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Abstract

We present natural and general ways of building Lie groupoids, by using the classical proce-
dures of blowups and of deformations to the normal cone. Our constructions are seen to recover
many known ones involved in index theory. The deformation and blowup groupoids obtained
give rise to several extensions of C∗-algebras and to full index problems. We compute the corre-
sponding K-theory maps. Finally, as an application we use the blowup of a manifold sitting in
a transverse way in the space of objects of a Lie groupoid to construct a calculus which is quite
similar to the Boutet de Monvel calculus for manifolds with boundary.
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1 Introduction

Let G ⇒ M be a Lie groupoid. The Lie groupoid G comes with its natural pseudodifferential
calculus. For example

• if the groupoid G is just the pair groupoid M ×M , the associated calculus is the ordinary
(pseudo)differential calculus on M ;

• if the groupoid G is a family groupoid M ×B M associated with a fibration p : M → B,
the associated (pseudo)differential operators are families of operators acting on the fibers of p
(those of [3]);

• if the groupoid G is the holonomy groupoid of a foliation, the associated (pseudo)differential
operators are longitudinal operators as defined by Connes in [7];

• if the groupoid G is the monodromy groupoid i.e. the groupoid of homotopy classes (with fixed
endpoints) of paths in a (compact) manifold M , the associated (pseudo)differential operators
are the π1(M)-invariant operators on the universal cover of M ...

The groupoid G defines therefore a class of partial differential equations.

Our study will focus here on the corresponding index problems on M . The index takes values
naturally in the K-theory of the C∗-algebra of G.
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Let then V be a submanifold of M . We will consider V as bringing a singularity into the problem:
it forces operators of G to “slow down” near V , at least in the normal directions. Inside V , they
should only propagate along a sub-Lie-groupoid Γ⇒ V of G. One can just take Γ = V (no action)
in order to encode that the propagation slows down in all directions near V .
In these cases, this behavior is very nicely encoded by a groupoid SBlupr,s(G,Γ) obtained by using
a blow-up construction of the inclusion Γ→ G.

The blowup construction (Blup) is a well known constructions in algebraic geometry as well as in
differential geometry. It is closely related to the deformation to the normal cone which has been
used in quite a few cases in connection with non-commutative geometry.
Let X be a submanifold of a manifold Y . Denote by NY

X the normal bundle.

• The deformation to the normal cone of X in Y is a smooth manifold DNC(Y,X) obtained by
naturally gluing NY

X × {0} with Y × R∗.

• The blowup of X in Y is a smooth manifold Blup(Y,X) where X is inflated to the projective
space PNY

X . It is obtained by gluing Y \ X with PNY
X in a natural way. We will mainly

consider its variant the spherical blowup SBlup(Y,X) (which is a manifold with boundary) in
which the sphere bundle SNY

X replaces the projective bundle PNY
X .

The functoriality of the DNC and Blup constructions allows to naturally endow DNC(G,Γ) and
a large open subset SBlupr,s(G,Γ) of SBlup(G,Γ) with a Lie groupoid structure for any Lie sub-
groupoid Γ of a Lie groupoid G. This turns out to be very useful in order to analyse index type
problems in many geometric situations.

The first use of deformation groupoids in connection with index theory appeared in [9]. A. Connes
showed there that the analytic index on a compact manifold M can be described using a groupoid,
called the “tangent groupoid”. This groupoid was obtained as a deformation to the normal cone of
the diagonal inclusion of M into the pair groupoid M ×M .

Since Connes’ construction, deformation groupoids were used by many authors in various contexts.

• This idea of Connes was extended in [21] by considering the same construction of a deformation
to the normal cone for smooth immersions which are groupoid morphisms. The groupoid
obtained was used in order to define the wrong way functoriality for immersions of foliations
([21, section 3]). An analogous construction for submersions of foliations was also given in a
remark ([21, remark 3.19]).

• In [32, 35] Monthubert-Pierrot and Nistor-Weinstein-Xu considered the deformation to the
normal cone of the inclusion G(0) → G of the space of units of a smooth groupoid G. This
generalization of Connes’ tangent groupoid was called the adiabatic groupoid of G and denoted
by Gad. It was shown that this adiabatic groupoid still encodes the analytic index associated
with G.

• Many other important articles use this idea of deformation groupoids. We will briefly discuss
some of them in the sequel of the paper.

