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Abstract

Alain Connes introduced the use of Lie groupoids in noncommutative geometry in his pio-
neering work on the index theory of foliations. In the present paper, we recall the basic notion
involved: groupoids, their C∗-algebras, their pseudodifferential calculus... We review several re-
cent and older advances on the involvement of Lie groupoids in noncommutative geometry. We
then propose some open questions and possible developments of the subject.
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1 Introduction

Groupoids, and especially smooth ones, appear naturally in various areas of modern mathematics.
One can find a recent overview on Lie groupoids, with a historical introduction in [23].

Our aim in this paper is to review some advances in the study of Lie groupoids as objects of non
commutative geometry. This theory of Lie groupoids is very much linked with various index problems.
A main tool for this index theory is the corresponding pseudodifferential calculus. On the other hand,
index theory and pseudodifferential calculus is strongly linked with deformation groupoids.

Groupoids first appeared in the theory of operator algebras in the measurable - von Neumann algebra
- setting. They were natural generalizations of actions of groups on spaces. These crossed product
operator algebras go back to the “group measure space construction” of Murray von Neumann ([93]),
who used it in order to construct factors of all different types. It often happens that two group
actions give rise to isomorphic groupoids (especially in the world of measurable actions - i.e. the von
Neumann algebra case). It was noticed in [52] that the corresponding operator algebras only depend
on the corresponding groupoid. A recent survey of this measurable point of view can be found in
[53].

Two almost simultaneous major contributions forced groupoids into the topological noncommutative
world i.e. C∗-algebras:

• The construction by Jean Renault of the C∗-algebra of a locally compact groupoid, its repre-
sentation theory ([100])...

• The construction by Alain Connes of the von Neumann algebra and the C∗-algebra of a foliation
based on its holonomy groupoid ([28, 30, 32]).

Moreover, as a motivation for Connes was the generalization of the Atiyah-Singer index theorem
([8, 10]), he used the smooth longitudinal structure in order to construct the associated pseudodif-
ferential calculus and the C∗-algebraic exact sequence of pseudodifferential operators. This allowed
him to construct the analytic index, and to prove a measured index theorem ([28]). Very soon af-
ter, he constructed a topological index with values in the C∗-algebra of the foliation ([30]). The
corresponding index theorem was proved in [36].

2



This pseudodifferential calculus on groupoids and the construction of the analytic index in the
groupoid C∗-algebra was then easily generalized to all Lie groupoids ([91, 94]). They gave rise to
several index theorems - cf. [43, 22, 42].

Another very nice construction of Connes (see [32]) gave a geometric insight on this generalized index
theory: the construction of the tangent groupoid. This tangent groupoid allowed to construct the
analytic index of (pseudo)differential operators without pseudodifferential calculus. It was also used
to give beautiful alternate proofs of the Atiyah-Singer index theorem ([32, 43]).

Connes’ tangent groupoid was an inspiration for many papers (cf. [61, 91, 94]...) where this idea was
generalized to various geometric contexts. Its natural setting is the deformation to the normal cone
(DNC) construction. Since DNC is functorial, Connes’ construction can be extended to any case of a
sub-Lie groupoid of a Lie groupoid (see [46]). Moreover, this construction is immediately related to
the Connes-Higson E-theory (cf. [33]). It therefore opened a whole world of deformation groupoids
that are useful in many situations and gave rise to many interesting K-theoretic constructions and
computations.

One also sees that the C∗-algebra extension of the pseudodifferential operators on a groupoid is
directly related to the one naturally associated with the DNC construction and the canonical action
of R∗+ on it ([1, 45]). There is a well defined Morita equivalence between these exact sequences, and
the corresponding bimodule gives an alternative definition of the pseudodifferential calculus on a
groupoid (cf. [45]) - which in turn should be used to various contexts.

In the present survey, we recall definitions and several examples of Lie groupoids and describe their
C∗-algebras. Next, we study the pseudodifferential operators associated with Lie groupoids from
various view points. Examples of various constructions of groupoids giving rise to interesting K-
theoretic computations are then outlined. We end with a few remarks and several natural questions
concerning groupoids, deformations and applications.

2 Lie groupoids and their operators algebras

We refer to [78, 80] for the classical definitions and constructions related to groupoids and their Lie
algebroids. The construction of the C∗-algebra of a groupoid is due to Jean Renault [100], one can
look at his course [101] which is mainly devoted to locally compact groupoids.

2.1 Lie groupoids

2.1.1 Generalities

A groupoid is a small category in which every morphism is an isomorphism. Thus a groupoid G is a
pair (G(0), G(1)) of sets together with structural morphisms:

Units and arrows. The set G(0) denotes the set of objects (or units) of the groupoid, whereas the
set G(1) is the set of morphisms (or arrows). The unit map u : G(0) → G(1) is the injective
map which assigns to any object of G its identity morphism.

The source and range maps s, r : G(1) → G(0) are (surjective) maps equal to identity in restric-
tion to G(0): s ◦ u = r ◦ u = Id.

The inverse ι : G(1) → G(1) is an involutive map which exchanges the source and range:

for α ∈ G, (α−1)−1 = α and s(α−1) = r(α), where α−1 denotes ι(α)
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The partial multiplication m : G(2) → G(1) is defined on the set of composable pairs G(2) =
{(α, β) ∈ G(1) ×G(1) | s(α) = r(β)}. It satisfies for any (α, β) ∈ G(2):

r(αβ) = r(α), s(αβ) = s(β), αu(s(α)) = u(r(α))α = α, α−1α = u(s(α))

where αβ stands for m(α, β). Moreover the product is associative, if α, β, γ ∈ G:

(αβ)γ = α(βγ) when s(α) = r(β) and s(β) = r(γ)

We often identify G(0) with its image in G(1) and make the confusion between G and G(1). A groupoid

G = (G(0), G(1), s, r, u, ι,m) will be simply denoted G
r,s

⇒ G(0) or just G⇒ G(0).

Notation. For any maps f : A→ G(0) and g : B → G(0), define

Gf = {(x, γ) ∈ A×G; r(γ) = f(x)}, Gg = {(γ, x) ∈ G×B; s(γ) = g(x)}

and
Gfg = {(x, γ, y) ∈ A×G×B; r(γ) = f(x), s(γ) = g(y)} .

In particular for A,B ⊂ G(0), we put GA = {γ ∈ G; r(γ) ∈ A} and GA = {γ ∈ G; s(γ) ∈ A}; we
also put GBA = GA ∩GB.

Remark 2.1. For any x ∈ G(0), Gxx is a group with unit x, called the isotropy group at x. It acts by
left (resp. right) multiplication on Gx (resp. Gx) and the quotient identifies with s(Gx) = r(Gx) ⊂
G(0) which is called the orbit of G passing through x. Thus a groupoid acts on its set of units.
Note that A is a saturated subset of G(0) (for the action of G) if and only if GA = GA = GAA.

In order to construct the C∗-algebra of a groupoid, we will assume that it is locally compact. This
means that G(0) and G are endowed with topologies for which

• G(0) is a locally compact Hausdorff space,

• G is second countable, and locally compact locally Hausdorff i.e. each point γ in G has a
compact (Hausdorff) neighborhood;

• all structural maps (s, r, u, ι,m) are continuous and s is open.

In this situation the map r is open and the s-fibers of G are Hausdorff.
In order to study differential operators and index theories, we will assume our groupoid to be smooth.
The groupoid G ⇒ G(0) is Lie or smooth when G and G(0) are second countable smooth manifolds
with G(0) Hausdorff, s is a smooth submersion (hence G(2) is a manifold) and the structural mor-
phisms are smooth.
The Lie groupoid G is said to be s-connected when for any x ∈ G(0), the s-fiber of G over x is
connected. The s-connected component of a groupoid G is ∪x∈G(0)CGx where CGx is the connected
component of the s-fiber Gx which contains the unit u(x). The groupoid CG is the smallest open
subgroupoid of G containing its units.

Examples 2.2. a) A space M is a groupoid over itself with s = r = u = Id. Thus, a manifold is
a Lie groupoid.

b) A group H ⇒ {e} is a groupoid over its unit e, with the usual product and inverse map. A
Lie group is a Lie groupoid!

c) A group bundle: π : E → M is a groupoid E ⇒ M with r = s = π and algebraic operations
given by the group structure of each fiber Ex, x ∈ M . In particular, a smooth vector bundle
over a manifold gives thus rise to a Lie groupoid.
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d) If R is an equivalence relation on a space M , then the graph of R, GR := {(x, y) ∈ M ×
M | xRy}, admits a structure of groupoid over M , which is given by:

u(x) = (x, x) , s(x, y) = y , r(x, y) = x , (x, y)−1 = (y, x) , (x, y) · (y, z) = (x, z)

for x, y, z in M . Notice that the orbits of the groupoid GR are precisely the orbits of the
equivalence relation R. If M is a manifold, GR is a smooth submanifold of M ×M and s
restricts to a submersion, it is a Lie groupoid.

When xRy for any x, y in M , GR = M ×M ⇒ M is called the pair groupoid. If M is a
manifold, the pair groupoid M ×M is a Lie groupoid.

Without entering too much in the details, let us say that a smooth regular foliation on a
manifold M(of dimension n) is an equivalence relation on M whose orbits, called the leaves,
are immersed connected submanifolds of M (of dimension p). The corresponding groupoid GR
does not have a smooth structure, but there is a “smallest” Lie groupoid of dimension n + p,
called the holonomy groupoid of the foliation, whose orbits are the leaves [116, 99, 55, 80]. The
holonomy appears to be exactly the obstruction for GR to be smooth!

e) If H is a group acting on a space M , the groupoid of the action is H nM ⇒ M with the
following structural morphisms

u(x) = (e, x) , s(g, x) = x , r(g, x) = g · x ,
(g, x)−1 = (g−1, g · x) , (h, g · x) · (g, x) = (hg, x) ,

for x inM and g, h in H. Once again, the notion of isotropy groups, and orbits of the groupoid
coincide with the one of the action.

If H is a Lie group, M is a smooth manifold and the action is smooth, then H nM is a Lie
groupoid.

f) Let M be a smooth manifold of dimension n. The Poincaré groupoid of M is

Π(M) := {γ̄ | γ : [0, 1]→M a continuous path}⇒M

where γ̄ denotes the homotopy class (with fixed endpoints) of γ. For x ∈ M , u(x) will be
the (class of the ) constant path at x, s(γ̄) = γ(0), r(γ̄) = γ(1), the product comes from the
concatenation product of paths....

The groupoid Π(M) is naturally endowed with a smooth structure (of dimension 2n). For
any x ∈ M , the isotropy group Π(M)xx is the fondamental group of M with base point x and
Π(M)x the corresponding universal covering.

g) If G⇒M is a groupoid and f : N →M a map, Gff ⇒ N is again a groupoid:

u(x) = (x, f(x), x), s(x, α, y) = y, (x, α, y)−1 = (y, α−1, x), (x, α, y)(y, β, z) = (x, αβ, z)

where α, β are in G, x, y, z in N and f(x) = r(α), f(y) = s(α) = r(β) and f(z) = s(β).

When G is a Lie groupoid, and f a smooth map transverse to G (see Definition 2.4), Gff ⇒ N
is a Lie groupoid.

The infinitesimal object associated to a Lie groupoid is its Lie algebroid :

Definition 2.3. A Lie algebroid A over a manifold M is a vector bundle A → M , together with a
Lie algebra structure on the space Γ(A) of smooth sections of A and a bundle map % : A → TM ,
called the anchor, whose extension to sections of these bundles satisfies
(i) %([X,Y ]) = [%(X), %(Y )], and
(ii) [X, fY ] = f [X,Y ] + (%(X)f)Y ,
for any smooth sections X and Y of A and any smooth function f on M .
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Now, let G
s,r

⇒ G(0) be a Lie groupoid.
For any α in G, let Rα : Gr(α) → Gs(α) be the right multiplication by α. A tangent vector field Z
on G is right invariant if it satisfies,

– Z is s-vertical, namely Ts(Z) = 0, i.e. for every α ∈ G, Z(α) is tangent to the fiber Gs(α).

