ¢ = 0 whence ¢ = 0.
(2) 1 =0: Then im A = 7z and the inclusion Z; — O%* must factor as

Iz — Ox — 0P,

and the map on the right is given by a constant vector that we may assume to
be (1,0). It follows that ¢|x = d|x = 0 and, as in the previous case, this implies
qg=0.

O

We remark that we did not use that X is smooth but only that a rank one reflexive
sheaf is locally free. This holds for X an integral and locally factorial variety, see [ ,
Proposition 1.9] for a proof.

3. HOMOGENEOUS SPACES

We will focus now on homogeneous varieties, i.e., varieties which admit a transitive
action of a Lie group. Using this action it will be possible, in some cases, to understand
what are the codimension one minimal degree foliations on these varieties. Let us give
a brief introduction to homogeneous varieties before studying 1-forms and foliations on
them; we refer to [ | for more details.

Let G be a Lie group over C and X a projective G-homogeneous variety. Then X
is the product of an abelian variety by a rational variety. Let us suppose that X is
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rational, so that we get rid of the abelian factor. One can then replace G by its image
inside the automorphism group of X and thus suppose that G is a semisimple affine
Lie group. By the transitivity assumption, the stabilizers of all the points in X are
conjugated to some subgroup P < G. The fact that X is projective is equivalent to the
fact that P is parabolic, i.e. that P contains a Borel (maximal connected solvable algebraic)
subgroup of G. Sometimes we will write X = G/P to make the group and the parabolic
subgroup explicit. Recall finally that X has Picard number equal to one if and only if P is
maximal (for inclusion); we will call such varieties generalized Grassmannians, following
the literature.

Example 3.1. Let us fix G = SL(n+1). Then a Borel subgroup B — G is given by upper
triangular matrices. A parabolic subgroup P containing B can be written as a product
P = DB, where

D:={(g1,- ,9k+1) € GL;j; x -+ x GL;, —i, _, x GLy11-, | det(g1) - - det(gr+1) = 1}

is a subgroup of block diagonal matrices of fixed size given by an integer sequence
1<i; < - <ip <n. The quotient X := G/P is then a Flag variety Fl(iy,--- ,ig,n + 1)
parametrizing flags [C** < --- < C'%] contained in a (n + 1)-dimensional vector space. The
quotient G/B is thus the complete flag variety F1(1,2,--- ,n + 1), while Grassmannians
and projective spaces are obtained by setting £ = 1 and correspond to maximal para-
bolic subgroups. A similar description via flags of isotropic subspaces exists for rational
homogeneous varieties for the classical groups Sp(2n) and SO(m).

We hereafter assume that G is a semisimple affine Lie group over C. Let ay...,a,
be the set of fundamental roots of G. An irreducible representation of G is uniquely
determined by its dominant weight, which has the form A = >\, a;\;, where {\1,..., A\ }
is the set of fundamental weights of G, and a; € Zsq; such a representation will be
denoted by V). As it is made explicit by Example 3.1 in the case G = SL(n + 1), a
parabolic subgroup P is defined by the choice of a subset of simple roots of G; moreover P
is maximal if this subset consists of a single root. For instance, the parabolic P such that
SL(n +1)/P = Fl(i1,- -+ ,ix,n + 1) is defined by the choice of the subset {a;,, ..., } of
simple roots, while the Grassmannian G(k,n+ 1) is defined by the choice of the root {ay}.

A vector bundle on X whose total space admits an action of G which extends the action
on X is called homogeneous, or G-equivariant. There exists an equivalence of categories
between homogeneous vector bundles on X = G/P and representations of P. Given a
representation V' of P one can construct a vector bundle on X by F := G xp V, and one
can check that the fiber of E over the point stabilized by P is isomorphic to V; see | ,
§9] for more details.

From now on, for any semisimple group G, let us suppose that P is maximal (i.e. X is
a generalized Grassmannian) and defined by the k-th root ay. Then the set of dominant
weights for the irreducible representations of the semisimple part of P is precisely the set
of weights of the form A\ = >)7_; a;\;, where a; € Z and a; > 0 for ¢ # k. An irreducible
representation of P is uniquely defined by its restriction to the semisimple part of P,
and thus ultimately to such a dominant weight A. Vector bundles on X arising from an
irreducible representation of P are called irreducible, and direct sum of those are called
completely reducible. The irreducible bundle associated with the weight A is denoted by
Ey. If a;, = 0, we have H(E)) ~ V), owing to the Borel-Weil Theorem | , Theorem
10.11].
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We use the following convention. We set Ay = Aj,+1 = 0 and, given a formal expression
A =Dz a;\;, we put E\ =0 and V) = 0 if there is j # k such that a; <0, or if a; # 0
for some j < 0 or j > m + 1. For instance we have:

2
STV, =~ @ VAk72j+>\k+2j'
J€Z=0

Any G-equivariant vector bundle E over X has a filtration by completely reducible

bundles.

3.1. Grassmannians. Let {ej1,...,e,} be the canonical basis of V' and denote by [; the
weight of e; with respect to the natural action of sl{(V'). Then «;; = l; — l; are the roots
and \; = l; + - -+ + [; are the fundamental weights.

Consider G(k, V') the Grassmaniann of k-dimensional quotients of V. It comes with the
tautological sequence

0—>U—>V®O(;(k7v)—>g—>0

where Q is the rank k tautological quotient bundle and U is the rank n — k tautological
subbundle. In particular, the Pliicker embedding is given by /\k Q = Og v (1).

The Grassmannian G(k,V') can be seen as a homogeneous space SL(n)/Pj hence ho-
mogeneous bundles correspond to representations of Pj. Moreover the irreducible ones
correspond to weights which are dominant for the Levi factor of Py, which is the maximal
reductive subgroup of Py.

We also have that, according to | , P. 60],
Wovy = /\(Q"@U) = P TrQY @T"U.
lu|=m
Therefore one can prove the following result, see | , (2.3.3) Corollary].

Lemma 3.2. We have the following equalities:
HO (QlG(k‘,V) (d + 2)) :VA)@,1 +dAp+Ap4+10
HO(Q?&(R,V) <2d + 4)) :‘/3)\k—1+2d>\k+>\k+3 S V)‘k72+>\k71+2d>\k+)\k+1+>\k+2
D Vs +2dM e +3Nps1 -

3.2. Cominuscule spaces. We want to study foliations on a few more homogeneous
spaces. In order to restrict to a simpler situation, we will consider X a cominuscule
homogeneous variety for a group G. These are varieties embedded in P(V)) via the positive
generator of the Picard group, where V) is a cominuscule representation. The definition
of a cominuscule representation is somewhat technical and not very useful in our context.
However, there is a very explicit equivalent definition of a cominuscule variety which is
more geometric friendly, see [ , Corolary 36].

Definition 3.3. A rational homogeneous variety X = G/P is called a cominuscule vari-
ety (or space) if Tx is a completely reducible vector bundle. X is called a cominuscule
Grassmannian if Tx is irreducible.

Remark 3.4. The distinction between cominuscule varieties and cominuscule Grassman-
nians is motivated by the following fact. Since G is semisimple, it is the product of simple
groups G = G x - -+ x Gi and the same holds for X = G1/Py x - -+ x G /Pr. We can sup-
pose that all P;’s are strictly contained in each G;. Since the tangent bundle of a product
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is the direct sum of the tangent bundles of the single factors, in order to have that Tx is
irreducible the only possibility is that £ = 1. Otherwise stated, if T’x is irreducible then
one can suppose that G is simple. Moreover cominuscule varieties which are a quotient of
a simple group are classified | , Table 2] and consist of:

(1) Grassmannians G(k,n) = SL(n)/Py;

(2) Quadrics Q" = SO(n + 2)/P; < P+

(3) spinor varieties OG(n,2n) for the group Dy;

(4) Lagrangian Grassmannians IG(n,2n);

(5) The Cayley plane Eg/P; ;
(6) The Freudenthal variety E7/P7.

These are all generalized Grassmannians (i.e. P is a maximal parabolic subgroup). As
a result of this discussion, we deduce that Tx is irreducible if and only if X is a comi-
nuscule variety which is a generalized Grassmannian, hence our definition of cominuscule
Grassmannian.

In what follows, we will start by studying foliations on (ordinary) Grassmannians and
then we will study foliations on the remaining cominuscule Grassmannians. We will see
that the hypothesis that T’x is irreducible will be very useful in order to understand the
integrability condition on these spaces.