Let us come back to our discussion above. By construction, the propagation in the blowup groupoid
SBlupr,s(G,Γ)) is tangent to V : its orbits are either contained in the open subset M̊ = M \ V or
in its complement – the manifold SNM

V . In other words, the groupoid SBlupr,s(G,Γ) is the union
of two Lie subgroupoids:

• an open subgroupoid which is the restriction GM̊
M̊
⇒ M̊ of G to M̊ = M \ V ;

• a closed subgroupoid, its restriction to the boundary which is a Lie groupoid SNG
Γ ⇒ SNM

V .
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This gives rise to a C∗-algebraic exact sequence

0 −→ C∗(GM̊
M̊

) −→ C∗(SBlupr,s(G,Γ)) −→ C∗(SNG
Γ ) −→ 0 (E∂SBlup)

In order to study the index theory of C∗(SBlupr,s(G,Γ)) we will study this exact sequence and
in particular its connecting map – more precisely the class of this exact sequence in the Kasparov

group KK1(C∗(SNG
Γ ), C∗(GM̊

M̊
)).

There is a very natural parallel of this exact sequence with a corresponding exact sequence for the
deformation to the normal cone groupoid which reads:

0 −→ C∗(G× R∗+) −→ C∗(DNC+(G,Γ)) −→ C∗(NG
Γ ) −→ 0 (E∂DNC+

)

The sequence (E∂DNC+
) is somewhat easier to compute than (E∂SBlup) using [14]. In particular if

Γ = V is just a space, the class of the exact sequence (E∂DNC+
) is the composition of a wrong way

functoriality map with the (analytic) index map of the groupoid G (cf. prop. 4.11.d).

It turns out that there is a natural Connes-Thom map (in the sense of [8]) comparing these exact
sequences. Even better, if the original propagation along G is nowhere tangent to V (we say that
V is AG-small), these Connes-Thom maps are isomorphisms (KK1-equivalences - cf. theorem 4.8).
We therefore naturally deduce the computation of the class of (E∂SBlup) when Γ = V and V is
AG-small (cf. prop. 4.12)

We will also address another index question on the new groupoid SBlupr,s(G,Γ). This one concerns
full ellipticity, i.e. (pseudo)differential operators on the groupoid SBlupr,s(G,Γ) which are invertible

modulo C∗(GM̊
M̊

). This question naturally leads us to the study of the exact sequence:

0 −→ C∗(GM̊
M̊

) −→ Ψ∗(SBlupr,s(G,Γ))
σfull−−−→ΣSBlup(G,Γ) −→ 0 (E ĩnd

SBlup)

where Ψ∗(SBlupr,s(G,Γ)) is the C∗-algebra of pseudodifferential operators of order ≤ 0 on the

groupoid SBlupr,s(G,Γ) and ΣSBlup(G,Γ) is the quotient Ψ∗(SBlupr,s(G,Γ))/C∗(GM̊
M̊

).

The full symbol algebra ΣSBlup(G,Γ) is naturally a fibered product (see [14, §4]):

ΣSBlup(G,Γ) = C(SA∗SBlupr,s(G,Γ))×C(SA∗SNG
Γ ) Ψ∗(SNG

Γ ).

The first component corresponds to the principal symbol of an order 0 pseudodifferential operator;
the second one is the restriction to the boundary.

We wish to compute the connecting map of the exact sequence (E ĩnd
SBlup), and use again its parallel

(DNC) exact sequence:

0 −→ C∗(G× R∗+) −→ Ψ∗(DNC+(G,Γ))
σfull−−−→ ΣDNC+(G,Γ) −→ 0 (E ĩnd

DNC+
)

which we directly relate (using [14]) to the analytic index map of the groupoid G when Γ = V .

As for the case discussed above, the sequences (E ĩnd
SBlup) and (E ĩnd

DNC+
) are related through natu-

ral Connes-Thom maps. When V is AG-small, in fact the maps relating sequences (E ĩnd
SBlup) and

(E ĩnd
DNC+

) are KK1-equivalences.

Finally, as an application, we consider the particular case when Γ = V is a submanifold of M
transverse to the action of G. We construct a calculus which resembles the Boutet de Monvel
calculus for manifolds with boundary. We are planning to investigate the relations between these
two calculi.

The paper is organized as follows:
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• In section 2 we review two geometric constructions: deformation to the normal cone and
blowup, and their functorial properties.