– For all (α, β) in G(2), Z(αβ) = TRβ(Z(α)).

The Lie algebroid AG of the Lie groupoid G is defined as follows (see [78]).

– The fibre bundle AG → G(0) is the restriction of the kernel of the differential Ts of s to G(0).
In other words, AG = ∪x∈G(0)TxGx is the union of the tangent spaces to the s-fibres at the
corresponding unit.

– The anchor % : AG→ TG(0) is the restriction of the differential Tr of r to AG.

– If Y : U → AG is a local section of AG, where U is an open subset of G(0), we define the local
right invariant vector field ZY associated with Y by

ZY (α) = TRα(Y (r(α))) for all α ∈ GU .

The Lie bracket is then defined by

[ , ] : Γ(AG)× Γ(AG) −→ Γ(AG)
(Y1, Y2) 7→ [ZY1 , ZY2 ]G(0)

where [ZY1 , ZY2 ]G(0) is the restriction of the usual bracket [ZY1 , ZY2 ] to G(0).

Notice that AG identifies with the normal bundle NG
G(0) of the inclusion u : G(0) ↪→ G.

Definition 2.4. A smooth map f : N → M is transverse to a Lie groupoid G ⇒ M when for all
x ∈ N : Tf(TxN) + %(AG)f(x) = Tf(x)M .

Lie theory for groupoids is much trickier than for groups. In particular, a Lie algebroid does not
always integrate into a Lie groupoid (see [2] for a counterexample).
Nevertheless, when the anchor of a Lie algebroid A is injective in restriction to a dense open subset
it is integrable and there is a “smallest” s-connected Lie groupoid integrating it (cf. [38]). This
situation is often encountered in index theory where such a Lie algebroid of vector fields is naturally
associated with the studied geometrical object (e.g. manifolds with corners, conical singularities...).
See [37] for a complete answer to this integrability problem.

Examples 2.5. a) The Lie algebroid of a Lie group is the Lie algebra of the group.

b) The Lie algebroid of the pair groupoid M ×M ⇒ M on a smooth manifold M , is TM with
identity as anchor.

c) If f : M → B is a smooth submersion, the Lie groupoid of the equivalence relation on M

“being on the same fiber of f ” is Bf
f = M ×f M ⇒M and its Lie algebroid is the kernel of Tf

with anchor the inclusion.

d) More generally, if F is a regular foliation on a manifold M , TF with inclusion as anchor,
defines a Lie algebroid over M and the holonomy groupoid is the smallest Lie groupoid which
integrates TF [116, 99].
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e) Let M be a manifold and V a hypersurface cutting M into two pieces. The module of smooth
vector fields onM that are tangent to V was considered by Melrose for the study of b-operators
for manifold with boundary [83]. This module is the module of sections of a Lie algebroid Ab
over M which integrates into the b-groupoid Gb [90].
If M = V ×R and V = V ×{0} (which is always locally the case around V up to a diffeomor-
phism), then Ab = TV ×TR with anchor %(x, U, t, ξ) 7→ (x, U, t, tξ) and Gb = (V ×V )×(RoR∗+)
is the product of the pair groupoid on V with the groupoid of the multiplicative action of R∗+
on R.

Remark 2.6. The unit spaces of many interesting groupoids have boundaries or corners. In (almost)
all the situations, these groupoids sit naturally inside Lie groupoids without boundaries as restrictions
to closed saturated subsets. This means that the object under study is a subgroupoid GVV = GV
of a Lie groupoid G⇒G(0) where V is a closed saturated subset of G(0). Such groupoids, have a
natural algebroid, adiabatic deformation, pseudodifferential calculus, etc. that are restrictions to V
and GV of the corresponding objects on G(0) and G. We chose to give definitions and constructions
for Lie groupoids; the case of a longitudinally smooth groupoid over a manifold with corners is a
straightforward generalization using a convenient restriction.

2.1.2 Morita equivalence of Lie groupoids

An important feature of noncommutativity is a nontrivial notion of Morita equivalence. Indeed a
Morita equivalence of commutative algebras is just an isomorphism.
In the same way, in the world of groupoids there is an interesting notion of Morita equivalence,
although this notion reduces to isomorphism both for spaces and for groups.

Definition 2.7. Two Lie groupoids G1

r,s

⇒ M1 and G2

r,s

⇒ M2 are Morita equivalent if there exists

a groupoid G
r,s

⇒ M and smooth maps fi : Mi → M transverse to G such that fi(Mi) meets all the
orbits of G and such that the pull back groupoids Gfifi identify to Gi.

More precisely, a Morita equivalence is given by a linking manifold X with extra data: surjective
smooth submersions r : X →M1 and s : X →M2 and compositions G1×s,rX → X, X×s,rG2 → X,
X ×r,r X → G2 and X ×s,s X → G1 with natural associativity conditions (see [92] for details). In
the above situation, X is the manifold Gf1

f2
and the extra data are the range and source maps and

the composition rules of the groupoid Gf1tf2

f1tf2
⇒M1 tM2 (see [92]).

Examples 2.8. There are many interesting Morita equivalences of Lie groupoids.

a) Given a surjective submersion f : M → B, the subgroupoid G = {(x, y) ∈ M ×M ; f(x) =
f(y)} of the pair groupoid M ×M is Morita equivalent to the space B, i.e. the groupoid
B ⇒ B – cf. example 2.5.c).

b) More generally, if G⇒ B is a Lie groupoid and f : M → B is a smooth map transverse to G
whose image meets all the G orbits, then the groupoid Gff is a Lie groupoid Morita equivalent
to G – cf. example 2.5.d).

c) If M is a connected manifold, its Poincaré groupoid Π(M) (cf. example 2.2.f) is Morita
equivalent to the fundamental group π1(M).

2.2 C∗-algebra of a Lie groupoid

2.2.1 Convolution ∗-algebra of smooth functions with compact support

Recall that on a Lie group H, the convolution product formula is given for f and g in C∞c (H) (i.e.
smooth functions with compact supports on H) by

f ∗ g(x) =

∫
H
f(y)g(y−1x)dy
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For M a manifold, the convolution product formula of kernels is given for f and g in C∞c (M ×M)
by

f ∗ g(x, y) =

∫
M
f(x, z)g(z, y)dz

Both these convolution products are special cases of convolution product on a Lie groupoid, the first
one is for the Lie group viewed as a Lie groupoid H ⇒ {e} and the second one corresponds to the
pair groupoid M ×M ⇒M .

Let us assume now that G ⇒ G(0) is a Lie groupoid with source s and range r. We define a
convolution algebra structure on C∞c (G) in the following way:

Convolution product. For f, g ∈ C∞c (G) and γ ∈ G one wants to define a convolution formula
of the following form

f ∗ g(γ) =

∫
(α,β)∈G(2); αβ=γ

f(α)g(β)

In order to define the previous integral, one can choose a smooth Haar system on G that is

• a smooth family of Lebesgue measure νx on every Gx, x ∈ G(0),

• with left invariance property: for every α ∈ G, the diffeomorphism β 7→ α · β from Gs(α)

with Gr(α) sends the measure νs(α) to the measure νr(α).

Now the convolution formula becomes:

f ∗ g(γ) =

∫
Gr(γ)

f(α)g(α−1γ) dνr(γ)(α).

The convolution product is associative by invariance of the Haar system (and Fubini).

Adjoint. For f ∈ C∞c (G), its adjoint is the function f∗ : α 7→ f(α−1).

Remarks 2.9. Let us mention two very useful constructions that appeared in [30].

a) In order to have intrinsic formulas for the convolution and adjoint, it is suitable to replace the
space C∞c (G) by the space of sections of a bundle of (half) densities on the groupoid, more
precisely sections of the vector bundle Ω1/2 = |Λ|1/2(kerTs × kerTr) of half densities of the
bundle kerTs × kerTr. Note that the Haar system is just an invariant section of the bundle
|Λ|1(kerTr) of 1-densities of the bundle ker(kerTr) and can be used to trivialize the bundle
|Λ|1/2(kerTs× kerTr).

b) Also in [30] Connes explains how to naturally define the convolution algebra “C∞c (G)” when
the groupoid G is not assumed to be Hausdorff (but is still a locally Hausdorff manifold).

2.2.2 Norm and C∗-algebra

For f ∈ C∞c (G), define

‖f‖I = max
(
sup
x∈G(0)

∫
Gx
|f(γ)|dνr(γ)(α) ; sup

x∈G(0)

∫
Gx
|f(γ−1)|dνr(γ)(α)

)
A ∗-representation π : C∞c (G) −→ B(H), where B(H) is the algebra of bounded operator on the
separable Hilbert space H, is bounded when it satisfies: ‖π(f)‖ ≤ ‖f‖I for any f ∈ C∞c (G).
We define the maximal norm of f ∈ C∞c (G) by:

‖f‖max = sup
π bounded

‖π(f)‖B(H)
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For any x ∈ G(0) the map πx : C∞c (G)→ B(L2(Gx)) defined by the formula:

πx(f)(τ)(γ) =

∫
Gr(γ)

f(α)τ(α−1γ) dνr(γ)(α).

where f ∈ C∞c (G), τ ∈ L2(Gx) and γ ∈ G, is a bounded representation.

We define the minimal norm of f ∈ C∞c (G) by:

‖f‖min = sup
x∈G(0)

‖πx(f)‖B(L2(Gx))

The reduced C∗-algebra of G is the completion of C∞c (G) with respect to the minimal norm: C∗r (G) =

C∞c (G)
min

. The maximal C∗-algebra of G is the completion of C∞c (G) with respect to the maximal
norm: C∗(G) = C∞c (G)

max
.

The identity induces a surjective morphism from C∗(G) to C∗r (G). This morphism is an isomorphism
when the groupoid G is amenable (see [4] for a discussion of the amenability of locally compact
groupoids).

The C∗-completions C∗(G) and C∗r (G) have both advantages and disadvantages. Some properties
hold for one of them and not necessarily for the other one. The celebrated Baum-Connes conjecture
[11, 12] is a statement for the K-theory of the reduced one – and Kaszdan’s property T shows easily
that it cannot hold for the the maximal one (see [110] for a very nice discussion on the Baum-Connes
conjecture).
On the other hand, let G⇒M be a Lie groupoid and X ⊂M a closed subset of M saturated for G
(i.e. if for α ∈ G, s(α) ∈ X if and only if r(α) ∈ X). Then we have an exact sequence:

0→ C∗(GM\X)→ C∗(G)→ C∗(GX)→ 0

of maximal C∗-algebras. The corresponding sequence at the level of reduced C∗-algebras is not always
exact in its middle term. This nonexactness is responsible for counterexamples to the Baum-Connes
conjecture in [56]. See [13, 20, 21] for a possible solution to this lack of exactness.

2.3 Deformation to the normal cone and blowup groupoids

2.3.1 Deformation to the normal cone groupoid

Let us first recall the standard deformation to the normal cone construction. Let V ⊂ M be a
submanifold of a manifold M and denote NM

V the normal bundle. The deformation to the normal
cone of V in M is:

DNC(M,V ) = (M × R∗) t (NM
V × {0}).

It is equipped with the natural smooth structure generated by the following constraints:

• the map ϕ : DNC(M,V ) → M × R given by (x, t) ∈ M × R∗ 7→ (x, t) and (x, ξ, 0) ∈
NM
V × {0} 7→ (x, 0) is smooth.

• if f : M → R is any smooth function that vanishes on V , the function fdnc : DNC(M,V )→ R

given by (x, t) ∈M × R∗ 7→ f(x)

t
and (x, ξ, 0) ∈ NM

V × {0} 7→ df(ξ) is smooth.