Lemma 3.5. Let X < P" be a homogeneous G-variety. Consider M a homogeneous
G-bundle on P™ and N a homogeneous G-bundle on X such that

(1) N is completely reducible;
(2) M is globally generated;
(8) there exists a surjective (G-equivariant) morphism M — N.

Then the induced morphism on global sections HY(P", M) — H°(X, N) is also surjective.

Proof. From the hypotheses we have

HO(P", M) ® Opn M N=PE,.
W

Up to composing further with a canonical projection N — E, we may assume N = E,
irreducible and we get an equivariant map

H(P", M) ® Opn — E,

that must factor through H°(X, E,) = V,. In particular, the induced map on global
sections is not zero and the surjectivity follows from Schur’s Lemma. O

Corollary 3.6. Let i: X = G/P — P(V)) be a G-equivariant embedding of a (rational)
homogeneous variety. Suppose that Q& is completely reducible. Then the induced pullback
maps

in: HOQpyy (d+p+ 1)) — HY(Q(d +p +1))
are surjective for every p = 1 and d = 0. In particular, this is true for cominuscule
varieties.

Proof. Notice that for any d > 0 the vector bundle Qfm (d+ p+1) is globally generated
and homogeneous with respect to the action of G < SL(V'); moreover i%: Q. (d+p+1) —
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O (d + p + 1) is surjective and G-equivariant, since ¢ is an equivariant embedding. By
hypothesis Qﬁ( is completely reducible, the result then follows from Lemma 3.5. O

Later on we will use this result, together with Lemma 2.7, in order to obtain the equa-
tions of the set of integrable forms/foliations on cominuscule spaces. To make the com-
putations and the results more explicit, we will study each case independently; however,
let us start with a general result.

Theorem 3.7. Let X = G/P < P(V)) be a cominuscule variety. The space of codimension
one degree d integrable forms IF(X,d+2) = P(H°(Q%(d+2))V) is defined by the quadratic
equations given by the G-equivariant inclusion

(15) HO(Q%(d+2)) < S2HO(Q% (d +2))Y

induced by W, ) o (i)Y =m* o UY.
Proof. As we have already recalled, the ideal of the space of integrable forms is generated
by the quadratic equations in the image of Y. By the surjectivities in Corollary 3.6 and
Lemma 2.7, ¥ is an isomorphism onto its image. Moreover WY is clearly G-equivariant
since X is a G-homogeneous space. ([l

Notice that Proposition 2.8 applies to generalized Grassmannians (since their Picard
number is equal to one). Let us rewrite this result for cominuscule Grassmannians for the
sake of convenience.

Proposition 3.8. Let i: X = G/P — P(V)) be a primitive embedding of a cominuscule
Grassmannian. Then the projection map w: Fol(P(Vy),2) — Fol(X,2) is injective.

Remark 3.9. Notice that HO(Q]%)(VA)@)) = HO(QL (2))@W for W := keri}. To show that
7 is an embedding it would be enough to show that each fibre of 7 intersects Fol(P(V)), 2)
at precisely one (reduced) point.

The restriction of 7 to Fol(P(Vy),2) is an embedding if and only if P(WV) n
Seci (Fol(P(Vy)) = &. Now recall that Fol(IP(Vy),2) ~ G(2,V,”) in its Pliicker embed-
ding and Sec;(G(2,V,")) correspond to skew-symmetric matrices of rank < 4. Then = is
an embedding if and only if all the elements in W < /\2 V) have rank > 6. We will show
that this fact holds for X = G(3,n) and some other cases, but we do not know a uniform
proof of this fact for any cominuscule Grassmannian.

4. DISTRIBUTIONS AND FOLIATIONS ON G(k,n)

In this section we study the spaces IF(G(k,n),l) of integrable 1-forms on a Grass-
mannian G(k,n) of k-dimensional quotients of the vector space V' ~ C". The Pliicker
embedding i realizes G(k, V) SL(V)-equivariantly as a subvariety of P(V, ). We are going
to consider the induced maps

ix: HO(Qf;(VW(d +p+1)) — HQ, ) (d +p+1)),
which are surjective due to Corollary 3.6. We will prove, in particular, that they induce
isomorphisms between the spaces of degree zero foliations for G(2,n), n > 4.
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4.1. The case of Grassmannians of lines G(2,n). Let us denote throughout this
section by X the Grassmannian G(2,V). The following result shows that the situation
concerning foliations on Grassmannians of lines is completely analogous to the case of
projective spaces.

Theorem 4.1. Let V be a finite dimensional complex vector space. Then
i HOQ, (p+ 1) — HO(p + 1))

is an isomorphism for p = 1,3. In particular we have the isomorphism
m: G(2,Vy]) = Fol(P(Vy,),2) — Fol(X, 2).

Proof. We already observed that the maps ¢} and ¢ are surjective. We only need to prove
that both source and target have the same decomposition as irreducible SL(V')-modules.
On the one hand, Lemma 3.2 says that

HY(Q%(2)) = Vay4a,  and  HO(QX(4)) = Van, 125 @ Vaytas s

On the other hand, it follows from | , Proposition 2.3.9], which is a consequence of
the Littlewood-Richardson rule, that

2 2
H()(QI}D(VAQ)@)) - A\ (/\ V) = V425, and

4 2
HO<QI?[;(VA2)(4)) = /\ (/\ V) = Va4 @ Va4

Therefore i} and i3 are isomorphisms. It then follows that
i P(H (Qpqyy, )(2))") — PH"(2x(2))")
is an isomorphism that takes Fol(P(V},),2) to Fol(X,2). O

Remark 4.2. The case n = dimV = 5 was already treated in | , Theorem 1.5,
item (5.a)] of Araujo, Corréa and Massarenti. Their proof relies on a previous result of
Araujo and Druel about del Pezzo foliations and could not be generalized. One could
also try to use our strategy to investigate distributions of class k > 1, see | ] for a
definition.

4.2. The case of G(3,n). Let us denote throughout this section by X the variety G(3,V).
In this section we aim to prove the following result.

Theorem 4.3. Let V be a finite dimensional complex vector space. Then the map

m: Fol(P(Vy,),2) — Fol(X,2)
is an embedding. Moreover, the homogeneous ideals of m(Fol(P(V),),2)) and Fol(X,2)
agree in degree two, i.e.

(L (pol(P(v4y),2)))2 = (TRol(x,2) )2-

First let us give a rough idea of the proof. Due to Proposition 3.8 7 is well-defined and

injective. The idea to prove that it is an embedding comes from Remark 3.9; we will prove
that the intersection between kerif and the space of rank < 4 matrices is {0} by studying

SL(V)-orbits. The second part boils down, owing to Lemma 2.7, to proving that the
square (14) is cartesian in this case; this will be done explicitly by ad hoc computations.
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From Lemma 3.2 we know that

HO(Q}X(Q)) = V42, and HO(Q§<(4)) = Vaxo426 @ Vit ot ratxs @ Van,-

Moreover one can check (for instance with | ]) that
2
(16)  HQpgy 1(2)) = /\ Vs =Vas @ Vigia, = Va, @ HO(2K (2),

4
o (Q%(VA3)(4)) = /\ Vs =Vaiz @ Vg0 @ Vo210 © Varg @ Vi 42s@

(17) ® V2A2+)\8 ® V)\2+)\3+)\7 ® V)\1+)\4+)\7 @ V)\2+>\4+)\6®

® H (1) (4))-
In particular, neither i} nor ¢ are injective. Furthermore (by | | again) we can
compute

2 2
S V)\2+)\4 = VZ)\G &) V)\4+)\8 ® ‘/3)\4 ® V)\3+)\4+)\5 @ Vg+)\4+)\6 @ V)\2+)\3+)\7®
(18) DVars+2s D Varo 1200 @ Vara+xs D Vi 254236 D Vi 040 @ V42054205 D
DOVt x4+ 21425 D Vit xoa a3 426 D Vororaxns @ Vary 4 x5 407

and also

2
S /\ Vg =WV @ Vﬁg ® VgiAs D Vaxn, @ Vagarg @ Vagirusrs @ Vgi,\w@
(19) @V/\G;Ji/\ﬁ)\a ) Vgi,\ﬁ,\? &) ngﬂg @ Vaxa+2xs D Vaagta6 @ Va4 x5 426D
@Vgikﬁh D Vai4+23428 @ V42203425 D Vai+r0420 @ V1200 +25D
EVa 40423426 @ Var,+2x5 D Vaa 4 a5+ a7+

Let us write diagram (14) in this case:
2 *
2 Y3 2
s2 N\ W PVl i,

V¥, ] v 4
4

A\, —— H(Q%(4))"

Note that 7* comes from the decomposition A? Vs = Vg @ Viy42, hence it is just the
inclusion of a direct summand. On the other hand, recall that from Remark 2.6 the map
Yp(vy,) is the multiplication map (anb) - (cAnd)—anbnacnad, hence its dual is the

(20)

diagonal (or comultiplication) map

(21) \I/ﬁ,f(VAS)(a/\b/\C/\d):(a/\b)-(C/\d)—(a/\c)-(b/\d)+(a/\d)-(b/\c),
see for instance | , Proposition 1.1.2].