• In section 3, using this functoriality, we study deformation to the normal cone and blowup in
the Lie groupoid context. We outline examples which recover groupoids constructed previously
by several authors.

• In section 4, applying the results obtained in [14], we compute the connecting maps and index
maps of the groupoids constructed in section 4.

• In section 5, we describe the above mentioned Boutet de Monvel type calculus.

• In the Appendix, we recall a few facts on the notion of VB groupoids, and study the particular
case of a VB groupoid over a manifold.

• The present paper is the second part of the article that appeared on the arXiv (arXiv:1705.09588).
Since this paper was quite long and addressed a large variety of situations, we decided to split
it into two pieces hoping to make it easier to read. The first part is [14].

Our constructions involved a large amount of notation, that we tried to choose as coherent as
possible. We found it however helpful to list several items of the notation introduced in [14]
and the one introduced here in an index at the end of the paper.

Acknowledgements. We would like to thank Vito Zenobi for his careful reading and for pointing
out quite a few typos in an earlier version of the manuscript.

2 Classical geometric constructions: normal bundle, deformation
to the normal cone, blowup and functoriality

As mentioned in the introduction, index problems in a large number of geometrical situations lead
to consider two geometric constructions of groupoids: deformation to the normal cone and blowup.
These two constructions are classical in algebraic geometry. In this section we recall these construc-
tions and we emphasize their properties that are relevant for our purposes.

Throughout this section, Y will be a smooth manifold and X a locally closed submanifold (the same
constructions hold if we are given an injective immersion X → Y ). Let us call such a pair (Y,X) a
manifold pair.
Given two manifold pairs (Y,X) and (Y ′, X ′), a morphism f from (Y,X) to (Y ′, X ′) is a smooth
map f : Y → Y ′ which restricts to a smooth map fX : X → X ′. Thus we have a commutative
diagram of smooth maps X �

� //

fX
��

Y

f
��

X ′ �
� // Y ′

where the horizontal arrows are inclusions of submanifolds.

2.1 Normal bundle

We begin by a few remarks on the normal bundle construction.

We denote by NY
X =

⋃
x∈X

TxY/TxX the (total space) of the normal bundle of X in Y .

Functoriality. The differential df : TY → TY ′ of a morphism f of manifold pairs X �
� //

fX
��

Y

f
��

X ′ �
� // Y ′

maps TX to TX ′. Thus it induces a natural smooth map N(f) : NY
X → NY ′

X′ given by
N(f)x ◦ px = p′f(x) ◦ dfx for all x ∈ X (where px : TxY → (NY

X )x and p′x : TxY
′ → (NY ′

X′ )x).
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Exponential map. An exponential map (or tubular neighborhood construction) for the manifold
pair (Y,X) is a diffeomorphism θ : U ′ → U from an open neighborhood U ′ of the 0-section in
NY
X to an open neighborhood U of X which satisfies:

• the restriction of θ to X viewed as the 0-section in NY
X is the identity map:

θ(x, 0) = x for all x ∈ X

• the differential of θ is equal to the “identity on the normal direction to X”:

px ◦ dθx = qx for all x ∈ X

where px : TxY → (NY
X )x = (TxY )/(TxX) and qx : TxN

Y
X ' (NY

X )x ⊕ (TxX) → (NY
X )x

are the projections.

Note that one can just use such a construction locally i.e. taking small open subsets of X and
diffeomorphisms of NY

V with small open subsets in Y . One actually needs to use this local
construction when X is just an immersed submanifold of Y .

2.2 Deformation to the normal cone

The deformation to the normal cone DNC(Y,X) is obtained by gluing NY
X × {0} with Y × R∗.

The smooth structure of DNC(Y,X) is described by use of any exponential map θ : U ′ → U from
an open neighborhood U ′ of the 0-section in NY

X to an open neighborhood U of X. The manifold
structure of DNC(Y,X) is then given by the requirement that:

a) the inclusion Y × R∗ → DNC(Y,X) and

b) the map Θ : Ω′ = {((x, ξ), λ) ∈ NY
X×R; (x, λξ) ∈ U ′} → DNC(Y,X) defined by Θ((x, ξ), 0) =

((x, ξ), 0) and Θ((x, ξ), λ) = (θ(x, λξ), λ) ∈ Y × R∗ if λ 6= 0.

are diffeomorphisms onto open subsets of DNC(Y,X).
It is easily shown that DNC(Y,X) has indeed a smooth structure satisfying these requirements and
that this smooth structure does not depend on the choice of θ. (See for example [6] for a detailed
description of this structure).
In other words, DNC(Y,X) is obtained by gluing Y × R∗ with Ω′ by means of the diffeomorphism
Θ : Ω′ ∩ (NY

X × R∗)→ U × R∗.
Let us recall the following facts which are essential in our construction.