One can also define the smooth structure with the choice of an exponential map θ : U ′ ⊂ NM
V →

U ⊂M , by requiring the map

Θ : (x, ξ, t) 7→
{

(θ(x, tξ), t) for t 6= 0
(x, ξ, 0) for t = 0

9



to be a diffeomorphism from the open neighbourhood W ′ = {(x, ξ, t) ∈ NM
V × R | (x, tξ) ∈ U ′} of

NM
V × {0} in NM

V × R on its image.

Note that describing the smooth structure thanks to the choice of an exponential map ensures that
such a structure exists, while the description thanks to the characterisation of the smooth functions
ensure that this structure is independent of choices.

Remark 2.10. By the characterisation of the smooth functions, it follows that the deformation to
the normal cone construction is functorial.

A consequence of this remark is

Corollary 2.11. If G is a Lie groupoid and H is a subgroupoid, DNC(G,H)⇒ DNC(G(0), H(0))
is a Lie groupoid. Moreover the Lie algebroid of DNC(G,H) is DNC(AG,AH).

A the set level DNC(G,H) = G×R∗ tNG
H ×{0} and the normal space NG

H is equipped with a Lie
groupoid structure with units NG(0)

H(0) called the normal groupoid of the inclusion of H in G its Lie
algebroid is NAG

AH .

Example. The first and most famous example of groupoid resulting from the DNC construction is
the tangent groupoid of Connes [32]: let M be a smooth manifold diagonally embedded in the pair
groupoid M ×M , perform DNC(M ×M,M) and restrict it to M × [0, 1]:

GT (M) = DNC(M ×M,M)|M×[0,1] = M ×M × (0, 1] t TM × {0}⇒M × [0, 1]

Similarly, the adiabatic groupoid of a Lie groupoid G ⇒ G(0) is the restriction over G(0) × [0, 1] of
DNC(G,G(0)) [91, 94]:

Gad = G× (0, 1] t AG× {0}⇒ G(0) × [0, 1]

2.3.2 Blowup groupoid

We keep the notation of the previous section: V ⊂ M is a submanifold of a manifold M and
DNC(M,V ) is the deformation to the normal cone of V in M .
Recall that ϕ : DNC(M,V ) = M ×R∗ tNM

V ×{0} →M ×R is the natural (smooth) map. We will
consider the manifold with boundary DNC+(M,V ) = ϕ−1(M × R+) = M × R∗+ tNM

V .
The scaling action of R∗+ on M × R∗ extends to the zooming action of R∗+ on DNC+(M,V ) :

DNC+(M,V )× R∗ −→ DNC+(M,V )
(z, t, λ) 7→ (z, λt) for t 6= 0

(x,X, 0, λ) 7→ (x,
1

λ
X, 0) for t = 0

By functoriality, the manifold V × R+ = DNC+(V, V ) embeds in DNC+(M,V ). The zooming
action is free and proper on the open subset DNC+(M,V ) \ V × R+ of DNC+(M,V ). We let the
spherical blowup of V in M be:

SBlup(M,V ) =
(
DNC+(M,V ) \ V × R+

)
/R∗+ = M \ V ∪ S(NM

V ) .

Remark 2.12. The spherical blowup construction is functorial “wherever it is defined”. Precisely,
suppose that we have a commutative diagram V �

� //

f |V
��

M

f
��

V ′ �
� //M ′

where the horizontal arrows are em-

bedings of submanifolds. Functoriality of the deformation to the normal cone constructions yields
a smooth map DNC(f) : DNC(M,V ) → DNC(M ′, V ′). This smooth map restricts to the map
DNC(f)+ : DNC+(M,V )→ DNC+(M ′, V ′) which is equivariant under the zooming action.
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Let SUf (M,V ) = DNC+(M,V ) \DNC(f)−1(V ′ × R+) and define

SBlupf (M,V ) = SUf/R∗+ ⊂ SBlup(M,V )

Then DNC(f)+ passes to the quotient:

SBlup(f) : SBlupf (M,V )→ SBlup(M ′, V ′).

If V �
� //

g|V
��

M

g
��

V ′ �
� //M ′

is another smoothmap of embedings we will denote SUf,g(M,V ) = DNC+(M,V )\

(DNC(f)−1(V ′×R+)∪DNC(g)−1(V ′×R+)) and SBlupf,g(M,V ) its quotient under the zooming
action.
A consequence of the preceding remark is

Corollary 2.13. If G
r,s

⇒ G(0) is a Lie groupoid and H is a subgroupoid, SBlupr,s(G,H) ⇒
SBlup(G(0), H(0)) is a Lie groupoid. Moreover the Lie algebroid of SBlupr,s(G,Γ) is SBlupr,s(AG,AΓ).

Examples

a) If G ⇒ G(0) is a Lie groupoid define G = G × R × R ⇒ G(0) × R, the product of G with the
pair groupoid on R . One can check that

SBlupr,s(G,G(0) × {(0, 0)}) = DNC+(G,G(0)) oR∗+ ⇒ G(0) × R

and recover the Gauge adiabatic groupoid of [45].

b) Let V ⊂M be a hypersurface. The blowup procedure enables to recover groupoids and spaces
involved in the pseudodifferential calculus on manifold with boundary. In particular:

Gb = SBlupr,s(M ×M,V × V )︸ ︷︷ ︸
The b-calculus groupoid

⊂ SBlup(M ×M,V × V )︸ ︷︷ ︸
Melrose’s b-space

G0 = SBlupr,s(M ×M,∆(V ))︸ ︷︷ ︸
The 0-calculus groupoid

⊂ SBlup(M ×M,∆(V ))︸ ︷︷ ︸
Mazzeo-Melrose’s 0-space

c) One can iterate these constructions to go to the study of manifolds with corners, or consider a
foliation with no holonomy on V , or define the holonomy groupoid of a manifold with iterated
fibered corners etc.

3 Pseudodifferential calculus on Lie groupoids

The “classical” pseudodifferential calculus was developed in the 1960’s and was crucial in the Atiyah-
Singer index theorem ([8]).
Pseudodifferential operators appear naturally when trying to solve (elliptic) differential equations.
Using Fourier transform, one associates canonically to a differential operator a polynomial function
- its symbol. The composition of differential operators is not commutative and therefore it does not
induce just the product of these polynomials, but at least the leading term of the symbol of the
product is the product of the leading terms of the symbols. When trying to solve such an equation,
one then naturally tries to invert this symbol. This inverse is no longer a polynomial of course, but
one can still associate to it an operator - a pseudodifferential operator.

The pseudodifferential operators are used in many different parts of mathematics. Information on
pseudodifferential operators and much more can be found in the classical books [66, 67, 68, 69, 105,
107, 108, 109].
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Here we will concentrate to the use of pseudodifferential operators in connection with Lie groupoids
and non commutative geometry.

In [28], Alain Connes, in order to generalize the Atiyah-Singer index theorem for families ([10]) to the
case of general foliations, considered the C∗-algebra of the holonomy groupoid as a noncommutative
generalization of the space of parameters and studied index problems with values in this algebra. He
therefore introduced the pseudodifferential calculus on the holonomy groupoid of a foliation.
This pseudodifferential calculus was easily extended to general Lie groupoids (see [91, 94]). In this
way one constructs an analytic index map K∗(C0(A∗G))→ K∗(C

∗(G)) for every Lie groupoid G.

Alain Connes made another beautiful observation. His tangent groupoid that we described in section
2.3.1 can be used in order to construct the analytic index of elliptic operators in a differential and
pseudo-differential free way. The fact that this indeed coincides with the analytic index of elliptic
operators is just a consequence of the existence of a pseudodifferential calculus on every Lie groupoid.

In this section we will discuss various constructions of this pseudodifferential calculus on groupoids
and the construction of the index.

3.1 Distributions on G conormal to G(0)

The point of view developed by Connes is the following: locally the foliation looks like a fibration. On
a foliation chart Ωi ' Ui × Ti, where Ti is the local transversal and Ui represents the leaf direction,
a pseudodifferential operator Pi is a family indexed by Ti of operators on Ui (in the sense of [10]).
Connes then defines a pseudodifferential operator on the foliation as a finite sum f +

∑
i

Pi of such

local pseudodifferential families Pi (with compact support) and f ∈ C∞c (G).
It was then quite easy to extend this calculus to a general Lie groupoid and this was done indepen-
dently in [91] and [94]. There, pseudodifferential operators appear as G-invariant pseudodifferential
families acting on the source fibers of G.
In fact, it is probably easier and more natural to consider pseudodifferential operators on Lie
groupoids as distributions on G which are conormal to G(0). This point of view appears in vari-
ous calculi of Melrose (on some spaces that contain Lie groupoids as dense open subsets – see e.g.
[85]) and in [6]. It is explained and developed in [75, 76] where the interested reader will have all
details and complete description of the pseudodifferential calculus on a Lie groupoid.

Given a manifoldM and a (locally) closed submanifold V , conormal distributions are some particular
distributions on M , with singular support in V .

A remark on densities. As the elements of the convolution algebra of a groupoid are sections of a
density bundle Ω1/2 rather than functions, the distributions that we consider are generalised sections
of the same density bundle. The distribution associated with a smooth section of a bundle E over
a manifold M is a continuous linear mapping on the topological vector space C∞c (M ; Ω1(M)⊗ E∗)
of smooth sections with compact support of the tensor product of the bundle of one densities on M
with the dual bundle of E. In order to simplify our exposition we will drop all these trivial bundles
and just consider functions - although this issue is not completely trivial. We will in fact assume
that coherent choices of sections of these bundles are made.
A guiding principle is that symbols (of scalar operators) are indeed functions.

3.1.1 Symbols and conormal distributions

Symbols and conormal distributions on Rn. Let α = (α1, . . . , αn) ∈ Nn. Put |α| =
∑

αi.

The map Dα : f 7→ ∂|α|f

(∂x1)α1 . . . (∂xn)αn
(0) is a distribution on Rn with (singular) support 0. In

Fourier terms it can be written as Dα(f) =
1

(2π)n

∫
Rn

(iξ)αf̂(ξ) dξ.
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A classical symbol on Rn of order m ∈ Z (or in C) is a function a on Rn that can be written as

a(ξ) ∼
+∞∑
k=0

am−k(ξ),

where aj is a smooth function on Rn \ {0} homogeneous of degree j, i.e. such that, for t ∈ R∗+ and
ξ ∈ Rn \ {0} we have aj(tξ) = tjaj(ξ).
The notation ∼ means that for every k ∈ N, and every α ∈ Nn, there is a constant Mk,α such that,
for ‖ξ‖ ≥ 1, we have

∂|α|(a−
∑k−1

j=0 am−j)

(∂ξ1)α1 . . . (∂ξn)αn
(ξ) ≤Mk,α‖ξ‖m−k−|α|.

Such a symbol a gives rise to a distribution using the formula

Pa(f) =
1

(2π)n

∫
Rn
a(ξ)f̂(ξ) dξ.

• The function a is called the total symbol of Pa. It is the Fourier transform of Pa since a(ξ) =
Pa(hξ) where hξ(x) = ei〈x|ξ〉.

• The homogeneous function am is called the principal symbol of Pa. Note that am(ξ) =
lim

t→+∞
t−ma(tξ) - and therefore am only depends on Pa.

• The support of the distribution Pa is now Rn, but its singular support is 0: For every neigh-
borhood V of 0, one can write Pa = Qa + κ where Qa has support in V and κ is a smooth
(Schwartz) function.