Proposition 4.4. The square (20) is cartesian.

Proof. We want to show that the square (20) is cartesian, i.e.

4
TSV a,) 0 W (/\ Vi) = 7% 0 U (HO(Q% (4)) ).
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Since the maps are SL(V')-equivariant, Schur’s Lemma implies that we can show the
equality above for each weight individually, i.e. we only need to prove that

T (V,uv) N \Ij]i’{(\/h) (V,uv) =7"o \P}/((V,uv)
for each weight p.

First we deal with the weights 3Aa + A\g, A1 + A2 + Ay + A5 and 34 appearing in
HO(Q3(4))¥. We remark that they appear only once (there is only one irreducible direct
summand of each weight) in each term of the square (20). Indeed, check the decomposi-
tions (16), (17), (18) and (19). Hence 7*(V,) n \IJEX(VXB)(VJ) and 7% o W (V") can only
be the unique V" appearing in 5?2 /\2 Vii-

For a weight p not appearing in H%(Q3(4))" we need to show that

(22) (V) 0 B, (V) = {0}

Notice moreover that we only need to verify the weights appearing in both S2V)\‘; 1, and
A Vyy. From (17) and (18) we see that common weights (not in A Vyy) are:

2Xg, Ad+ Ag, 29 + Ag, Ao+ A3+ A7, AL+ A+ A7 and Ao + Mg + Ag.

We claim that (22) holds for each one of these weights, concluding the proof of the propo-
sition. The proof of the claim will be given in Lemmas A.4, A.5, A.6, A.7, A.8 and
A9. O

Proof of Theorem 4.3. The second part follows from Lemma 2.7 and Proposition 4.4, we
only need to prove the first.
As already recalled, it follows from Proposition 3.8 that 7 is injective and from Remark
3.9 we only need to show that the center of projection P(Vy) < ]P’(];[O(Qli(vA )(2))V)
3
does not intersect the first secant variety to Fol(P(V),),2) = G(2,V)y). Note that inside

H 0(9]%(%3) (2)) = A? Vi, the affine cone over G(2, Vy¢) and its secant varieties are precisely

2
Seck(G(2,Vy,)) = Jve /\V}\3 | v**2=p A Ay =0
k+2 times

where Seco(G(2,Vy)) 1= G(2,V,%). Then let
Z = Vys 0 Sec1(G(2,Vy;)) = {ve V| v = 0}.

We want to show that Z = {0}. Notice that Z is a closed algebraic subset of V), invariant
under the action of SL(V'). On the other hand, the unique closed (hence minimal) PGL(V)-
orbit in P(V),) is PGL(V) - [we], where wg is the highest weight vector, see | , Claim
23.52]. Due to Remark A.3, wi® # 0 therefore wg ¢ Z and Z = {0}. O

Remark 4.5. Theorem 4.3 raises the question whether it is true that Fol(P(V,),2) —
Fol(X,2) is an isomorphism for any n. For n = 6 we show in Subsection 6.5 that
Fol(P(Vy,),2) ~ Fol(G(3,6),2)req, where X,.q denotes the underlying reduced structure
of X.
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5. FOLIATIONS FOR GRASSMANNIANS OF ISOTROPIC LINES

In the previous section we have shown that foliations on Grassmannians of lines G(2,n)
coincide with foliations on the ambient projective space P( /\2 C™). In this section we
study Grassmannians of lines for the symplectic and the orthogonal groups. These are not
cominuscule varieties, but their inclusion inside G(2,n) will allow us to understand their
codimension one foliations. Let us give a brief introduction to these varieties. As rational
homogeneous varieties, they can be seen as quotients X = G/Py, where G is one of the
classical groups B,C, D and P, is the parabolic subgroup of G defined by the 2nd simple
root oy (in Bourbaki’s notation).

If G is of type C then G = Sp(V), where V is an even dimensional vector space
endowed with a maximal-rank skew-symmetric two-form w € A?V. Then Sp(V)/Py is
the variety parametrizing isotropic lines inside V'V which are isotropic with respect to
w. This is clearly a subvariety of G(2,V) and it is a homogeneous variety by classical
linear algebra. Beware that if V' is odd dimensional then w has corank equal to one (since
its rank must be even) and the set of lines inside V' which are isotropic with respect to
w is not a homogeneous space. Indeed this set is composed of two orbits: the dense
orbit of lines not containing the one-dimensional kernel of w and the closed orbit of lines
containing the kernel of w. However, in both the even and the odd dimensional case,
the isotropy condition is a codimension one condition and the set of lines isotropic with
respect to w is a hyperplane section of G(2,V) inside its Pliicker embedding (notice that
A2V = HY(G(2,V),0(1))).

If G is of type B or D, then G = SO(V), where V is a vector space endowed with a
non-degenerate symmetric two-form g € S?V: if G is of type B then V is odd dimensional,
while if G is of type D then V is even dimensional. SO(V')/Ps is the variety parametrizing
isotropic lines inside V'V which are isotropic with respect to q. This is clearly a subvariety
of G(2,V) and it is a homogeneous variety by classical linear algebra.

5.1. Symplectic Grassmannians of lines. In this section we will show that the ana-
logue of Theorem 4.1 holds for hyperplane sections inside G(2,V). As already recalled,
these varieties are the so-called symplectic Grassmannians of lines: they are stabilized by
the symplectic group Sp(V'). When dim(V') is even, they are homogeneous spaces for the
simple group Sp(V). Due to the homogeneity condition, the situation when dim(V) is
even is easier to study, and we start with this situation. Let us denote throughout this
section by X the variety IG(2,V).

Let therefore n = dim(V) be an even integer. Let w € /\2 V' be the symplectic form
defining X := IG(2,V) and the group Sp(V'). More explicitly w can be seen as a section
of A*Q =~ O(1), where Q is the quotient tautological bundle, whose zero locus inside
G(2,V) is X. The dual tautological bundle ¥ of X admits the following decomposition:

0_)<Q\/)J_/QV_)Z/{\/_)Q_)07

where (Q")l is the subbundle of V'V ® Ox corresponding to the orthogonal with respect
to the two-form w of QY. Similarly, the cotangent bundle of X admits the following
decomposition

(23) 0—S%QY - 0k - (QV)5/Q¥® Q¥ — 0.
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The two-form w defines a trivial Sp(V')-subrepresentation of /\2 V', and the correspond-
ing quotient will be denoted by /\<2> V. Thus X is contained in the projective space

P(AP V) c P(A2V).
Lemma 5.1. We have the following isomorphisms:
2 (2
2O 2) = \ A\ V;

4 (2
2% @) = A\ A\ V-

Proof. Apply the Borel-Weil-Bott Theorem to the cohomology of the exact sequence (23).
0

The previous lemma allows, together with diagram (14), to directly deduce that
Fol(X,2) = Fol(P(A® V),2) = G(2, A V). However, since the same statement holds
when n is odd (and in this case we cannot use the Borel-Weil-Bott Theorem), we will give
a more general proof of the following theorem (we use the same notations as before, even
though in this case n can either be even or odd):

Theorem 5.2. For X := IG(2,V), we have:
2 2
Fol(X,2) ~ Fol(P(\ V),2) = G(V —2, A V).