Definition 2.1. The zooming action of R∗. The group R∗ acts on DNC(Y,X) by λ.(w, t) =
(w, λt) and λ.((x, ξ), 0) = ((x, λ−1ξ), 0)

(
with λ, t ∈ R∗, w ∈ Y , x ∈ X and ξ ∈ (NY

X )x
)
.

Remarks 2.2. a) The zooming action is easily seen to be free and proper on the open subset
DNC(Y,X) \ X × R. Indeed, for (x, ξ, t) ∈ Ω′ ⊂ NY

X × R the zooming action is given by
λ.(x, ξ, t) = (x, λ−1ξ, λt) under the map Θ−1.

b) In the following sections we will apply this construction to Lie groupoids - and many natural
Lie groupoids are non Hausdorff manifolds. If the manifolds X and Y are not assumed to be
Hausdorff (but of course locally Hausdorff) and X ⊂ Y is locally closed, then DNC(Y,X) is
also locally Hausdorff. The subset DNC(Y,X) \X × R is a submanifold if X ⊂ Y is closed.
In that case, the zooming action of R∗+ restricted to DNC(Y,X) \X ×R is locally proper. By
this, we mean that every point has a neighborhood invariant under the action, on which the
action is proper (cf. [14, Remark 2.5]).
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Definition 2.3. (Functoriality.) Given a morphism f of manifold pairs:

X �
� //

fX
��

Y

f
��

X ′ �
� // Y ′

we naturally obtain a smooth map DNC(f) : DNC(Y,X)→ DNC(Y ′, X ′). This map is defined by
DNC(f)(y, λ) = (f(y), λ) for y ∈ Y and λ ∈ R∗ and DNC(f)(x, ξ, 0) = (N(f)(x, ξ), 0) for x ∈ X
and ξ ∈ (NY

X )x. This map is of course equivariant with respect to the zooming action of R∗.

Remarks 2.4. Let us make a few remarks concerning the DNC construction.

a) The map equal to identity on X × R∗ and sending X × {0} to the zero section of NY
X leads

to an embedding of X × R into DNC(Y,X), we may often identify X × R with its image in
DNC(Y,X). As DNC(X,X) = X ×R, this corresponds to the functoriality of DNC for the
diagram

X �
� //

��

X

��
X �
� // Y

b) We have a natural smooth map π : DNC(Y,X) → Y × R defined by π(y, λ) = (y, λ) (for
y ∈ Y and λ ∈ R∗) and π((x, ξ), 0) = (x, 0) (for x ∈ X ⊂ Y and ξ ∈ (NY

X )x a normal vector).
This corresponds to the functoriality of DNC for the diagram

X �
� //

��

Y

��
Y �
� // Y

c) To see that the smooth structure on DNC(Y,X) is well defined and establish functoriality,
one may also note that the following maps are smooth:

• the map π : DNC(Y,X)→ Y × R defined above;

• given a smooth function f : Y → R whose restriction toX is 0, the map Ff : DNC(Y,X)→

R defined by Ff (y, λ) =
f(y)

λ
(for y ∈ Y and λ ∈ R∗) and Ff (x, px(ξ), 0) = dfx(ξ) for

x ∈ X and ξ ∈ TxY where px : TxY → (NY
X )x = TxY/TxX is the quotient map (note

that dfx vanishes on TxX).