Symbols on a vector bundle. Let now p : E → B be a real vector bundle over a manifold B.
We consider symbols on E as being families - indexed by B of symbols on the fibers (Ex)x∈B. Such
a symbol is then a function a : E∗ → C where E∗ is the dual vector bundle such that

a(x, ξ) ∼
+∞∑
k=0

am−k(x, ξ),

where aj is a smooth function onE∗\B (whereB ⊂ E∗ is the 0 section of the bundleE∗) homogeneous
of degree j in ξ, i.e. such that, for t ∈ R∗+, x ∈ B and ξ ∈ E∗x \ {0} we have aj(x, tξ) = tjaj(x, ξ).
The writing ∼ means here that, in local coordinates, putting B = Rp and E = Rp × Rn, for every
(k, α, β,K) where k ∈ N, α ∈ Nn, β ∈ Np and K ⊂ B is a compact subset,
there is a constant Mk,α,β,K such that, for x ∈ K and ‖ξ‖ ≥ 1, we have

∂|α|+|β|(a−
∑k−1

j=0 am−j)

(∂x1)β1 . . . (∂xp)βp ∂ξ1)α1 . . . (∂ξn)αn
(x, ξ) ≤Mk,α,β,K‖ξ‖m−k−|α|.

Remark 3.1. Note that giving a symbol a of order m on E∗ is equivalent to a homogeneous smooth
function b of order m on E∗ × R+ \B × {0}.

• given a homogeneous smooth function b : E∗ × R+ \B × {0} → R, put a(x, ξ) = b(x, ξ, 1);

• given a symbol a, put b(x, ξ, t) = t−ma(x,
ξ

t
) for t 6= 0 and b(x, ξ, 0) = am(u, ξ) (where am is

the principal symbol of a.)

The expansion a(x, ξ) ∼
∑
j

am−j(x, ξ) corresponds to the Taylor expansion of b at t = 0: we have

b(x, ξ, t) ∼
∑
j

tjam−j(x, ξ).
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Associated conormal distributions. To such a symbol, we may still associate a distribution Pa
given by the formula

Pa(f) =
1

(2π)n

∫
E∗
a(x, ξ)f̂(x, ξ) dx dξ

(where f̂(x, ξ) =

∫
Ex

e−i〈u|ξ〉f(x, u) du).

• The singular support of this distribution is contained in B ⊂ E.

• The function a is called the total symbol of Pa. The homogeneous function am is called the
principal symbol of Pa.

Symbols and conormal distributions on a manifold. Let nowM be a manifold and B ⊂M a
closed submanifold of M . The tubular neighborhood construction provides us with a neighborhood
U of B in M and a diffeomorphism ϕ : N → U where N = NM

B is the normal bundle: for x ∈ B,
we have Nx = TxM/TxB. The requirement for such a diffeomorphism is ϕ(b) = b for every b ∈ B
and, for every x in B, the differential df : TxN → TxM satisfies px ◦ dfx(ξ) = ξ for ξ ∈ Nx ⊂ Tx(N)
where px : TxM → Nx = TxM/TxB is the projection.
Using ϕ, we obtain a family of distributions onM : those that are a sum Q = ϕ∗(Pa)+κ of a smooth
function κ on M (with compact support) and a conormal distribution Pa on N where a is a symbol
on N∗: we write

Q(f) =

∫
M
κ(y)f(y) dy +

∫
N∗
a(x, ξ)

(∫
u∈Nx

e−i〈u|ξ〉f ◦ ϕ(x, u) du
)
dx dξ.

Diffeomorphism invariance of conormal distributions and principal symbol. It turns out
that

• the space of distributions on M of the form ϕ∗(Pa) + κ does not depend on the partial diffeo-
morphism ϕ : NM

B →M ;

• the principal symbol am of ϕ∗(Pa) + κ does not depend on ϕ either.

Remark. We can also write

Q(f) = lim
R→∞

∫
M
κR(y)f(y) dy with κR(y) = κ(y) + χ(y)

∫
ξ∈N∗

p(y)
, ‖ξ‖≤R

a(p(y), ξ)e−i〈θ(y)|ξ〉 dξ,

where χ ∈ C∞(M) is a smooth function which is equal to 0 outside U and to 1 for y ∈ B (taking
into account the jacobian of ϕ), and where we have written ϕ−1(y) = (p(y), θ(y)) with p(y) ∈ B and
θ(y) ∈ (NM

B )p(y).

Conormal distributions. We denote by Imc (M,B) the space of such conormal distributions with
compact support. The map σm : ϕ∗(Pa) + κ 7→ am is the principal symbol map.

Note that we have a natural exact sequence 0→ Im−1
c (M,B)→ Imc (M,B)

σm−→ C∞m ((NM
B )∗\B)→ 0

where we denoted by C∞m ((NM
B )∗ \ B) the space of smooth functions on (NM

B )∗ \ B which are
homogeneous of degree m.

Definition 3.2. A (classical) pseudodifferential operator of order m on a Lie groupoid G⇒M is a
conormal distribution P ∈ Imc (G,M).
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3.1.2 Convolution

Let G⇒M be a Lie groupoid.
The convolution for C∞c (G) can be understood in the following way. Let G(2) = {(α, β) ∈ G ×
G; s(α) = r(β)} be the set of composable elements, and let p1, p2,m : G(2) → G be the maps defined
by p1(α, β) = α, p2(α, β) = β and m(α, β) = αβ.
Take f1, f2 ∈ C∞c (G). We then may write f1 ∗ f2 = m!(p

∗
1(f1).p∗2(f2)), where:

• p∗i : C∞(G)→ C∞(G(2)) is given by p∗i (fi) = fi ◦ pi;

• p∗1(f1).p∗2(f2) is just the pointwise product of the functions p∗i (fi);

• m! : C∞c (G(2))→ C∞c (G) is the integration along the fibers of the submersion m:

m!(f)(γ) =

∫
αβ=γ

f(α, β) dν = m!(f)(γ) =

∫
Gr(γ)

f(α, α−1γ)dνr(γ)(α).

We wish to extend these three operations to the case when f1 and f2 are conormal distributions.

Push-forward, pull-back, product of distributions

Push-forward. Let ϕ : M → M ′ be a smooth map. Dual to ϕ∗ : C∞(M ′) → C∞(M) is a map
ϕ∗ : C−∞c (M)→ C−∞c (M ′) given by (ϕ∗(P ))(f) = P (ϕ∗(f)) for P ∈ C−∞c (M) and f ∈ C∞(M ′).

Let V ⊂ M be a submanifold. Assume that ϕ is a submersion and that the restriction of ϕ to
V is a diffeomorphism. Then, the image ϕ∗ of P ∈ Imc (M,V ), is a smooth distribution: ϕ∗(P ) ∈
C∞c (M ′) ⊂ C−∞c (M ′).
We may indeed, by restricting to a neighborhood of V in M , assume that ϕ : M → V ' M ′ is a
vector bundle projection and that P = Pa where a is a symbol on the dual bundle M∗. Then P is
in fact a family of pseudodifferential operators (Px)x∈V and

ϕ∗(P )(f) =

∫
V
f(x)Px(1) dx =

∫
V
f(x)a(x, 0) dx.

In other words, ϕ∗(P ) is the distribution associated with the function x 7→ a(x, 0).

Pull-back by a submersion. Let p : M ′ →M be a submersion. Dual to the integration along the
fibers p! : C∞c (M ′) → C∞c (M) is a map p! : C−∞(M) → C−∞(M ′) given by (p!(P ))(f) = P (p!(f))
for P ∈ C−∞(M) and f ∈ C∞c (M ′). The map p! extends to distributions the map p∗ : C∞(M) →
C∞(M ′).

Proposition 3.3. Let p : M ′ → M be a submersion. Let V ⊂ M be a closed submanifold. Put
V ′ = p−1(V ).

a) The normal bundle of V ′ in M ′ identifies with the pull back of the normal bundle of V in M .

b) Assume that P ∈ Imc (M,V ). Then p!(P ) ∈ Imc (M ′, V ′). Under the identification of the normal
bundle N ′ of V ′ inM ′ with p∗NM

V , the principal symbol of p∗P is given by σm(p∗P ) = σm(P )◦p.

Proof. The first statement is obvious. Thanks to it, we may assume that M is a vector bundle
p : E → V and M ′ is the pull back vector bundle E′ = E ×V V ′ → V ′. The second statement is
then immediate too.

Products of conormal distributions. a) One can extend the (pointwise) product of functions
to the case where one of them is a distribution. The pointwise product of two distributions is
not always well defined.

Already in this way, we may define the convolution of a classical pseudodifferential operator
P with an element f ∈ C∞c (G): we have P ∗ f = m∗(p

!
1(P ).p∗2(f2)). Then p!

1(P ).p∗2(f2) ∈
Ic(G(2), p−1

1 G(0)) and the submersion m : G(2) → G induces a diffeomorphism p−1
1 (G(0))→ G,

whence P ∗ f ∈ C∞c (G) and in the same way, f ∗ P ∈ C∞c (G).

From this it follows that pseudodifferential operators define multipliers of C∞c (G).
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b) To explain the convolution of two pseudodifferential operators we use the two following facts
which reduce to linear algebra.

(i) Let M be a manifold, V1, V2 two closed submanifolds of M that are transverse to each
other. This means that, for every x ∈ V1 ∩ V2 we have TxM = TxV1 + TxV2 (we do not
assume that this sum is a direct sum). Then if Q1 ∈ I`1c (M,V1) and Q2 ∈ I`2c (M,V2),
then the distribution Q1.Q2 makes sense.

(ii) If moreover Q1.Q2 has compact support and m : M →M ′ is a submersion whose restric-
tion to both V1 and V2 is a diffeomorphism Vi →M ′, thenm∗(Q1.Q2) ∈ I`1+`2

c (M ′,m(V1∩
V2)) and its principal symbol is the product of the symbols of Q1 and Q2 under the natural
identification of the normal bundles:

• the restriction (NM
V1

)|V1∩V2
of NM

V1
to V1 ∩ V2 identifies with N V2

V1∩V2
;

• the restriction (NM
V2

)|V1∩V2
of NM

V1
to V1 ∩ V2 identifies with N V1

V1∩V2
;

• finally, using the map m, we identify N V1
V1∩V2

and N V2
V1∩V2

identify with NM ′

m(V1∩V2).

Given P1 ∈ I`1c (G,G(0)) and P2 ∈ I`2c (G,G(0)) we then put

• M = G(2) = {(α, β) ∈ G×G; s(α) = r(β)};
• Qi = p!

i(Pi) where pi : G(2) → G are the submersions (γ1, γ2) 7→ γi;

• M ′ = G and m : (α, β) 7→ αβ is the composition.

It follows that P1P2 ∈ I`1+`2
c (G,G(0)) with principal symbol σ`1(P1)σ`2(P2).

Formal adjoint. One can also define the adjoint of a pseudodifferential operator P by setting
P ∗ = j∗(P ), where j : G→ G is the diffeomorphism γ 7→ γ−1.

3.1.3 Pseudodifferential operators of order ≤ 0

Pseudodifferential operators with compact supports on a Lie groupoid G⇒M appear as multipliers
of C∞c (G).

Proposition 3.4. Pseudodifferential operators with compact support of order ≤ 0 extend to multi-
pliers of C∗(G); pseudodifferential operators of order < 0 are in fact elements of C∗(G).

The first statement means that if P is a pseudodifferential operator with compact support in G and
of order ≤ 0, then there exists a constant c such that, for all f ∈ C∞c (G), we have ‖P ∗ f‖ ≤ c‖f‖
and ‖f ∗ P‖ ≤ c‖f‖ (this is true for both the maximal and the reduced C∗-norm of G).

Proof. To establish this statement, first assume that P is of order < −p where p = dimG− dimM
is the dimension of the algebroid. Note that if a is a symbol of order < −p, then Pa is a continuous
function. Therefore P is a continuous function with compact support on G, and thus an element of
C∗(G).
If P is of order < −p/2, then ‖P ∗ f‖2 = ‖f∗ ∗ P ∗ ∗ P ∗ f‖ (and ‖f ∗ P‖2 = ‖f ∗ P ∗ P ∗ ∗ f∗‖) and
as P ∗ ∗ P is of order < −p, it is in C∗(G) and thus ‖P ∗ f‖2 ≤ ‖P ∗ ∗ P‖‖f‖2. It follows that P is a
multiplier, and as P ∗ ∗ P ∈ C∗(G) we find P ∈ C∗(G).
If P is of negative order, (P ∗P )2k ∈ C∗(G) for some k ∈ N, and by induction in k, P ∈ C∗(G).