Proof. Since Sp(V) is not always (semi)simple, we will prove the result by using the
inclusion X < G(2,V). This inclusion gives the (twisted) conormal exact sequence

0= O()]x = Loy (Dx — Ak (2) - 0.
By the Borel-Weil-Bott Theorem and the exact sequence
0— O(-1) = Ogv) = Ox — 0,
one deduces that
2> 2 2 (2 2 2

H(Q%2) = Vi n/ AV = AAV/AV=/A\/\V.

In order to compute the cohomology of Qf);( (4) one can take the exterior powers of the
(twisted) conormal sequence, and use the fact that, for an exact sequence

0—>M-—>N—>L-0,

there exists a filtration of A" N by terms of the form AP M ® AL, for p+q = k. As a
result, one obtains that

4 2
HO(Q?;((ZI)) = Vaitag+aa @ Van a/W = /\ /\ VW,

where:
2 (2 3 2 2)

2
W = Vo @V nd AAV 2 AAVIAAY
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These results are obtained by applying the Borel-Weil-Bott Theorem; a more careful use
of this theorem shows that these quotients are the natural ones induced by

2 2

0->Cuw— AV —>AV-o0

thus HO(Q% (4)) = A* AP V. Therefore, as in the proof of Theorem 3.7 we obtain that

the equations defining Fol(X,2) are the same as those defining G(N — 2,/\<2> V); the
result follows. O

5.2. Orthogonal Grassmannians of lines. Let us denote throughout this section by X
the variety OG(2,V). Let n = dim(V) and q € S?V be the quadratic form defining X :=
OG(2,V) and the group SO(V') inside G(2,V') and SL(V') respectively. More explicitly, ¢
can be seen as a section of the bundle $2Q, where Q is the quotient tautological bundle,
whose zero locus inside G(2, V) is X itself. The dual tautological bundle /¥ of X admits
the following decomposition:

0— (QV)H/QY - UY - Q— 0,

where (Q")l is the subbundle of V'V ® Ox corresponding to the orthogonal with respect
to the two-form g of QY. Similarly, the cotangent bundle of X admits the following
decomposition

2
(24) 0 A\ Q" -0k —(Q")/Q"®Q" —0.
The variety X is contained in the projective space P(Vy,) = P(A? V).

Lemma 5.3. We have the following isomorphisms:

2 2
HO(Q&'@)) = /\ /\ V= Vaia @ Vs
HO(Q%(4) = Vi iasin @ Vg tawsns @ Vaa, sas @ Vax, @ Vory @ Vo, -

Proof. Apply the Borel-Weil-Bott Theorem to the cohomology of the exact sequence (24).
O

Let us set N =n(n —1)/2.

Proposition 5.4. The space of codimension one minimal degree foliations Fol(X,2) <
P(HO (% (2))Y) = P(A? Vy) is defined by the quadratic equations given by the inclusion
HO(Q%(4))Y = S A* VY, with:
HY(Q%(4) = Vi trgtna © Vagtaasxs © Var,4as © Var, @ Vo, © Vox, 4,
Moreover we have a strict inclusion:
Fol(P(V),),2) = Fol(G(2,V),2) = G(N —2,V,,) < Fol(X, 2).

Proof. By Lemma 2.7 we just need to prove that the natural morphisms
2 2
it HO(Q];W 1 (2) = A /\V - H(Q%(©2),
4 2

i H (@ peyy () = /\ AV = H (O (3))
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are surjective. For this one can use the conormal sequence associated to X < G(2,V)
to see that HO(Qé(2 V)<2)|X) — HY(Q%(2)) since the twisted conormal bundle S?QY(2)

has trivial H'. Then the Koszul complex for X = G(2,V) and Borel-Weil-Bott allows
to show that HO(G(2,V),Q%;(2 V)(2)) — HO%(X,04(2)|x) is surjective. All together this
shows that ¢ is surjective. A similar argument holds for 3. O

6. FOLIATIONS ON OTHER COMINUSCULE SPACES

As we recalled in Remark 3.4, cominuscule Grassmannians consist of: Grassmanni-
ans, quadrics, spinor varieties OG(n,2n) for the group D,,, Lagrangian Grassmannians
IG(n,2n), Eg/P1 and E7/P7. In Section 4 foliations on Grassmannians were studied. For
a quadric hypersurface @ — P™ we also have the isomorphism Fol(Q, 2) =~ Fol(P", 2), this
is a particular case of | , Theorem 5.6] which holds for general (weighted) complete
intersections. Let us see what happens to the other cominuscule Grassmannians.

6.1. spinor varieties. Let us denote throughout this section by X the variety OG(n, 2n).
Thus X := OG(n,2n) = D,,/P,, is a spinor variety of type D. This variety parametrizes
(one of the two isomorphic connected components of) n-dimensional quotient spaces of
a 2n-dimensional space which are isotropic with respect to a symmetric non-degenerate
two-form. If ¢ denotes the symmetric form, X can be seen as the zero locus of ¢, seen
as a section of S?Q, inside G(n,2n). From the normal sequence one can check that the
tangent bundle T’y is equal to /\2 Q, where we denoted by Q as well the restriction to X
of the tautological quotient bundle on G(n,2n). One gets:

Q}(<2) = E)\n—27 HO(Q}((Q)) = V>\7L72;
Q%{ (4) = E2>\7L73 C—B E)\n—4+2>\n717 H(](Q%( (4)) = V2)\n,3 (—D V>\n74+2)\n—1 :

The spinor variety is primitively embedded in P(V),,). We denote by N := dim(V},,).

Theorem 6.1. The space of codimension one minimal degree foliations Fol(X,2) <
P(HO(Q%(2))¥) = P(Vy ) is defined by the quadratic equations given by the inclusion

HO(Q?X (4))\/ = (E2>\7L73 (—DEA7L74+2)\7L71)V - Ssz\;72.

Moreover, when n = 4,5, these equations are exactly the equations of Fol(P(Vy,),2)
G(N —2,Vy,), thus identifying the two spaces of foliations.

lle

Remark 6.2. The last assertion is a new result only for n = 5 because for n = 4 the
spinor variety X is just a six-dimensional quadric.

Proof. By Corollary 3.6, the morphisms
it OO s, + 1) — HOQ (b + 1)

are surjective for k = 1,3 and any n > 6, and they are isomorphisms for k = 1,3 and
n = 4,5 by a dimension argument. By applying Lemma 2.7 the result follows. O
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6.2. Lagrangian Grassmannians. Let us denote throughout this section by X the vari-
ety IG(n,2n). Thus X := IG(n,2n) = C,,/P,, is the symplectic Grassmannian of maximal
isotropic quotient spaces. This variety parametrizes n-dimensional quotient spaces of a
2n-dimensional space which are isotropic with respect to a skew-symmetric non-degenerate
two-form. If w denotes the skew-symmetric form, X can be seen as the zero locus of w,
seen as a section of /\2 Q, inside G(n,2n). From the normal sequence one can check that
the tangent bundle T'x is isomorphic to S 2Q, where we denoted by Q as well the restriction
to X of the tautological quotient bundle on G(n,2n). One gets:

Q%(<2) = E2)‘n—17 HO(Q%( (2)) = ‘/2>\7L71 )
Q%{ (4) = Eg)\n—2+)\n C—B E)\n—3+3>\n717 HO(QgX (4)) = ‘/’3>\7L72+>\n @ V>\7L73+3)\n—1 :
The variety X is primitively embedded in P(V},,).

Proposition 6.3. The space of codimension one minimal degree foliations Fol(X,2) <
P(HO(Q4(2))V) ~ P(Vy3, ) is defined by the quadratic equations given by the inclusion

HO(Q?}((Z‘l))V = (‘/3>\7L72+>\n @ V>\7L73+3>\7L71)\/ = S2V2\)/\n,1

Proof. By Corollary 3.6, the morphisms i} : HY(P(V},), QIIIZ(VA )(k‘ +1)) - HO(Q% (k + 1))
are surjective for k = 1,3 and any n > 3, but never isomorphisms. By applying Lemma
2.7 we deduce the result. O

6.3. The Cayley plane. The Cayley plane is the Eg-homogeneous variety Eg/P;i. Set
X = Es/P; for the current subsection. The tangent bundle T’x is isomorphic to Ey,. One
gets:

0k (2) = Ex,, H°(Qx(2)) = Vi,

Q§((4) = Exy4 255 HO(Q?X(ZL)) = Viotrs
The variety X = Eg/P; is primitively embedded in P(Vy,) = P?®, for dim(V},) = 27. One
checks with [ ] that:

2
HO(QI%D(VM)@)) = /\V)q =V = HO(Q§(2))’

4
HO(Q%(VM)@)) = /\VA1 > Viagsas = HO(Q%(4)).

For X = Fg/P;, we deduce the following theorem, affording a complete description of
the space of codimension one minimal degree foliations

2
Fol(X,2) c P(HY(Q%(2))¥) = P(Vy) =~ IP’(/\ V).
Theorem 6.4. For X = Fg/Py, we get:
Fol(X,2) ~ Fol(P(Vy,),2) =~ G(25, Vi, ).