These maps describe the smooth structure of DNC(Y,X). Indeed given a manifold Z, a map
g : Z → DNC(Y,X) is smooth if and only if π ◦ g and the maps Ff ◦ g are smooth. Actually,
a finite number of those give rise to an immersion DNC(Y,X)→ Y ×R×Rk (at least locally
- if we do not assume X to be compact). This offers an alternative proof of the independence
of the smooth structure relative to the choice of the exponential map.

d) If Y1 is an open subset of Y2 such that X ⊂ Y1, then DNC(Y1, X) is an open subset of
DNC(Y2, X) and DNC(Y2, X) is the union of the open subsets DNC(Y1, X) and Y2 × R∗.
This reduces to the case when Y1 is a tubular neighborhood - and therefore to the case where
Y is (diffeomorphic to) the total space of a real vector bundle over X. In that case one gets
DNC(Y,X) = Y × R and the zooming action of R∗ on DNC(Y,X) = Y × R is given by
λ.((x, ξ), t) = ((x, λ−1ξ), λt) (with λ ∈ R∗, t ∈ R, x ∈ X and ξ ∈ Yx).

e) More generally, let X be a submanifold of Y and let E be (the total space of) a real vector
bundle over Y . Then DNC(E,X) identifies with the total space of the pull back vector bundle
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π̂∗(E) over DNC(Y,X), where π̂ is the composition of π : DNC(Y,X) → Y × R (remark b)
with the projection Y × R → Y . The zooming action of R∗ is λ.(w, ξ) = (λ.w, λ−1ξ) for
w ∈ DNC(Y,X) and ξ ∈ Eπ̂(w).

f) LetX1 be a (locally closed) smooth submanifold of a smooth manifold Y1 and let f : Y2 → Y1 be
a smooth map transverse to X1. Put X2 = f−1(X1). Then the normal bundle NY2

X2
identifies

with the pull back of NY1
X1

by the restriction X2 → X1 of f . It follows that DNC(Y2, X2)
identifies with the fibered product DNC(Y1, X1)×Y1 Y2.

g) More generally, let Y, Y1, Y2 be smooth manifolds and fi : Yi → Y be smooth maps. Assume
that f1 is transverse to f2. Let X ⊂ Y and Xi ⊂ Yi be (locally closed) smooth submanifolds.
Assume that fi(Xi) ⊂ X and that the restrictions gi : Xi → X of fi are also transverse. We
thus have a diagram

X1� _

��

g1 // X� _

��

X2� _

��

g2oo

Y1
f1 // Y Y2

f2oo

Then the maps DNC(fi) : DNC(Yi, Xi) → DNC(Y,X) are transverse and the deformation
to the normal cone of fibered products DNC(Y1 ×Y Y2, X1 ×X X2) identifies with the fibered
product DNC(Y1, X1)×DNC(Y,X) DNC(Y2, X2).

Note that construction f) is the particular case X = Y = Y1 of our construction here.

Notation 2.5. We denote by DNC+(Y,X) the closed subset DNC+(Y,X) = Y ×R∗+∪NY
X ×{0} =

π−1(Y × R+) of DNC(Y,X).

2.3 Blowup constructions

The blowup Blup(Y,X) is a smooth manifold which is a union of Y \X with the (total space) P(NY
X )

of the projective space of the normal bundle NY
X of X in Y . We will also use the “spherical version”

SBlup(Y,X) of Blup(Y,X) which is a manifold with boundary obtained by gluing Y \X with the
(total space of the) sphere bundle S(NY

X ). We have an obvious smooth onto map SBlup(Y,X) →
Blup(Y,X) with fibers 1 or 2 points. These spaces are of course similar and we will often give details
in our constructions to the one of them which is the most convenient for our purposes.

We may view Blup(Y,X) as the quotient space of a submanifold of the deformation to the normal
cone DNC(Y,X) under the zooming action of R∗.
Recall that the group R∗ acts on DNC(Y,X) by λ.(w, t) = (w, λt) and λ.((x, ξ), 0) = ((x, λ−1ξ), 0)
(with λ, t ∈ R∗, w ∈ Y , x ∈ X and ξ ∈ (NY

X )x). According to remark 2.2.a), this action is free and
(locally) proper on the open subset DNC(Y,X) \X × R.

Definition 2.6. We put

Blup(Y,X) =
(
DNC(Y,X) \X × R

)
/R∗

and
SBlup(Y,X) =

(
DNC+(Y,X) \X × R+

)
/R∗+.