Let P be a pseudodifferential operator of order 0.
Note first that every smooth function q ∈ C∞c (M) is a pseudodifferential operator of order 0 with
principal symbol σq : (x, ξ) 7→ q(x) - and of course a bounded multiplier: we have (q ∗ f)(γ) =
q(r(γ))f(γ) and (f ∗ q)(γ) = f(γ)q(s(γ)).
Let q ∈ Cc(M) which is equal to 1 on the support of σP - i.e. the projection on M of the closure of
{(x, ξ); σq(x, ξ) 6= 0} (which is assumed to be compact in the space of half lines of the bundle A∗).
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Let c ∈ R+ with c > σP (x, ξ) for all (x, ξ). Put b(x, ξ) = q(x)
√
c2 + 1− |σq(x, ξ)|2, and let Q be a

pseudodifferential operator with principal symbol b. Then P ∗P +Q∗Q which has symbol (1 + c2)|q|2
is of the form (1 + c2)|q|2 +R where R is of negative order and therefore P ∗P +Q∗Q is bounded.
For all f ∈ Cc(G), ‖Pf‖2 = ‖f∗P ∗Pf‖ ≤ ‖f∗P ∗Pf + f∗Q∗Qf‖ ≤ ‖P ∗P + Q∗Q‖‖f‖2, and thus
f 7→ Pf is bounded.
In the same way f 7→ fP is bounded.

As a consequence, one gets:

Theorem 3.5. We have a short exact sequence of C∗-algebras

0→ C∗(G)→ Ψ∗(G)
σ→ C0(SA∗)→ 0

where Ψ∗(G) is the closure of the algebra of order 0 pseudodifferential operators in the multiplier
algebra of C∗(G) and SA∗ is the sphere bundle (the set of half lines) of the dual A∗ of the algebroid
A of G.

Note that this statement is true for the full groupoid C∗-algebra as well as for the reduced one.

Proof. First note that as Ψ∗(G) contains C∞c (G), it contains its closure C∗(G).
The only statement which does not follow from prop. 3.4 is that the principal symbol map is well
defined, i.e. if σ(P ) 6= 0, then P 6∈ C∗(G) (both for the full and reduced norm – it is enough to
check this for the reduced one).
In fact, one shows that for every pseudo differential operator P of order 0 every x ∈M and a nonzero
ξ ∈ A∗x, we have σP (x, ξ) = lim

n→∞
〈ϕn, λx(P )ϕn〉 where ϕn is a function on Gx of L2-norm 1 whose

support is concentrated around x and whose Fourier transform is concentrated in R∗+ξ: we may take,
in local coordinates, ϕn(y) = (2n)p/4e−nπ‖x−y‖

2−in〈(y−x)|ξ〉. Here, λx is the representation of C∗(G)
on L2(Gx) by left convolution - extended to the multipliers.
On the other hand, for f ∈ C∞c (G), we have lim

n→∞
〈ϕn, λx(f)ϕn〉 = 0 and by continuity the same is

true for f ∈ C∗r (G).

3.1.4 Analytic index

The connecting map of the exact sequence of theorem 3.5 is the analytic index of the Lie groupoid

∂G : Ki+1(C0(SA∗))→ Ki(C
∗(G)).

This analytic index can be improved a little by taking vector bundles into account. Indeed, the
starting point of an index problem is often a pair of bundles E± over M together with a symbol of
order 0 which gives a smooth family of isomorphisms a(x, ξ) : E+

x → E−x .
Such a symbol defines an element in the relative K-theory of the morphism µ : C0(M)→ C0(SA∗),
in other words an element of the K-theory of the mapping cone

Cµ = {(f, g) ∈ C0(M)× C0(SA∗ × R+); ∀(x, ξ) ∈ SA∗, g(x, ξ, 0) = f(x)}

of µ. This mapping cone is naturally isomorphic to C0(A∗) using the map (x, ξ, t) 7→ (x, tξ).
Consider the morphism ψ : C0(M) → Ψ∗(G) which associates to a (smooth) function f the order
0 (pseudo)differential operator multiplication by f . Note that we have µ = σ ◦ ψ. Using the
commutative diagram

C0(M)
µ //

ψ

��

C0(SA∗)

Ψ∗(G)
σ // C0(SA∗)
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we obtain a morphism ψ̃ : C0(A∗) = Cµ → Cψ. Now, we also have an exact sequence

0→ C∗(G)
eG−→ Cψ −→ C0(SA∗ × R+)→ 0.

As the algebra C0(SA∗×R+) is contractible (and nuclear), the excision map eG is a KK-equivalence.

Definition 3.6. The analytic index map of the Lie groupoid G is the composition

indG = [eG]−1 ◦ [ψ̃] : Kj(A∗) = Kj(C0(A∗))→ Kj(C
∗(G)).

The index ∂G is the composition of the morphism Kj+1(C0(SA∗)) → Kj(C0(A∗)) induced by the
inclusion SA∗ × R∗+ → A∗ with the index map indG).

3.2 Classical examples

The analytic index for groupoids recovers many classical situations.

a) Assume that G = M × M is just the pair groupoid. Then the corresponding index is the
classical Atiyah-Singer index K0(T ∗M)→ K0(K) = Z of (pseudo)differential operators on M ,
i.e. the one constructed and computed in [8].

b) Assume that G is the groupoid M ×Y M associated to a smooth fibration π : M → Y . The
corresponding index is the Atiyah-Singer index Kj(T ∗FM) → Kj(C

∗(G)) = Kj(Y ) of families
of (pseudo)differential operators on the fibers of π, i.e. the one constructed and computed in
[10].

c) Assume that G is the groupoid G = (M̃×M̃)/Γ where Γ is a countable group acting freely and
properly on a manifold M̃ . The corresponding index Kj(T ∗M) → K0(C∗(G)) = Kj(C

∗(Γ)).
This situation was introduced by Atiyah in [7] where it is shown that the von Neumann
dimension of the index (for j = 0) is in fact the index K0(T ∗M) → Z. In the C∗-context, it
was studied in [87] and has been since then studied in many, many papers...

3.3 Analytic index via deformation groupoids

The deformation groupoids allow to shade a new light to the pseudodifferential calculus and, in
the same time, construct the analytic index without use of pseudodifferential operators. This was
Connes’ main motivation for introducing them.
Let G⇒M be a Lie groupoid and let Gad = A×{0}∪G× (0, 1] be its adiabatic groupoid. Consider
the evaluation maps ev0 : C∗(Gad)→ C∗(A∗) and evt : C∗(Gad)→ C∗(G) for t 6= 0.
As the sequence

0→ C∗(G× (0, 1]) −→ C∗(Gad)
ev0−→ C∗(A∗)→ 0

is exact and C∗(G × (0, 1]) is contractible, the evaluation ev0 is K-invertible. We then have the
following important theorem which is in a sense just an observation.

Theorem 3.7 (Connes. cf. [32, 91, 94, 42]). The analytic index is the composition indG = [ev1] ◦
[ev0]−1.

The proof of this theorem reduces to the following two observations:

a) (Naturality of the analytic index.) Let G1 ⇒ M1 be a Lie groupoid and let M2 ⊂ M1 be
a closed submanifold which is saturated for G1 (i.e. for γ ∈ G1 we have r(γ) ∈ M2 if and
only if s(γ) ∈ M2). Denote by G2 ⇒ M2 the Lie groupoid {γ ∈ G1; s(γ) ∈ M2}. The
algebroid A2 of G2 is the restriction toM2 of the algebroid A1 of G1. We have restriction maps
rG : C∗(G1)→ C∗(G2) and rA∗ : C0(A∗1)→ C0(A∗2).
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Then the diagram Kj(C0(A∗1))
indG1 //

rA∗

��

Kj(C
∗(G1))

rG
��

Kj(C0(A∗2))
indG2 // Kj(C

∗(G2))

is commutative.

b) If E → B is a vector bundle considered as a Lie groupoid, then

indE : Kj(C0(E∗))→ Kj(C
∗(E)) = Kj(C0(E∗))

is the identity.

Remarks 3.8. a) One can also use the deformation groupoids in order to prove index theorems.
In [32], Alain Connes gives a beautiful proof of the Atiyah-Singer index theorem in K-theory -
based on the analogue of the Thom isomorphism for crossed products by Rn of [29]. A different
proof was given in [43]. These proofs naturally generalise to more general index theorems.

b) An extra step is also taken in his lectures at the Collège de France (see also e.g. [50]) where the
asymptotics of the deformation groupoid are used in order to derive the cohomological formula
of the Atiyah-Singer index theorem [9]. This is a very important issue for index theory, but we
will not discuss it any further here.

3.4 Deformation to the normal cone, zooming action and PDO

The deformation groupoids as we saw give some insight to the pseudodifferential calculus on a
groupoid. We will see in fact that the deformation groupoids allow to recover the pseudodifferential
calculus itself, using the natural “zooming” action (called gauge action in [45]).

3.4.1 The zooming action of R∗+ on a deformation to the normal cone

Let M be a smooth manifold and V a closed submanifold. Denote by N = NM
V the normal bundle

of V in M . The group R∗+ acts smoothly on DNC(M,V ): for t ∈ R∗+ put αt(z, λ) = (z, tλ) for

z ∈M and λ ∈ R∗ and αt(x, U, 0) = (x,
U

t
, 0) for x ∈ V and U ∈ Nx.

This zooming action gives two interpretations of conormal distributions.

3.4.2 Integrals of smooth functions

Define first the space S(M,V ) of Schwartz functions on DNC+(M,V ): notice that DNC+(M,V )
is an open dense subset of the blow-up SBlup(M × R, V × {0}). The space S(M,V ) is the set of
smooth functions with compact support on SBlup(M × R, V × {0}) which vanish at infinite order
on the complement of DNC+(M,V ).

The subspace J (M,V ). An element k ∈ S(M,V ) defines a family (kt)t6=0 of smooth function
on M . We define then the subspace J (M,V ) ⊂ S(M,V ) to be the set of elements k ∈ S(M,V )
such that (kt)t6=0 vanishes at infinite order at 0 as a distribution on M , i.e. such that for every

f ∈ C∞(M), the function t 7→ 〈kt|f〉 =

∫
M
kt(x)f(x) dx extends to a smooth function on R which

vanishes at infinite order when t→ 0.
In local coordinates, i.e. if M is a vector bundle over V , identifying DNC(M,V ) with M × R, an
element k ∈ S(M,V ) is in J (M,V ) if and only if k̂ vanishes at infinite order on V ×{0} ⊂M∗×R.

Indeed, in that case, 〈kt|f〉 =

∫
V
du
(∫

M∗u

k̂t(u, tξ)f̂(u, ξ) dξ
)
.

It is then easy to see - using local coordinates:
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Theorem 3.9. [45] For m ∈ C, Imc (M,V ) is the set of distributions of the form
∫
R+

kt t
−1−m dt

where k runs over J (M,V ).

Proof. Me may assume that M is a vector bundle over V . We need then to write a symbol a(u, ξ) ∼∑
am−j(u, ξ) on the dual bundle M∗ as an integral a(u, ξ) =

∫ +∞

0
g(u, tξ, t) t−1−m dt. Such a g

will have a Taylor expansion at t = 0 of the form g(u, ξ, t) ∼
+∞∑
j=0

tngj(x, ξ). Then

∫ +∞

0
g(u, tξ, t) t−1−m dt ∼

+∞∑
j=0

bm−j(u, ξ)

where bm−j(u, ξ) =

∫ +∞

0
gj(u, tξ) t

n−1−m dt is homogeneous in ξ of order m − j. Using Borel’s

theorem, one easily finds a smooth function g whose Taylor expansion gj yields bm−j = am−j . The
theorem follows.