Proof. The maps if for k = 1,3 are isomorphisms; the result follows from Lemma 2.7. [
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6.4. The Freudenthal variety. The Freudenthal variety is the E;-homogeneous variety
X = E;/Py7. The tangent bundle Ty is Ey,. One gets:

Q})((z) = E>\67 HO<Qk(2)) = V>\6;
Q%((‘Q = E>\47 HO<Q§((4)) = V>\4'
The variety E;/P7 is primitively embedded in P(V},).

Proposition 6.5. Set X = E7/P;. Then the space of codimension one minimal degree
foliations Fol(X,2) c P(H (2 (2))¥) = P(VyY) is defined by the quadratic equations given
by the inclusion

HY(Q%(4))" = (Va,)¥ = SV

Proof. By Corollary 3.6 the morphisms

2
it HOQp, (2) = [\ Vo, = Vg = HO(Q%(2))

and

4
i HY D, () = A Va, = Th, = HUQY(4)
are both surjective, but not injective for a dimension argument. By applying Lemma 2.7
we deduce the statement of the proposition. O

6.5. Some varieties from the Freudenthal magic square. Let X be one of the fol-
lowing manifolds appearing in the third row of the Freudenthal magic square, see | |:
IG(3,6), G(3,6), OG(6,12) or E7/P7. These are all cominuscule Grassmannians sharing
the property that A?Vy = C@® HO(Q4(2)) and A*Vy = A2Vy @ HO(QL(2)). We will
denote by Fol(X,2),eq the classical variety Fol(X,2) < P(H%(Q4(2))¥) endowed with the
reduced scheme structure. We can prove the following result.

Theorem 6.6. Let X < P(V)) be the natural embedding. The projection
. FOl(]P’(V)\), 2) — FOI(X, 2)red
is an isomorphism. In particular Fol(X,2)eq ~ G(2,V)Y).

Let us break the proof into several steps. Let us begin with a better understanding of
the trivial factor in /\2 V. Let us denote by w a of such trivial factor.

Let us recall the common construction of varieties from the third row of the Freudenthal
magic square (we refer again to [ ]). Let Y be one among the following adjoint
varieties G'/P’ for an exceptional group G: Fy/P1, FEg/P2, E7/P1, Eg/Ps. These are
also the varieties from the fourth row of the Freudenthal magic square. From the general
theory of homogeneous vector bundles, it follows that the fiber of the tangent bundle of Y
at a point stabilized by P’ is a P’-representation W’. Notice that the semisimple factor of
P’ is the group G for X = G/P respectively equal to IG(3,6), G(3,6), OG(6,12), E;/Pr.
Thus G acts on W’ and it turns out that, as a G-representation, W/ = C@W for a certain
G-representation . The variety X is constructed as the minimal G-orbit in P(W), hence
W is the representation V) appearing in the embedding X < P(V)).

Lemma 6.7. A form w € /\2 V\ generating the trivial G-sub-representation is mon-
degenerate.
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Proof. Adjoint varieties are contact manifolds (see for instance | |) with contact struc-
ture given by 6 € H°(Q},(1)). Being a contact structure means that the induced distribu-
tion is regular:

(25) 0— F—Ty -5 0y(1) — 0,

and the Oy-bilinear map A?F — Oy (1) defined by u A v — df(u,v) = 0([u,v]) is
nondegenerate.

From our previous discussion, taking fibers gives F, ® k(z) = V). On the other hand 6,
is P’-invariant, hence G-invariant. Since G is semisimple, df, defines a trivial one dimen-
sional G-subrepresentation of A? V). One can check (for instance with LiE | D

that this trivial factor is unique, thus w is also nondegenerate.
O

Proposition 6.8. The map m: Fol(P(Vy),2) — Fol(X,2) is an embedding.

Proof. As in the proof of Theorem 4.3, we only need to show that the center of projection
P(Cw) c IP’(HO(Q]%D(VA)(Z))V) does not intersect the first secant variety to Fol(P(V)),2) =

G(2,V,). However, the secant variety of G(2,V,") is the set of forms of rank at most four
(again, refer to the proof of Theorem 4.3). Then the result follows from Lemma 6.7. O

In view of Proposition 6.8 we only need to show that 7 is surjective. Recall the com-
mutative diagram

>X<

HO(2hs(2) /\VA — H'(2%(2)
(26) WP (Vy) b
HO@E i (4)) = A\ VA —r (0 (4)).

where 9y (v) = Uy (v - v) is the quadratic map associated to Uy, Y being here P(V}) or
X. Also recall that the cone over Fol(X,2) < P(H%(Q%(2))") is precisely the vanishing
locus of ¥x.

Next, as already noticed, one can check with [ | that for all varieties in the third
row of the Freudenthal magic square we have:

2
HO(Qpy,(2)) = /\vA — Co® H(Q%(2)), and

HO(Q (4 /\VA—/\VA@HO Q% (4)),

with H°(Q%(2)) being an irreducible representation. Let us denote by w and w’ the
highest weight vectors in /\2 Vi, with Cw being the trivial representation. Now we are
ready to proceed to the proof of Theorem 6.6.

Proof of Theorem 6.6. As discussed above we only need to prove that 7 is surjective. We
start with v € /\2 V) such that 1x o if(v) = 0. Since w generates ker i}, it is enough to
show that there exists a € C and u € /\2 V) such that

v=aw+u, and u A u = 0.
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Recall that, owing to Remark 2.6, ¢pn(v) = v A v. Using the commutativity of (26) we
may assume that

4
Ypn(v) = v Avekerii = C®HO(Q4(2) /\VA

And we claim that v A v € ker¢§ implies that w divides v A v, i.e., there exists z € /\2 Vi
such that v A v =w A .

Let g be the Lie algebra of G. To prove this claim we recall the universal enveloping
algebra U(g) = @, g®"/I, where I is the ideal generated by 2 @y —y ® = = [x,y]
for every z,y € g, and g® = C. We can see the elements of U(g) as (non-commutative)

polynomials on the elements of g. For more details we refer to | , Chapter III]. Any
g-module affords an induced U(g)-action and the property that we will use is the following.
If v, € V}, is the highest weight vector then V), = U(g) - v, see [ , Chapter VIIJ.

Now note that w A w,w A w' € /\4 V) are highest weight vectors of weights 0 and the
highest weight of HO(QL(2)), respectively. Then for v A v € C@® HO(Q4(2)) = A* Vi
there exist P(X),Q(X) € U(g) such that

vAav=PX) (wArw)+QX) (wnau).

Note that g-w = Cw, hence P(X) - w = pw and Q(X) - w = qw, for some p,q € C.
Developing the expression above we get

vAv=2p(wAw)+qwAw)+wa (QX)-w)
=waA (2pw+ (¢ + Q(X)) - w').

Then define z := 2pw + (¢ + Q(X)) - w' € A* V.

Next we claim that if w divides v A v then there exists a € C and u € /\2 V) such that
v=aw+u and u A u = 0, concluding the proof of the theorem. The proof of this claim
will be given in Lemma 6.9. O

Lemma 6.9. Let v,w € /\2 C?" such that w™ # 0. Suppose that w divides v A v, i.e.,
there exists u € /\2 C?" such that v A v = w A u. Then there exist a € C and y € /\2 c?
such that

v=aw+y and y Ay =0.

Proof. Given z € A" C?" define the set K7 := {z € A\"C?" | z A z = 0}. It follows from
[ , Theorem 1] that w divides v A v if and only if K2"~* < K27, 4.

Consider the pencil of 2-forms v + tw. Since each bilinear alternating form corresponds
to a skew-symmetric matrix, we get a pencil A+tB of 2n x 2n matrices. Recall that linear
change of coordinates P € GL(2n,C) on C?" correspond to a congruence PT(A + tB)P.