Remark 2.7. With the notation of section 2.2, Blup(Y,X) is thus obtained by gluing Y \ X =
((Y \X) × R∗)/R∗, with (Ω′ \ (X × R))/R∗ using the map Θ which is equivariant with respect to
the zooming action of R∗.
Choose a euclidean metric on NY

X . Let S = {((x, ξ), λ) ∈ Ω′; ‖ξ‖ = 1} and τ the involution of S
given by ((x, ξ), λ) 7→ ((x,−ξ),−λ). The map Θ induces a diffeomorphism of S/τ with an open
neighborhood Ω̃ of P(NY

X ) in Blup(Y,X).
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Since π̂ : DNC(Y,X) → Y is invariant by the zooming action of R∗, we obtain a natural smooth
map π̃ : Blup(Y,X)→ Y whose restriction to Y \X is the identity and whose restriction to P(NY

X )
is the canonical projection P(NY

X )→ X ⊂ Y . This map is easily seen to be proper.

Remark 2.8. (cf. remark 2.2.b) If X and Y are not assumed to be Hausdorff, we may still form
the manifold Blup(Y,X) since the action of R∗+ on DNC(Y,X) \ (X × R) is locally proper. Also,
the map Blup(Y,X)→ Y × R is locally proper.

Remark 2.9. Note that, according to remark 2.4.e), DNC(Y,X) canonically identifies with the
open subset Blup(Y ×R, X × {0}) \Blup(Y × {0}, X × {0}) of Blup(Y ×R, X × {0}). Thus, since
the map Blup(Y × R, X × {0}) → Y × R is proper, one may think at Blup(Y × R, X × {0}) as a
“local compactification” of DNC(Y,X).

Example 2.10. In the case where Y is a real vector bundle over X, Blup(Y,X) identifies non-
canonically with an open submanifold of the bundle of projective spaces P(Y × R) over X. In-
deed, in that case DNC(Y,X) = Y × R; choose a euclidian structure on the bundle Y . Consider

the smooth involution Φ from (Y \ X) × R onto itself which to (x, ξ, t) associates (x,
ξ

‖ξ‖2
, t) (for

x ∈ X, ξ ∈ Yx, t ∈ R). This map transforms the zooming action of R∗ on DNC(Y,X) into the
action of R∗ by dilations on the vector bundle Y × R over X and thus defines a diffeomorphism of
Blup(Y,X) into its image which is the open set P(Y × R) \X where X embeds into P(Y × R) by
mapping x ∈ X to the line {(x, 0, t), t ∈ R}.

Functoriality

Definition 2.11 (Functoriality). Let f be a morphism of manifold pairs:

X �
� //

fX
��

Y

f
��

X ′ �
� // Y ′

Let Uf = DNC(Y,X) \DNC(f)−1(X ′ × R) be the inverse image by DNC(f) of the complement
in DNC(Y ′, X ′) of the subset X ′ × R. We thus obtain a smooth map Blup(f) : Blupf (Y,X) →
Blup(Y ′, X ′) where Blupf (Y,X) ⊂ Blup(Y,X) is the quotient of Uf by the zooming action of R∗.

In particular,

a) If X ⊂ Y1 are (locally) closed submanifolds of a manifold Y2, then Blup(Y1, X) is a submanifold
of Blup(Y2, X).

b) Also, if Y1 is an open subset of Y2 such that X ⊂ Y1, then Blup(Y1, X) is an open subset of
Blup(Y2, X) and Blup(Y2, X) is the union of the open subsets Blup(Y1, X) and Y2 \X. This
allows to reduce to the case when Y1 is a tubular neighborhood.

Fibered products

Let X1 be a (locally closed) smooth submanifold of a smooth manifold Y1 and let f : Y2 → Y1 be a
smooth map transverse to X1. Put X2 = f−1(X1). Recall from remark 2.4.f that in this situation
DNC(Y2, X2) identifies with the fibered product DNC(Y1, X1)×Y1 Y2. Thus Blup(Y2, X2) identifies
with the fibered product Blup(Y1, X1)×Y1 Y2.

Vector bundles over blowups

Fact 2.12. Let p : E → Y be a (real) vector bundle and F → X be a subbundle of the restriction of
E to X. Then Blup(p) : Blupp(E,F )→ Blup(Y,X) is a vector bundle. Indeed, N(p) : NE

F → NY
X
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carries a natural vector bundle structure; therefore DNC(p) : DNC(E,F )→ DNC(Y,X) is also a
vector bundle, as well as its restriction to DNC(Y,X) \X ×R. Since this structure is invariant by
the action of R∗, it passes to the quotient.
The tangent bundle of Blup(Y,X) is naturally seen to be Blupp(TY, TX).
Note also that given vector bundles pi : Ei → Y (i = 1, 2) and subbundles Fi → X of the restrictions
of Ei to X, the blowup construction of a linear bundle map f : E1 → E2 such that f(F1) ⊂ F2

induces a linear bundle map Blup(f) : Blupp1(E1, F1)→ Blupp2(E2, F2).