3.4.3 Almost equivariant distributions

In [112], Erik van Erp and Robert Yuncken presented another point of view on pseudo-differential
calculus on groupoids. Their construction can be carried to conormal distribution in the following
way :

Theorem 3.10. A conormal distribution P ∈ Imc (M,V ) is a distribution onM with compact support
such that there exists a distribution Q on DNC(M,V ) given by a smooth family (Pt)t∈R∗, (i.e. such

that 〈Q|f〉 =

∫
R
〈Pt|ft〉 dt) which satisfies P1 = P and αλQ − λmQ ∈ C∞(DNC(M,V )) for every

λ ∈ R∗+.

Proof. We may of course assume that M is the total space of a vector bundle E → V (and V is

the 0-section). As Q has compact support, we may write 〈Q|f〉 =

∫
R
〈P̂t|f̂t〉 dt where P̂t is a smooth

function on E∗. The family (P̂t)t∈R+ is then a smooth function F on E∗ × R+ such that, for every
λ ∈ R∗+, the function (x, ξ, t) 7→ λmF (x, ξ, t)− F (x, λx, λt) has compact support.
If F is of that form, then (x, ξ) 7→ F (x, ξ, 1) is a symbol; if a is a symbol, just put F (x, ξ, t) =
χ(‖ξ‖2 + t2)t−ma(x, ξt ) for t 6= 0 and F (x, ξ, 0) = χ(‖ξ‖2)am(x, ξ).

Remark: Equivariant linear forms on J (M,V ). One can modify a little bit this construction.
The distributions used here are linear forms on S(M,V ). Such linear forms can be exactly equivariant
for m ∈ N - and in this case we obtain only differential operators. If instead we take linear forms only
defined on the subspace J (M,V ) ⊂ S(M,V ) of [45], we probably construct an exactly equivariant
family of linear forms on J (M,V ) extending any element of Imc (M,V ).

3.5 Some generalizations

We will just cite here, without going too much into the details, some more general distributions
which were constructed and used in operator algebras.

3.5.1 More general families of pseudodifferential operators

One can associate useful distributions to much more general symbols. In [61] were used symbols of
type (ρ, δ) and the associated pseudodifferential operators.
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Let ρ, δ ∈ [0, 1]. Let E → M be a Euclidean vector bundle. A symbol of order m and type (ρ, δ) is
a function a : E → C such that, in local coordinates, for every multiindices α, β, and every compact
subset K in M , there exists C ∈ R+ such that∣∣∣∂|α|+|β|a

∂αx ∂βξ
(x, ξ)

∣∣∣ ≤ C(‖ξ‖+ 1)m−ρ|β|+δ|α|

for every x ∈ K and ξ ∈ Ex (see [62]).
Polyhomogeneous symbols, i.e. the ones considered above, are particular cases of symbols of type
(1, 0).
These symbols of type (ρ, δ) were used in [61] in order to construct holonomy almost invariant
transversally elliptic operators on any foliation, i.e. holonomy invariant up to lower order. Restricting
to a transversal this amounts to finding operators on a manifold almost invariant under the action of
a (pseudo)group Γ. Thanks to the work of Connes ([31]), one may assume that the (tangent) bundle
E has an invariant subbundle F which has an invariant euclidean metric as well as the quotient
E/F . In [61] were constructed pseudodifferential operators of order 0 that “differentiate more” along
the direction F and were used to construct almost invariant Dirac type operators.

3.5.2 Inhomogeneous calculus

Connes-Moscovici ([34, 35]), in order to write formulae in cyclic cohomology used a more specific and
unbounded analogue of [61]. This was a differential operator which is of second order in the direction
tangent to F and of order 1 in the complementary direction. This falls into a construction of an
inhomogeneous pseudodifferential calculus modelled on nilpotent groups studied by many authors -
see the book [14].

In order to understand better this calculus and the corresponding index map, Choi-Ponge ([25, 27,
26]) and van Erp-Yuncken ([113]) constructed independently a deformation Lie groupoid of the form
(M ×M × R∗) tN × {0}.
Let us briefly describe the very general and nice setting for this inhomogeneous calculus.
Let M be a smooth manifold and let {0} ⊂ H1 ⊂ H2 ⊂ . . . ⊂ Hk = TM be a filtration of TM by
subbundles. We assume that if X is a smooth section of H i and Y is a smooth section of Hj then
[X,Y ] is a section of H i+j (we put H` = TM for ` ≥ k). We declare then that a vector field which
is a section of H i is a differential operator of degree i.

Note that the bundle N =

n⊕
i=1

H i is naturally equipped with a nilpotent Lie algebra structure thanks

to the Lie brackets of sections: Let x ∈M . If X is a smooth section of H i and Y is a smooth section
of Hj then the class of [X,Y ]x in H i+j

x /H i+j−1
x only depends on the class of Xx in H i

x/H
i−1
x and of

Yx in Hj
x/H

j−1
x . One then has an associated nilpotent Lie group bundle N over M , which as a set in

N and the product is constructed thanks to the Baker-Campbell-Hausdorff formula. An important
feature of this is that there is a natural action α of the group R∗+ on N and N given by αλ(X) = λiX
if X ∈ H i.
Constructions as those explained in section 3.4 (should) naturally allow to recover the associated
inhomogeneous pseudodifferential calculus out of this deformation groupoid [113].
Mohsen [88], gave a very nice construction of this groupoid based on deformations to the normal
cone. We will come back to Mohsen’s construction of this deformation groupoid in section 4.2.2.

3.5.3 Fourier integral operators

A “classical” family of operators generalising pseudodifferential calculus is that of Fourier integral
operators (cf. [69]). These were constructed by Hörmander ([63]) in order to better understand
the propagation of singularities for some strictly hyperbolic operators as the wave equation. These
operators were studied by several authors and were very useful in local analysis [49, 64, 65, 69, 48,
105, 109]. Recently, an index theory based on Fourier integral operators was developed (cf. [103]).
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In [76], Lescure and Vassout show how to define Fourier integral operators on Lie groupoids. Fourier
integral operators with proper support define multipliers of the convolution algebra C∞c (G), those of
order 0 define multipliers of the C∗-algebra of the groupoid, and negative order ones define elements
of the C∗-algebra.

4 Constructions based on Lie groupoids and their deformations

We briefly discuss here some constructions where deformation groupoids are naturally obtained
and used. Such groupoids give a geometric description of important pseudodifferential calculi. Some
others are used to construct elements of Kasparov’sKK-theory ([72]) such as index maps, or Poincaré
duality.

4.1 The associated index map

Let G⇒M be a Lie groupoid and Γ⇒ V a sub-Lie groupoid, i.e. a submanifold and a subgroupoid
of G. The groupoid DNC(G,Γ) when restricted to the interval [0, 1] gives rise to a diagram:

0 // C∗(G× (0, 1]) // C∗(DNC(G,Γ)[0,1]
ev0 //

ev1

��

C∗(NG
Γ ) //

∂GΓvv

0

C∗(G)

where the top line is exact - at least in the full C∗-algebra level.
As C∗(G× (0, 1]) is contractible, the map ev0 is invertible in E-theory of Connes-Higson ([33]) - and
in KK-theory if this exact sequence admits a completely positif splitting - which is the case if the
groupoid NG

Γ is amenable.
We thus obtain an index element ∂GΓ = [ev1]⊗ [ev0]−1 ∈ E(C∗(NG

Γ ), C∗(G)).
Let us see some examples:

4.1.1 The “Dirac element” of a Lie group

Consider an inclusion H ⊂ G of Lie groups. Note that the groupoid NG
H is actually a group. This

group is immediately seen to be the semidirect product Hn (G/H) - where H acts on the lie algebra
G of G via the adjoint representation of G and fixes the Lie algebra H of H.
Assume G is a (almost) connected Lie group and K is its maximal compact subgroup. The K theory
of the group C∗(NG

K ) is a twisted K theory of the group K and the map ∂GK : K0(C∗(NG
K ))→ C∗r (G)

identifies with the “Dirac element” – i.e. the Connes-Kasparov map.

4.1.2 Foliation and shriek map for immersions

Let (M1, F1) and (M2, F2) be smooth (regular) foliations. In [61] is considered a notion of maps
between leaf spaces f : M1/F1 → M2/F2. The goal of that paper is to construct wrong way
functoriality maps f ! : K(C∗(M1, F1))→ K(C∗(M2, F2)) generalizing constructions of [36].
As in [36], writing f as a composition p ◦ i where i : M1/F1 →M1/F1×M2/F2 is (somewhat loosely
speaking) ` 7→ (`, f(`)) - where ` is a leaf of (M1, F1) and p is the projectionM1/F1×M2/F2 →M2/F2

the problem is reduced to the case of immersions and submersions.

Following Connes’ construction of the tangent groupoid, a deformation groupoid was used in [61] in
order to construct the wrong way functoriality map for immersions between spaces of leaves, in the
following way:

• Using a Morita equivalence, one may reduce to transversals in order to understand an immersion
M1/F1 → M2/F2 to be an inclusion f : G1 ↪→ G2 where M1 is a submanifold of M2 which is
saturated and G1 is the restriction of G2 to M1 - i.e. for γ ∈ G2 we have the equivalences:
s(γ) ∈M1 ⇐⇒ r(γ) ∈M1 ⇐⇒ γ ∈ G1.
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• Then, the DNC construction is used in order to obtain a wrong way functoriality element
f ! ∈ E(C∗(G1), C∗(G2)) (1). This element is the Kasparov product [th]⊗∂G2

G1
of a Thom isomor-

phism element [th] ∈ KK(C∗(G1), C∗(NG2
G1

)) with the index element ∂G2
G1
∈ E(C∗(NG2

G1
), C∗(G2)).

Remark 4.1. In order to construct the Thom element [th] in [61] one of course has to assume a
K-orientation. Moreover, is used the fact that the groupoid G1 acts naturally on the normal bundle
NM2
M1

.

Question 1. Can one construct the Thom element when the groupoid G1 does not act on the bundle
NM2
M1

? What is the right condition of K-orientation for NG2
G1

?

Remark 4.2. It is mentioned also in [61] that one could use a deformation groupoid to construct
f ! for submersions.

4.1.3 On the computation of the index map in some cases

In [47], the index map index element ∂GΓ = [ev1] ⊗ [ev0]−1 ∈ E(C∗(NG
Γ ), C∗(G)) associated to the

inclusion of groupoids is computed in some situations. In particular, when Γ is just a space V ⊂M ,
the C∗-algebra of the groupoid NG

V has the same K theory as the space NG
V . We have an embedding

j : NG
V → AG of this space, via a tubular neighborhood construction, as an open subset of the Lie

algebroid of G. The index ∂GΓ is the composition:

K∗(C
∗(NG

V )) ' K∗(C0(NG
V ))

j−→ K∗(C0(AG))
indG−→ K0(C∗(G))

(and this is actually true for KK-elements instead of morphisms of K-theory).

Also, one can compare it to the connecting map ∂̃GΓ of the exact sequence

0→ C∗(G̊)→ C∗(SBlup(G,Γ))→ C∗(SNG
Γ )→ 0,

associated with the open saturated subset M̊ = M \ V ⊂ SBlup(M,V ). Here, G̊ is the groupoid
GM̊
M̊
.