Owing to | , Theorem 1], one has that A + tB is, up to congruence, a block-
diagonal matrix whose blocks depend on invariants of the pencil. Since w™ # 0 we have

that det B # 0, hence the only blocks that can appear have the form

0 (a+t)An + Ay,

B(a,m) := {_(ath)Am—Am 0 me2m
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where
0 0
0 1 0 1
Am = N ) Am =
1 0 mxm 0 1 0
mXxXm
The only invariants are the elementary divisors (a + t)>™ of det(A + tB). Fix an integer
partition Ay = Ao = --- = A\, Ay + -+ + A, = n, and complex numbers aq,...,a, € C and
define

M(t) = (pij +tqij) := B(a1, A1) @ - - @ Blar, \r).

Moreover, v = ij Dij€i A ej and w = ij gijei A ej; note that v depends on ay,...,a,
but w does not.
We note that if either \; > 3 or Ap > 2 then K2"* ¢ K2",%. Indeed, if \; > 3 then

VAV
A A A1
w = Z ej A ey 41— +w and v = ay Z ej A €eax +1—j + Z €jt1 A €gn41—j + U
j=1 j=1 j=1
where w’ and v" only involve e; for j > 2A\; + 1. Then take ¢ = /\j¢{273’2>\17172)\1} ej. It
follows that ¢ € K2"* but ¢ A v A v = £1. Similarly, if A\; = Ay = 2 we have

’wzel/\64+€2/\63+€5/\€8+66/\€7+’w/a11d

v=aj(e; Aes+ex nez)tas(es Aes+egAer)t e nest+egnes+ U,

where w' and v’ only involve e; for j > 9. Then ¢ = Nj46s1€ € K24\ K2n 4,
Therefore we only need to deal with the partitions (2,1"~2) and (1™).
For the partition (2,1"72) we get
n
wzel/\e4+62/\eg+262j,1/\egj and
j=3
n

V= al(el ANeqg+ex A 63) +eg A eg+ Z aj_1<€2j_1 A 62]').

Jj=3
Imposing Ki"“l c Kgﬁ;‘l implies a1 = ag = -+ = a,_1, hence v = aw + e3 A e4 and we
are done.
For the partition (1) we get
n n
w = Z €2j71 N €2j and v = Z aj(egj,1 AN egj)
i=1 =1

and imposing K2"* < K274 we get that at least n — 1 of the n coefficients a; must be

equal. Hence, up to reordering, we have v = agw + (ag — a1)(e1 A e2) and we are done. [

Remark 6.10. It is still not clear to us whether Fol(X,2), seen as a scheme defined by
the quadratic equations H?(Q3%(2))Y < SZH?(QL(2))¥ (see Theorem 3.7), is already a
reduced scheme. We also remark that experimental computations with Macaulay2 [(5]
were crucial to discover the lemma above.
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6.6. Some products of projective spaces. We give now a description of what happens
for some examples of cominuscule spaces which are not Grassmannians. Clearly the easiest
case to treat is that of product of projective spaces X := P(U) x P(V) = P™ x P".
This variety embeds in P(U ® V) =~ PV~! via the Segre embedding, where N = (m +
D(n+1). Let A*(U®V)Y be the space of quadrics defining Fol(P(U @ V),2) =~ G(N —
2,U®YV). These quadrics can be decomposed in direct sum of SL(U) x SL(V)-irreducible
representations, among which one factor is 22U ® I'*2VV; we denote by J the direct
sum of irreducible representations of /\4(U ® V)V not showing up in 22Uy 122y v.
Moreover let us denote by Ox(1,1) the ample bundle defining the Segre embedding. We
have the following result.

Proposition 6.11. The space of codimension one minimal degree foliations Fol(X,2) <
P(H(Q4(2,2))Y) = P(A*(U ® V))) is defined by the quadratic equations given by the
inclusion

4 2

H(Q%4,4) =T NUV)" <2 AUV)".
Thus we have a scheme theoretical strict inclusion of FOl(P(U®V),2) = G(N -2, URYV)
inside Fol(X,2).

Proof. Since the cotangent bundle of a product P(U) x P(V) is the direct sum of the
cotangent bundles of the factors QI%D(U) (@) Q%(V)v we also deduce that

O = By @ By © W) @ ey @ W) ® Wiy
From the Borel-Weil-Bott Theorem we deduce that

2
HO(Q%(2,2)) /\U@S2 CICHAYAND

and

4
HO(03(4,4)) /\U®S4 e [rHMUerrtv)e @MU ertv)e (s've A V).

We claim that A*(U ® V) = HO(Q4(2,2)) and A" (U@ V) = HO(Q3(4,4)) ® (T%?U ®
['22V), thus showing that HY(Q3(4,4))" = J and proving the statement of the proposi-
tion.

The computation of A’(U ® V) is an application of the Littlewood-Richardson rule to
the case of exterior powers. In terms of Young diagrams

A\UV)=Prvertv,
A

where the direct sum runs over all Young diagrams of size ¢ with at most m + 1 rows and
n + 1 columns, and )\ is the Young diagram obtained from A\ by exchanging rows and
columns. The claim follows. ]

We believe that the situation is not easier for other cominuscule spaces. For instance
if X := P! x P! x P! < P7 then the morphism i} : H°(P7, 03, (2)) — H°(Q%(2,2,2)) is
already not injective.
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7. FURTHER DIRECTIONS

Let us list some possible open questions and research directions that arise from this
work. We will denote by X a cominuscule Grassmannian. We could explicitly recover the
space of foliations Fol(X, 2) of some X by showing that it is equal to the space of foliations
of the ambient projective space (see Theorems 4.1, 6.1, 6.4). A natural question is:

Question 7.1. Is w(Fol(P(V}),2)) isomorphic to Fol(X,2) for any cominuscule Grass-
mannian X ¢

For Grassmannians G(3,n) we could prove some results going in the direction of a
positive answer to this question. These results concerned the ideal defining foliations and
the properties of 7 and give rise to the following questions, which are weaker than 7.1:

Question 7.2. Is the ideal of w(Fol(P(V)),2)) equal to the ideal of Fol(X,2)?

For X = G(3,n) we have already proved the equality in degree 2, i.e. for quadrics
(Theorem 4.3).

Question 7.3. Is the restriction of w to Fol(P(Vy),2) injective? Is it dominant?

We have already shown that this restriction is an embedding for X = G(3,n) (The-
orem 4.3) and that it is a dominant embedding for the varieties in the third row of the
Freudenthal magic square (Theorem 6.6).

Question 7.4. Is Fol(X,2) smooth or at least reduced?

If we knew this was true, we would get from Theorem 6.6 that Fol(P(V}),2) =~ Fol(X, 2)
for X one of the varieties appearing in the third row of the Freudenthal magic square.

In some cases (see Theorem 3.7, 6.1, Proposition 5.4, 6.3, 6.5) we were able to provide
the equations of the space of foliations Fol(X,2). These equations are often equivariantly
unique, meaning that the irreducible representations they involve are unique in their re-
spective ambient representation spaces. This naturally brings out the following problem:

Question 7.5. Is it possible to recover Fol(X,2) as a G-variety solely from a description
of its G-equivariant ideal?

For instance, take the case of Grassmannians G(3,n); the question (which is now a
priori independent of the understanding of foliations on G(3,n)) is whether one can find
a geometric description of the variety defined by the quadrics

<V3>\4 S) V3>\2+>\6 S V>\1+>\2+>\4+>\5)V = SzVA\;JrM = HO(P<V>\\;+)\4)7 OIP(VAV2+A4)<2))

inside the projective space IP’(VAV2 n )\4). Another remarkable example is that of P™ x P":
what is the variety inside P(A*(U®V)Y) defined by 7 < S2 A2 (U®V)" (in the notation
of Section 6.6) and containing G(N —2,U ® V')? This kind of questions shows that there
exists a very interesting bidirectional interplay between the study of foliations and the
equivariant geometric theory.
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APPENDIX A. TECHNICAL LEMMAS IN THE PROOF OF PROPOSITION 4.4

We collected in this appendix some lemmas which are necessary to prove Proposition
4.4. From the square (20) we can derive the following diagram:

2 2
\ \ &- \ * \
Ve - /\ Vs s /\ Vs — S2V>\2+>\4

(27) Fvhg)|

4

ALY
The top row comes from the second symmetric power of the decomposition /\2 Vi =
Vi, © V) 4y, in particular it is exact. Then to show that (22) holds for some p it is
enough to show, owing to Schur’s Lemma, that £ o Wy, )(VMV) # {0}.