3 Constructions of groupoids

We start this section with a quick reminder of some generalities on Lie groupoids which will be
useful for the sequel of this paper. Then we use the functoriality of the normal space, deformation
to the normal cone and blowup constructions to apply these constructions in the groupoid setting
and look at various examples.

3.1 Generalities around transversality and Morita equivalence of groupoids

3.1.1 Some notation

Let G
r,s

⇒ G(0) be a groupoid with source s, range r and space of units G(0). For any maps f : A→
G(0) and g : B → G(0), define

Gf = {(a, x) ∈ A×G; r(x) = f(a)}, Gg = {(x, b) ∈ G×B; s(x) = g(b)}

and
Gfg = {(a, x, b) ∈ A×G×B; r(x) = f(a), s(x) = g(b)} .

In particular for A,B ⊂ G(0), we put GA = {x ∈ G; r(x) ∈ A} and GA = {x ∈ G; s(x) ∈ A}; we
also put GBA = GA ∩GB.

3.1.2 Transversality

Let us recall the following definition (see e.g. [42] for details):

Definition 3.1. Let G
r,s

⇒M be a Lie groupoid with set of objects G(0) = M and Lie algebroid AG
with anchor map \. Let V be a manifold. A smooth map f : V → M is said to be transverse to
(the action of the groupoid) G if for every x ∈ V , dfx(TxV ) + \f(x)Af(x)G = Tf(x)M .
An equivalent condition is that the map (γ, y) 7→ r(γ) defined on the fibered product Gf = G ×

s,f
V

is a submersion from Gf to M .
A submanifold V of M is transverse to G if the inclusion V →M is transverse to G - equivalently,
if for every x ∈ V , the composition qx = px ◦ \x : AxG→ (NM

V )x = TxM/TxV is onto.

Remark 3.2. Let V be a (locally) closed submanifold of M transverse to a groupoid G
r,s

⇒ M .
Denote by NM

V the (total space) of the normal bundle of V in M . Upon arguing locally, we can
assume that V is compact.
By the transversality assumption the anchor \ : AG|V → TM|V induces a surjective bundle morphism

AG|V → NM
V . Choose then

a) an exponential map θ : U ′ → U which is a diffeomorphism from a neighborhood U ′ in AG→ G
of M onto a neighborhood U of M = G(0) in G such that s ◦ θ(x, ξ) = x for all x ∈ M and
ξ ∈ (AG)x.

b) a subbundle F ⊂ AG|V of the restriction AG|V such that F → NM
V is an isomorphism.
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We thus obtain a submanifold W = θ(F ∩ U ′) ⊂ G such that r : W →M is étale at every point of
V and s is a submersion from W onto V . Replacing U ′ by a an open subset, we may assume that
r : W → M is a diffeomorphism onto a tubular neighborhood of V in M , diffeomorphic to NM

V .
The map W ×V GVV ×V W → G defined by (γ1, γ2, γ3) 7→ γ1 ◦ γ2 ◦ γ−1

3 is a diffeomorphism and a
groupoid isomorphism from the pull back groupoid (see next section) (GVV )ss = W ×V GVV ×V W

onto the open subgroupoid G
r(W )
r(W ) of G.

3.1.3 Pull back

If f : V → M is transverse to a Lie groupoid G
r,s

⇒ M , then Gff is a submanifold of V × G × V
naturally equipped with a structure of Lie groupoid Gff ⇒ V . It is called the pull back groupoid.

If fi : Vi → M are transverse to G (for i = 1, 2) then we obtain a Lie groupoid Gf1tf2

f1tf2
⇒ V1 t V2.

The linking manifold Gf1

f2
is a clopen submanifold. We denote by C∗(Gf1

f2
) the closure in C∗(Gf1tf2

f1tf2
)

of the space of functions (half densities) with support in Gf1

f2
; it is a C∗(Gf1

f1
)− C∗(Gf2

f2
) bimodule.