We then have a commutative diagram (2)

Kj(C
∗(G̊))

j

��

∂̃GΓ // Kj+1(C∗(SNG
Γ ))

th
��

Kj(C
∗(G))

∂GΓ // Kj(C
∗(NG

Γ ))

where th is a map based on the Connes analogue of the Thom isomorphism (cf. [29], see also [51]
for its construction in Kasparov’s bivariant groups).
It is then easily seen that:

• if no G orbit is contained in V , then the inclusion C∗(G̊)→ C∗(G) is a Morita equivalence and
therefore j : K∗(C

∗(G̊))→ K∗(C
∗(G)) is an isomorphism;

• if for every x ∈ V , the tangent to the G orbit through x, i.e. the image by the anchor map
%x : AGx → TxM is not contained in TxV , then the Thom element th is also an isomorphism.

1In [61] this element is just a morphism of K-groups since E-theory of Connes-Higson was defined later
2The arrows are in fact E-theory elements or even KK-theory elements.
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4.1.4 Full index

Another natural question, involving blowup groupoids, appears: Let P be an elliptic operator on
SBlupr,s(G,Γ). When is it invertible modulo C∗(G̊)? If this is the case, can one compute its index
as an element in K∗(C∗(G̊))? There is a particular interest when G̊ = M̊ × M̊ , in which case the
index is in Z.
We have a commutative diagram

0

��

0

��

0

��
0 // C∗(G̊) //

��

Ψ∗(G̊) //

��

C0(S∗AG̊) //

��

0

0 // C∗(SBlupr,s(G,Γ)) //

��

Ψ∗(SBlupr,s(G,Γ))
σ //

q

��

C0(S∗ASBlupr,s(G,Γ))

��

// 0

0 // C∗(SNG
Γ ) //

��

Ψ∗(SNG
Γ ) //

��

C0(S∗ASNG
Γ ) //

��

0

0 0 0

where lines and columns are exact.

• The columns represent the exact sequence corresponding to the partition of the groupoid
SBlupr,s(G,Γ) into the open subgroupoid G̊ and the closed subgroupoid SNG

Γ at the level of
C∗-algebras, order 0 pseudodifferential operators and principal - 0-homogeneous symbol.

• The lines are the exact sequences of zero order pseudodifferential operators of the groupoids
G̊, SBlupr,s(G,Γ) and SNG

Γ (see theorem 3.5).

It follows that a pseudodifferential operator i.e. an element P ∈ Ψ∗(SBlupr,s(G,Γ)) is invertible
modulo C∗(G̊) if and only if its classical symbol σ(P ) and its non commutative symbol, i.e. its
restriction q(P ) to the “singular part” SNG

Γ are both invertible.

In other words, we have a full symbol algebra ΣG
Γ = C0(S∗ASBlupr,s(G,Γ)) ×C0(S∗ASNGΓ ) Ψ∗(SNG

Γ )
and an exact sequence

0→ C∗(G̊)→ Ψ∗(SBlupr,s(G,Γ))→ ΣG
Γ → 0.

One can compute in some cases the K-theory of ΣG
Γ and the connecting map. For instance, if - as

above Γ is just a submanifold V ⊂ M and if we assume that the anchor map %x : AGx → TxM
is not contained in TxV , then ΣG

V is K-equivalent to the algebra of pseudodifferential operators on
G whose symbol is “trivial” when restricted to V – i.e. a function on V , and the index map is the
restriction to this subalgebra of Ψ∗(G) to the index map of G.

4.2 Groupoids using deformation constructions

Lie groupoids are useful in defining natural pseudodifferential calculi. In several K-theoretic con-
structions, many authors have introduced interesting groupoids using various techniques: gluing,
integration of algebroids... Recognizing some of these groupoids as deformations or blowups often
simplifies their construction, may help their understanding and give a geometric insight on their
properties.
In this section we outline some of these natural and useful constructions of deformation or blowup
Lie groupoids.
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4.2.1 Pseudodifferential calculi on singular manifolds

Let M be a singular manifold. This can be a manifold with boundary, or with corners, or even a
stratified manifold. Many natural pseudodifferential calculi were constructed by analysts – especially
in the school of Richard Melrose – in order to take into account, sometimes in a very fine way, the
behavior of the operators near the boundary (cf. [85, 80, 79, 81, 86]).
Some of these calculi were already constructed using blowup constructions. Some others just putting
some conditions on the riemannian metric in the regular part M̊ ⊂M degenerating near the bound-
ary. In many cases, when this metric is complete, this metric actually corresponds to an algebroid.
More precisely, the space of bounded vector fields with respect to this metric is the module of sections
of a Lie algebroid onM . It follows from [38] that this algebroid integrates to a Lie groupoid G⇒M .
Of course knowing this groupoid will certainly not solve at once all the questions for which the
corresponding calculus was constructed! It may however help understanding some of its properties:
the decomposition of C∗(G) into ideals that can often be seen geometrically can simplify the study
of conditions for Fredholmness of an associated (pseudo)differential operator; it is also relevant for
various index computations...

Let us outline specific examples.

The groupoid of the b-calculus. Let M be manifold with boundary. Melrose constructs the b
space which is the blow up of M ×M along its corner ∂M × ∂M (cf. [83, 84, 86, 85]). The pseu-
dodifferential operators of the corresponding b-calculus consists of operators which are distributions
on the b-space that are conormal along the diagonal M and have a specific decay near the boundary
components M × ∂M and ∂M ×M .

Monthubert ([89, 90]) constructed the associated b-groupoid which is nothing else than the dense
open subspace Gb = SBlupr,s(M ×M,∂M × ∂M) of the b-space SBlup(M ×M,∂M × ∂M).

Let us mention that in fact all these constructions were also performed in the more general case of
manifolds with corners.

Fibered corners. We restrict again to the case of a manifold with boundary, although the con-
structions below extend to more general settings of manifolds with corners.
Let M be manifold with boundary ∂M and let p : ∂M → B be a fibration. Mazzeo ([79]) studied
the edge calculus in this situation. This corresponds to the blowup SBlup(M ×M,∂M ×B ∂M) and
of course to the corresponding groupoid Ge = SBlupr,s(M ×M,∂M ×B ∂M).
Later, ([81]) Mazzeo and Melrose introduced and studied in the same situation the Φ calculus which
corresponds to the algebroid of vector fields that are tangent to the fibers at the boundary but
also whose derivative is tangent to ∂M : these are vector fields of the form X + tY + t2N - where
t is a defining function of the boundary, X is a vector field along the fibration (extended near the
boundary), Y is tangent to the boundary and N is normal to the boundary. Piazza and Zenobi ([97])
actually realized that the groupoid constructed in [44] integrating this algebroid can be obtained via
a double blowup construction. See also [117] for topological aspects of indices in this context.

Question 2. A natural question is also to try to understand the non complete case too in terms of
deformation groupoids...

4.2.2 Inhomogeneous pseudodifferential calculus

The “inhomogeneous” pseudodifferential calculus (also called “filtered” or “Carnot”), deals with man-
ifolds M whose tangent bundle is endowed with a filtration (Hi)0616k (with H0 = 0 and Hk = TM)
satisfying [Γ(Hi),Γ(Hj)] ⊂ Γ(Hi+j)]. A natural pseudodifferential calculus has been constructed in
this framework, generalizing the case of contact manifolds (cf. [14]). In this sub-elliptic or Carnot
calculus, the vector fields that are sections of the bundle Hi are considered as differential operators
of order i.
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A deformation groupoid taking into account this inhomogeneous calculus was constructed indepen-
dently in ([98, 25, 27, 26]) and [111, 70, 113]. Both these constructions are rather technical and
based on higher jets. This groupoid plays the role of Connes’ tangent groupoid in this setting. It
allows to recover the inhomogeneous pseudodifferential calculus (cf. [113]).
Omar Mohsen presents in [88] a very elegant construction of this deformation groupoid in terms of
successive deformations to the normal cone. In the case where there is only one sub-bundle H ⊂ TM ,
one just considers the inclusion of H×{0} into Connes’ tangent groupoid (M×M)×R∗tTM×{0}.
The crucial fact that the object built is canonically a groupoid is clear in this construction - while it
leads to relatively sophisticated computations in the works cited above. The general case is treated
by induction.
In addition, this construction has the advantage of being very flexible and generalizing immediately,
for example in the context of an inhomogeneous a pseudodifferential calculus transverse to a foliation
- as the one appearing in the work of Connes-Moscovici ([34, 35]).

4.2.3 Poincaré dual of a stratified manifold

K-duality. G.G. Kasparov in [72] defines a formal KK-duality of C∗-algebras. If A and B are
K-dual C∗-algebras, the K-homology of A is isomorphic to the K-theory of B.

LetM be a smooth compact manifold. The algebra C(M) has naturally a K-dual which is C0(T ∗M)
(cf. [71, 72, 36]). The corresponding duality map associates to the K-homology class of an elliptic
(pseudo)differential the K-theory class of its symbol.
Several generalisations to manifolds with singularities have been given by various authors: manifolds
with boundary ([36]), non Hausdorff manifolds ([73]), manifolds with conic singularity ([40, 22]),
stratified manifolds ([41]). Many of them use naturally Lie groupoids.

Manifolds with a conic singularity. Let us outline the construction of [40].
Let M be a compact manifold with boundary ∂M . Denote by M̊ the open subset M \∂M . The one
point compactification M+ of M̊ is the quotient of M by the equivalence relation which identifies all
the points of the boundary ∂M . It is a manifold with conic singularity.
Let Gb = Blupr,s(M×M,∂M×∂M) = M̊×M̊ t∂M×∂M×R∗+ be the groupoid of the b-calculus of
the manifold with boundaryM . The Poincaré dual ofM+ constructed in [40] is a closed subgroupoid
G of the “adiabatic” groupoid DNC(Gb, G

(0)
b ) of Gb: it is G = DNC(Gb, G

(0)
b ) \ M̊ × M̊ × R∗+ [40].

Note that G is the union of the algebroid AGb = TM = TM̊ tT∂M ×R of Gb with ∂M ×∂M ×R2.
The Poincaré duality element is an element ψ ∈ KK(C(M+)⊗C∗(G),C). It is obtained as follows:

• first C(M+) sits naturally in the center of the multiplier algebra of C∗(G), by extending in a
unital way the map C0(M̊) → M(C0(T ∗M̊)) = M(C∗(TM)). We thus have a morphism of
C∗-algebras m : C(M+)⊗ C∗(G)→ C∗(G).

• As C∗(M̊ × M̊ × R∗+) ' K ⊗ C0(R∗+), the extension

0→ C∗(M̊ × M̊ × R∗+)→ C∗(DNC(Gb, G
(0)
b ))→ C∗(G)→ 0

gives rise to an element d ∈ KK1(C∗(G), C0(R∗+)) = KK(C∗(G),C).

Put then ψ = m∗(d).

Question 3. It would be nice to understand this Poincaré duality by describing as precisely as
possible which operators on M̊+ correspond to symbols on C∗(G). In particular, what is the symbol
class of a Fuchs type operator studied in [74]? This question is certainly linked with question 2.
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Stratified manifolds. One can generalize immediately this construction to manifolds with a
fibered boundary: given a fibration p : ∂M → B one can form the space M/ ∼, where ∼ is the
equivalence relation on M given by

x ∼ y ⇐⇒

{
x = y or
x, y ∈ ∂M and p(x) = p(y).

One just replaces the groupoid Gb by the groupoid Ge of the edge calculus or by the groupoid GΦ

of the Φ calculus.
This construction was extended in [41], using an induction process, to describe in a similar way the
Poincaré dual of general stratified manifolds X. The construction can in fact be obtained by use of
several blowups: one blows up inductively all the strata to obtain a groupoid GX generalizing Gb;
then, one uses as above the adiabatic deformation of GX in order to construct the dual groupoid
GX = DNC(GX , G

(0)
X )\X̊×X̊×R∗+ and the Poincaré duality element ψX ∈ KK(C(X)⊗C∗(GX),C).

Details will appear in [39].

5 Related topics and further questions

In this section, we examine some topics that are not a priori based on Lie groupoids, but are actually
linked to our discussion.