3
In order to properly describe the map £ and do subsequent computations, let us fix

some notation. Fix a basis {e1,...,e,} of V¥ such that each e; is a weight vector for the
action of sl(V'Y). We write e;, . ;, for the element e;; A -+ A€, € VY = AFVY. In
particular, if o € Sy is a permutation,

Civ(1)rio(k) — (_1)oei17~~7ik
and €;,,. ;. = 0if i, = ig for some pair of indices » and s. Even though we only need
€ir,..i, With i1 <9 < --- < 43 in the definition of V)\i, it will be useful to consider all
possible indices in view of the induced sl(V") action.

Let I; denote the weight of e;, then each e;, . ; has weight l;, +---+1{;, for the induced
sl(V'V) action. If a5 = [, — Is is a root, then let X, ; € sl(VY) be the corresponding
element: X, s(e;) = 0if t # s and X, 5(es) = e,. Then the induced action gives

Xrs(€iy,..i,) =0if s¢ I or {r,s} I,

Xrsle.s.)=e. , ifselandr¢l
where I = {iy,...,ix}.
Remark A.l. Let us denote by < the lexicographic order. A basis of V)’ is given by
{€iy.ig} With 1 < iy < --- < i < n, while a basis of A Vi is given by {€i) iy is A €)1 ja js |
with 1 <71 <ig <ig<n,1<j <jo<j3g<nand (’il,ig,’ig) < (jl,jg,jg). Notice that
the elements of the latter basis for which {1, 2,93} N {j1, j2, j3} # 0 belong to Vyy/ ., . Asa
consequence of this, the elements {€;, i, is A € jo.js * €ky - ke } With the previous conditions
are a generating set of A’ Vi - V!, and those such that {i1,42,i3} N {j1, 2,73} # O are
linearly independent in Vy! ,, ®V\ < /\2 Vv

2 2 .

Lemma A.2. The map £: S% N\ Vil = Vo N7V from (27) is defined by
§(<el7,]7k /\ el7m7n) ' (eo7p7q /\ er787t)) = ei7j7k7l7m7n : (eo7p7q /\ er787t) + eo7p7q7r787t : (eli.]7k /\ el7m7n)
Proof. First we note that the unique (up to scalar multiple) SL(V")-equivariant map

2 \V2 AV M 3 M J— . . . . . .
A V3 — Vyv is the multiplication m(e;, iy is A €jy jajs) = €iyiniis,jrja.js- Lhen & can be
described as the composition

2 2 2 2
&S AV -5 Avee AV "B v A Vi
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where d(u - v) = (u® v + v ®u). Therefore
E((and)-(erd)=(m®1)((arnb)®(crd)+(crd)®(anbd))
=m(anb)-(cnd)+m(crd) (anbd)
and
§((eijk A €lmn) - (€opg A Ersit)) = €ijhimmn - (€opg A Ersit) + €oparst (€ijk A €lLmn)-
O
Remark A.3. For further computations it will be useful to have the highest weight vectors
of /\2 Vi =V @Vy . Firstly notice that
W24 = €123 N €124
is the unique vector in /\2 Vi of weight Ao + Ay, hence it must be cyclic. For A\g we may
use the diagonal map §: Vy/ — N2 Vy, from which we define
we 1= 0(e1,2,34,56) = Z (—1)7€01,00,05 A €o4,05,06
€8¢

where (—1)? denotes the sign of the permutation . Also note that

éo—wGA---AwG;éO
—_——

10 times
but wit = 0.
Now we are ready to prove the technical bulk of Proposition 4.4.
Lemma A.4. The equality (22) holds for p = 2Xg.
Proof. From Remark A.3 we have that wg € /\2 Vy, is a highest weight vector of weight

X6. Then
4

o o T v
We N We = Z (=1)7(=1)"€01,02,05 A €o4,05,06 A €ri,72,m3 A Eryrs,ms € /\V)\g
o0,7€S6

is also a highest weight vector of weight 2Ag. We then compute
\IIH\’{(VA3)(w6 A wg) = Z (_1)0(_1)7[(601702703 A 60'4,0'570'6) ’ (67'1,7'2,7'3 N 67'477'5,7'6)
o,7€S6
—(€01,02,05 A €r1,10,75) * (€0u,05,06 A €rams,m6) + (€o1,00,08 A Eraymsrg) * (€o4,05,06 A Erimarrs)]-
Observe that
§((eoy,00,05 A €os,05,06) " (€r1mams A €ryimsirg)) = (—1)7€12,3456 * (€ry,m3,m5 A €14,75,76)
+(=1)"€123456  (€1,00,05 A €o4,05,06)

and also notice that {((€s, 00,05 A €r1ra73) * (€oao5.06 N €rarsrs)) # 0 if and only if
{11,720, 73} = {04,05,06}. In this case there exist (unique) pi,p2 € S3 such that
p1(11, 72, 73) = (04, 05,06) and pa(14,75,7¢) = (01, 02, 03) hence
5((601702703 N 671772773) ’ (eU4,UQ,UG A eT4,7'5,7'6)) =
= (=D (=1)"*¢((€01,00,05 A €o,05,06) * (€ou,05,06 A €a1,02,03)) =
= 2= (=

1) (=1)7 €1,2,3,4,5,6 ° <601702,U3 A 60470'570'6) =

=2(—1)"e123456 " <601702,U3 A 60470'570'6)
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The last equality comes from the fact that the joint (or concatenated) permutation (p; |
p2) € Sg satisfies (p1 | p2)T = (04,05,06,01,09,03) hence (—1)P11P2) = (—1)P1(=1)P2 =
—(—1)7(—1)?. Analogously, we have

£((€01,00,05 A €rayrsirs) * (Easo5,06 A €rimars)) =
= —2(=D)A(=1)"2(=1)"e123456 - (Cor,00.05 A Conosios) =
= —2(—1)"€12,3,456 * (€o1,02,05 A €04,05,06)
for (unique) pi, p such that p(74,75,76) = (04,05,06) and p4y(71,72,73) = (01, 092,03),
hence (—1)P1(—1)”> = (—1)7(—1)?. Therefore
£o \IJEX(ng)(wbv Awg) =A—-B+C

where
A= Z (D7 (=1)7[(=1)"€e1,2,84556 * (€ri,72,m3 A Erars7e)+
o,7€S¢
+ (=1)7e1,234,56 " (€01,02,05 A €04,05,06)] =
=6!2e123456 we =1440€123 456 - We,
B=) > (=1)7(=1)"2(=1)"e1,2,34,5,6 - (€1,00,05 A €os,05,06) =
oeSg T€Sg
{m1,72,73}={04,05,06}
=T72€123456* We,
C=), > —(=D)7(=1)"2(=1)"e1,2,3456  (€a1,02,05 A €as,05,06) =
oeSe T€Sg
{m1,72,73}={01,02,03}
= —T72€123456 " We-
Therefore £ o \IJEX(V )(w6 A wg) = 1296 €1 23456 - we # 0. O
A3

Lemma A.5. The equality (22) holds for p = Ay + Ay + Xg.
Proof. As in the previous lemma, we get from Remark A.3 that the highest weight vector
in /\6 V. of weight A2 + Ay + Xg is wa,4 A wg. Then

\IlIE’{(VAS)(wZA: A wg) = \IlIE’{(VAS)(el,Qﬁ N €124 A Z (_1)0601702703 A 60'470570'6) =

UESG

= (123 A €124) Y, (=1)7€0y.00.05 A €osos06)+
€S

— D (=1)7(€1,23 A €o1,00,05) - (€124 A €0y 05,00)+

+ Z <_1)J<6172,3 A €oy05.06)  (€1,24 A €o1.05,0)-

Notice that m(e123 A €124) = €123124 = 0. By the same reason we also have that
6((61,2,3 A ei,j,k) : (617274 A el,m,n)) # 0 if and Only if either {Lj? k} = {47 5, 6} or {l7 m, TL} =
{3,5,6}. Following the same strategy of the proof of Lemma A.4 we arrive at

o \I/IE,{(VAS)(U)QA A w6) = 576 €1,2,3,4,5,6 - W2 4 7 0.
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Lemma A.6. The equality (22) holds for p = Ay + Ag.

Proof. ansider V)\\i‘ s © V)\‘; ®V)\‘g generated by the highest weight vector e 234®eq,. . g.
Now consider the diagonal maps:

V)\\; —> (V\/)®4 : €1,2,3,4 — Z (—1)0'60—1 (9] €0y ) €o4 X €04’

€Sy
Vi = (VAV2)®4 S Z (=1)7€rm ® €ry iy @ rg 76 @ 77 -
TESs
After applying the multiplication maps V'V ® V)Y — Vy' and (V)\;)@)4 — /\4 Vy, we get a
copy of V., inside /\4 V. determined by

_ o T
Wy,8 = Z Z (_1) (_1) €o1,71,72 A €o9,13,74 N\ Co3,75,76 "\ Coy,7,78"
0€S, TESY

Let us show that & o \IJHX(VA )(w4,8) # (. First notice that, by symmetry,
3

\I"]IX(VAS)<w4,8) = Z Z (—=1)7(=1)"€o1,r1,m2 A €osyrsymy * €as,ms,m6 A Conyrrms
0684 TESs

and

§o WI;(VAS)(U)MS) =6 Z Z (1) (=1)"€q1,m1,m2 A €osyms,my * €os04,ms5,76,77,7s

0'654 7'658

In order to show that this element is different from zero, let us show that one of its coefli-
cients in the basis described in Remark A.1 is nonzero. More precisely, let us compute its
coefficient with respect to the element e1 23 A €2 1.4-€3456,78. To compute this coefficient,
we need to isolate the permutations o and 7 such that ey, 7 r, A €5y,75.74 * €03,04,75,76,77,75 =
te123 A €214 €34567s. In order for this to happen, o must send {1,2} to {1,2} (there
are two possibilities since we need to take into account the order) and {3,4} to {3,4} (2
possibilities). If o7 = 1 then either 7 must send {1,2} to {2,3} (2 possibilities), {3,4} to
{1,4} (2 possibilities) and {5,6,7,8} to {5,6,7,8} (4! possibilities) or it must send {1, 2}
to {2,4} (2 possibilities), {3,4} to {1,3} (2 possibilities) and {5,6,7,8} to {5,6,7,8} (4!
possibilities); similarly if o3 = 2. Since all these terms come with a + sign, we obtain that
the coefficient in question is equal to 283 # 0. O

Lemma A.7. The equality (22) holds for i = 2X\y + As.

Proof. Consider Voloins © V@V VY determined by e 2®e; 2®e;. .. g. Then consider
the diagonal map

Ve = ViQVIRVyQVy : e.g— Z (—1)7€0, ® €0, @ €03,04,05 @ €og,07,08-

UESs
Aplying multiplication maps V'V ® V)7 — V! and (V)\é)®4 — /\4 Vi we get Vi1, ©
A? Vyy determined by

o o
w2,2,8 = Z (=1)%€e1,201 A €1,2,00 A €o3,04,05 A €ag,07,0%-
UESs
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Let us show that & o Wy, )(w2,278) # 0. Firstly by Lemma A.2 one computes
3

\Ijﬁ){(v/\g) (w2,2,8) =

ag
Z (=1)7[e1,2,01 A €1,2,05 " €a3,04,05 A €ogo7,08 — 261,201 A €a3,04,05 * €12,02 A €og,07,05]
€Sy

and
v o o
§oWpny, y(waa8) = D (=1)7[ea + ep +ec],
o€eSs
where eq4 = €125, A €12,05 * €03,04,05,06,07,050 EB = —2€12,01 A €o3,04.05 * €1,2,02,06,07,08>
ec = —2€12,05 A €og,00,08 * €1,2,01,03,04,05- 111 order to show that & o \I’H\,f(VA3)(ZU2,278) # 0, we

want to show that the coefficient of oWy, )(wg,gg) corresponding to the element e 23 A
3

e1,2.4 - €1,256,7.8 With respect to the basis of Remark A.1 is nonzero. Proceeding similarly
to the previous proof, one can show that the coefficients of >, s (—1)7ea, X es,(—1)7€B,
Yioess (—1)7ec are respectively 2 - 6!, 4 - 3141, 4 - 314!, and the final coefficient is equal to
9534 % . 0

Lemma A.8. The equality (22) holds for = Ay + A3 + A7.

Proof. Consider V/\Vﬁ)\ﬁ)\7 c V)\V2 ® V)\é ® V/\V7 determined by e; 2 ® e123®eq,.. 7. Then
consider the diagonal map

Ve s VY@V @Vt et — Y (—1)7€0, ® eoyos.00 ® o5 a.0r-
0687
Aplying multiplication maps V'V ® Vyy — V! and (VA‘;)®4 - A* Vil we get Vv y iy, ©
A Vy. determined by

waz7=e123 A Y, (=1)7€120, A €os0504 A Cos.0507
0'657
Let us show that £ o \Ilﬁ,{(vk )(w273,7) # 0. A direct computation shows that
3
Ve, (W23,7) =

g
Z (=1)7[e1,23 A €1,2,01 " €o,03,04 A €os,06,07 — 261,2,3 A €os,05,04 * €1,2,01 A €05,06,07]

oeSy
and
§o ‘Ij]i’{(v/\g)(wl?ﬁ,?) = Z (—1)%[ea + eB + ec],
oeSy
where e4 = €1,23 N €120, * €09,03,04,05,06,075 EB = —26172,3 A €gy.05.04 * €1,2,01,05,06,077 €C =

—2€1,2,5, A €os.06,07 " €1,2,3,02,03,04- 111 Order to show that o \IJIE(VA )(w273,7) # 0, we want to
3
show that the coefficient of £ o \Illg(vA )(w2,377) corresponding to the element e 23 A €127 -
3

e1,2,3,4,56 with respect to the basis of Remark A.1 is nonzero. As in the previous proofs,
one can show that the coefficients of >, s (=1)7ea, D cs.(—1)7€B; X pes, (—1)7ec are
respectively 6!, 2 - 314!, —3!4!, and the final coefficient is equal to 2°3% # 0. O

Lemma A.9. The equality (22) holds for = A\ + Ay + A7.
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Proof. Consider V/\VlJrMJr)\7 cVyeVy® V/\V7 determined by e; ® e1234 ®e1,...7. Then
consider the diagonal maps

Vi = VY@V Vyi: e .7 Z (—=1)%es, ® €py,05,00 @ €x5,06,075

0687

V)\\A/L —=>V’'® V)\\; - 61234 Z (_1)0601 ® €0y,03,04-
€Sy
Aplying multiplication maps V¥ ® V) — V" and (VA§)®4 — /\4 Vi we get Vi 1\, ©
A Vyy determined by

. o T
W1,4,7 = Z Z (=1)7(=1)"€1,01,m A 05,0804 A Ersym,ms A €1y 5,77
0'654 7'657

Let us show that £ o \IJHX(VA )(w1,4v7) # 0. Firstly notice that \IJHX(VA )(w1,4v7) =
3 3

_ ag T . _ .
= Z Z (—=1)7(-1) [61701,7'1 N€a,03,04"Cr 73,74 N 5,765,771 — 2€1,01,71 N Cryy73,74 60'2,0'370'4/\67'5,7'6,7'7]
o€Sy TEST

and
fO\I’H\){(VA ’LU147 Z Z [€A+€B+€C]
o€S, TEST
where €A = €l,o1,m N €09,03,04 * €12,73,74,75,76,777 EB = 261 01,71 N €ry.m3,74 * €02,03,04,75,76,T7
ec = —2€5y 05,04 N Crs,76,77 * €l,01,71,m0,m3,7- 11 Order to show that £ o \IJ]P,(V )(w174,7) # 0,

we want to show that the coefficient of £ o \I'P(VA )(w1,477) corresponding to the element
3

€123 A €124 - €1,34,56,7 With respect to the basis of Remark A.1 is nonzero. Similarly to
the previous proofs, one can compute that the coefficient of > s > cs (—1)7(~=1)"ea
is equal to 12 - 6!, the coefficient of >, s, > cs.(—1)7(—1)7ep is equal to 4 - (313 and
the coefficient of > g >, s (—1)7(=1)7ec is equal to 4 - (312 - 4!, thus giving a total
coefficient of 2°3%5 # 0. O
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