5.1 Relation to Roe algebras

Starting from a finite propagation speed principle for differential operators of order one [24], John
Roe developed a very beautiful theory of coarse spaces and algebras [102]. The K-theory of Roe
algebras have been used as a receptacle for various index problems [60].
We will not develop here this theory. Let us just outline some links with groupoids that have been
made in the literature.

• In [106], a groupoid is constructed out of a coarse space and it is shown that the Roe C∗-algebra
of locally compact functions with finite propagation on this coarse space is the C∗-algebra of
this groupoid

• Out of a Lie groupoid one constructs Roe type algebras (see e.g. [15]). A natural example is
the case of a covering space M̃ →M with group Γ. In that case, one may also define naturally
the index with values in the K-theory C∗(Γ) for Γ-invariant elliptic operators on M̃ using
coarse techniques. In particular, there is an exact sequence of Roe algebras ([57, 58, 59, 96])

0→ C∗(M̃)Γ −→ D∗(M̃)Γ −→ D∗(M̃)Γ/C∗(M̃)Γ → 0.

The algebra C∗(M̃)Γ is Morita equivalent to C∗(Γ) and that of D∗(M̃)Γ/C∗(M̃)Γ is the K-
homology of M (Paschke duality – [95]).

• In this precise case, Zenobi ([118]) identified the K-theory exact sequence of the Higson-Roe
sequence with the adiabatic groupoid exact sequence of the groupoid (M̃ × M̃)/Γ⇒M .

Question 4. How far can one push this parallel between groupoid C∗-algebras and Roe algebras?

5.2 Singular foliations and “singular Lie groupoids”

Let us just say a few words on “very singular Lie groupoids” associated with singular foliations in
[5].
A singular foliation on a compact manifold M is a submodule F of the C∞(M) module of vector
fields Γ(TM) which is finitely generated and involutive – i.e. closed under Lie brackets: [F ,F ] ⊂ F .
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The module F tells us which differential operators are “longitudinal”. In [5] is constructed the
holonomy groupoid and the C∗-algebra of such a singular foliation. In [6] is also constructed a
pseudodifferential calculus and an analytic index for a singular foliation as well as a deformation
holonomy groupoid, which gives rise to an alternate way of defining the analytic index.

Question 5. Let (M,F) be a singular foliation in the sense of [5]. It is sometimes possible by
blowing up singular leaves to obtain a less singular foliation: one for which the holonomy groupoid
is a Lie groupoid.
For instance, the singular foliation of R3 whose leaves are the spheres of center 0 – given by the
action of SO(3) – has a singular holonomy groupoid {(x, y) ∈ R3 \ {0}; ‖x‖ = ‖y‖} t {0} × SO(3).
Blowing up the singular leaf {0}, we obtain the regular foliation on R+ × S2 with leaves {r} × S2.
This poses several questions

a) How general/canonical can this procedure be?

b) When such a blowup is possible, what is the precise relation between the C∗-algebra of the
foliation in the sense of [5] and that of the Lie groupoid obtained by blowing up?

Question 6. The holonomy groupoid Hol(M,F) of a singular foliation is a “bad” topological space.
On the other hand, there is a natural notion of a smooth map V → Hol(M,F) – and also of a
smooth submersion – for a manifold V (this notion is called a bisubmersion in [5]). Is there a natural
structure to express this in a functorial way?

5.3 Computations using cyclic cohomology

A classical way to make K-theoretic computations for spaces is to use the Chern isomorphism with
(co)homology. In the case of manifolds, one naturally uses the de Rham cohomology. The de Rham
cohomology extends to the noncommutative setting thanks to Connes’ cyclic cohomology. On the
other hand, de Rham cohomology uses differentiation and is not well suited for continuous functions,
but rather smooth functions. So, starting with Connes (cf. [31, 32]) and then many others, one
constructs natural cyclic cocycles defined on the algebra C∞c (G) of smooth functions with compact
support on a Lie groupoid G. Then one encounters a difficult question: extend these cyclic cocycles
to a larger algebra that has the same K-theory as C∗(G). Such an extension was performed in [31]
using a notion of n-traces - which are “well behaved cyclic cocycles”.

Question 7. Extend natural cocycles so that they pair with the K-theory of the C∗-algebra of the
groupoid and compute this pairing.

5.4 Behaviour of the resolvent of an elliptic operator

Let us start with say a positive laplacian ∆ on a groupoid G with compact G(0). As ∆ is elliptic,
self adjoint and positive, the operator 1 + ∆ is invertible and its inverse is in C∗(G) (cf. [114]).

Question 8. What is the behavior of (1 + ∆)−1? Is it a smooth function outside G(0)? What kind
of decay at infinity does it have?

Just a few cases have been worked out (cf. [85, 80]).
Let us make a comment about these problems. The elements of C∗r (G) define distributions on G. In
other words there is an injective map C∗r (G) → C−∞(G). So it is a natural question to ask what
kind of distributions are elements like (1 + ∆)−1. The distribution associated with an element of
C∗(G) only depends on its image in C∗r (G). So that these problems a priori concern the reduced
C∗-algebra of G.
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5.5 Relations with the Boutet de Monvel calculus

This was a motivation for us from the beginning.
Let us very briefly say a few words on the Boutet de Monvel calculus. Details can be found in
[18, 19, 54, 104].
LetM be a manifold with boundary. We considerM as included in a manifold M̃ without boundary
in which a smooth hypersurface ∂M of M̃ separates M̃ into two open subsets M̊ and M−.

Denote by χM the characteristic function of M . Boutet de Monvel defines:

Definition 5.1. A pseudodifferential operator Φ (with compact support) on M̃ is said to have the
transmission property if for every smooth function f̃ on M̃ , then Φ(χM f̃) coincides on M̊ with a
smooth function on M̃ (3).

Of course, a smoothing operator satisfies the transmission property, and thus this property can be
described in terms of the (restriction to ∂M of the) total symbol of Φ. This condition was explicitly
computed in local coordinates (see [18, 19, 54, 104]).

Assume that Φ satisfies the transmission property, and let Φ+(f) be the restriction to M of the
smooth function which coincides with Φ(χM f̃) on M̊ .

The operators Φ+, do not form an algebra since Φ+Ψ+ 6= (ΦΨ)+, and the difference Φ+Ψ+− (ΦΨ)+

is not a pseudodifferential operator. On the other hand, this difference belongs to a new class of
operators – described again precisely in local coordinates – called singular Green operators.

The set of operators of the form Φ++S where P is a pseudodifferential operator with the transmission
property and S a singular Green operator is an algebra. Call it PBM (M).

Boutet de Monvel moreover defines singular Poisson (or Potential) operators mapping functions on
∂M to functions onM and singular Trace operators which map functions onM to functions on ∂M .
Singular Poisson operators and singular Trace operators are adjoint of each other.

They form bimodules yielding a Morita equivalence between singular Green operators on M and
ordinary pseudodifferential operators on its boundary.

We thus obtain the Boutet de Monvel algebra which consists of matrices of the form
(

Φ+ + S P
T Q

)
where

• Φ is a pseudodifferential operator on M̃ with the transmission property, and Φ+ the corre-
sponding operator on smooth functions on M ;

• S is a singular Green operator acting on M ;

• P is a singular Poisson operator mapping functions on ∂M to functions on M ;

• T is a singular trace operator mapping functions on M to functions on ∂M ;

• Q is a pseudodifferential operator on ∂M .

All these constructions are generalized to the case of families of manifolds and more generally to a Lie
groupoid G ⇒ M on a manifold with boundary M assuming that G is transverse to the boundary
M (cf. [82, 77, 16, 17]).

When taking the closure of the bounded singular Green operators, we find an exact sequence

0→ K(L2(M)) −→ Green
σg−→ ΣG

M → 0, (Green)

3We actually have to assume that the same holds also for the adjoint of Φ.
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where σGM is the non commutative symbol of singular Green operators with values in the algebra
ΣM = C0(S∗∂M)⊗K. This exact sequence can be compared with the exact sequence

0→ K(L2(∂M)) −→ Ψ∗(∂M)
σ∂M−→ C0(S∗∂M)→ 0, (Ψ∂M )

of pseudodifferential operators on ∂M . Bounded singular Poisson operators and singular trace op-
erators form bimodules yielding a Morita equivalence of these sequences.

Now, the group R∗+ naturally acts on Connes tangent groupoid T∂M × {0} t (∂M × ∂M) × R∗+
of the manifold ∂M via the zooming action. The corresponding crossed product groupoid G gives
naturally rise to an exact sequence

0→ K(L2(∂M)× R∗+)) −→ C∗(G)
ev0−→ C0(T ∗∂M) oR∗+ → 0. (G)

Note that C0(S∗∂M) ⊗ K naturally sits in C0(T ∗∂M) o R∗+ as an ideal. In [1], the exact sequence
(G) restricted to this ideal, was shown to coincide with (Green) - by showing that they define the
same KK-element and then using Voiculescu’s theorem [115].
This construction was generalized in [45], where for any Lie groupoid G⇒ V , is directly constructed
a (sub)-Morita equivalence relating the pseudo-differential exact sequence

0→ C∗(G) −→ Ψ∗(G)
σG−→ C0(S∗AG)→ 0, (ΨG)

of the groupoid G and the exact sequence

0→ C∗(G)⊗K(2(R∗+)) −→ C∗(GG)
ev0−→ C0(A∗G) oR∗+ → 0, (GG)

where GG is the “gauge adiabatic groupoid” obtained as the crossed product by the natural scaling
action of R∗+ on the adiabatic groupoid Gad = AG× {0} tG× R∗+.
In [46], the construction of the “gauge adiabatic groupoid” is generalized using the blowup construc-
tion for groupoids discussed above (cf. section 2.3.2). If V ⊂M is a hypersurface which is transverse
to the groupoid G, the groupoid Blupr,s(G,V )→ Blup(M,V ) 'M is the gauge adiabatic groupoid
of GVV . More generally, if V is any submanifold of M which is transverse to G, one still constructs
a Boutet de Monvel type calculus.

Question 9. It is natural to try to show that the closure of the algebra of bounded elements of the
Boutet de Monvel algebra coincides with the one obtained in this way. We have quite well understood
this and should write it precisely. Actually, the transmission property gives rise to a small difference
between them.

5.6 Algebroids and integrability

Recall from definition 2.3 that an algebroid over a manifoldM is a smooth bundle A overM endowed
with the following structure

• a Lie algebra bracket on the space of smooth sections of A;

• a bundle morphism % : A→ TM .

These are assumed to satisfy: [X, fY ] = %(X)(f)Y + f [X,Y ].
The integrability problem for algebroids is not “trivial”. There are indeed algebroids that are not asso-
ciated with groupoids (cf. [3] – se also [37] where necessary and sufficient conditions for integrability
are given).
On the other hand, one can define differential operators on an algebroid and even pseudodifferential
operators locally using local integration, which is also possible. These operators act naturally on
C∞(M) (or L2(M) when they are bounded). When the algebroid is integrated to a Lie groupoid
G, the C∗-algebra C∗(G) is generated by resolvants of elliptic operators. Also, in that case, we find
more representations where these operators act...

30



Question 10. How much of a groupoid C∗-algebra can one construct out of just its algebroid? Is
there a construction of an (s-simply connected) Lie groupoid C∗-algebra which makes sense even for
non integrable algebroids?

Remark 5.2. Let us remark that we can also restrict this question to the case of Poisson manifolds
which are particular cases of Lie algebroids.

5.7 Fourier integral operators

Fourier integral operators ([64, 65, 49]) form a class of operators, larger than pseudodifferential
operators. They are very useful in order to understand hyperbolic differential operators.
In [76], Fourier integral operators on a Lie groupoid are defined and studied. We do not wish to say
much on these. Let us just ask a question.

Question 11. Is there a construction of Fourier integral operators in the spirit of [45] or [112] (See
section 3.4 above) ?
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