Fact 3.3. The bimodule C∗(Gf1

f2
) is full if all the G-orbits meeting f2(V2) meet also f1(V1).

3.1.4 Morita equivalence

Two Lie groupoids G1

r,s

⇒M1 and G2

r,s

⇒M2 are Morita equivalent if there exists a groupoid G
r,s

⇒M
and smooth maps fi : Mi → M transverse to G such that the pull back groupoids Gfifi identify to
Gi and fi(Mi) meets all the orbits of G.
Equivalently, a Morita equivalence is given by a linking manifold X with extra data: surjective

smooth submersions r : X → G
(0)
1 and s : X → G

(0)
2 and compositions G1×s,rX → X, X×s,rG2 →

X, X ×r,r X → G2 and X ×s,s X → G1 with natural associativity conditions (see [33] for details).

In the above situation, X is the manifold Gf1

f2
and the extra data are the range and source maps

and the composition rules of the groupoid Gf1tf2

f1tf2
⇒M1 tM2 (see [33]).

If the map r : X → G
(0)
1 is surjective but s : X → G

(0)
2 is not necessarily surjective, then G1 is

Morita equivalent to the restriction of G2 to the open saturated subspace s(X). We say that G1 is
sub-Morita equivalent to G2.

3.1.5 Remarks on possible singularities

About corners. We wish to emphasize a remark already made in [14]:
Many manifolds and groupoids that occur in our constructions have boundaries or corners. In fact
all the groupoids we consider sit naturally inside Lie groupoids without boundaries as restrictions
to closed saturated subsets. This means that we consider subgroupoids GVV = GV of a Lie groupoid

G
r,s

⇒ G(0) where V is a closed subset of G(0). Such groupoids have a natural algebroid, adiabatic
deformation, pseudodifferential calculus, etc. that are restrictions to V and GV of the corresponding
objects on G(0) and G. We chose to give our definitions and constructions for Lie groupoids for the
clarity of the exposition. The case of a longitudinally smooth groupoid over a manifold with corners
is a straightforward generalization using a convenient restriction.

About non-Haudorffness. Our groupoids need not be Hausdorff. Precisely, for G ⇒ G(0), the
manifold G may be a non-Haudorff manifold, but G(0) will always be assumed to be Hausdorff. Of
course a non-Hausdorff manifold is locally Hausdorff.
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3.2 Normal groupoids, deformation groupoids and blowup groupoids

3.2.1 Definitions

Let Γ be a closed Lie subgroupoid of a Lie groupoid G. Using functoriality (cf. Definitions 2.3,
2.11) of the normal bundle, the DNC and the Blup constructions we may construct a normal, a
deformation and a blowup groupoid.

a) The normal bundle NG
Γ carries a Lie groupoid structure with objects NG(0)

Γ(0) : its source and

range maps are N(s) and N(r); the space of composable arrows identifies with N(G(2),Γ(2))
and its product with N(m) where m denotes both products G(2) → G and Γ(2) → Γ. We

denote by NG
Γ ⇒ NG(0)

Γ(0) this normal groupoid. Note that the source and range maps of NG
Γ

are not equal as soon as the source and range maps of G restricted to Γ are different (it is not
the vector bundle viewed as a groupoid). This is a typical example of a VB groupoid in the
sense of Pradines ([37, 23] see also the Appendix, definition A.1).

b) The manifold DNC(G,Γ) is naturally a Lie groupoid (unlike what was asserted in remark
3.19 of [21]). Its unit space is DNC(G(0),Γ(0)); its source and range maps are DNC(s) and
DNC(r); the space of composable arrows identifies with DNC(G(2),Γ(2)) and its product with
DNC(m).

c) The subset D̃NC(G,Γ) = Ur ∩ Us of DNC(G,Γ) consisting of elements whose image by

DNC(r) and DNC(s) is not in G
(0)
1 × R is an open subgroupoid of DNC(G,Γ): it is the

restriction of DNC(G,Γ) to the open subspace DNC(G(0), G
(0)
1 ) \G(0)

1 × R.

d) The group R∗ acts on DNC(G,Γ) via the zooming action by groupoid morphisms. Its action

on D̃NC(G,Γ) is (locally) proper. Therefore the open subset Blupr,s(G,Γ) = D̃NC(G,Γ)/R∗

of Blup(G,Γ) inherits a groupoid structure as well: its space of units is Blup(G
(0)
2 , G

(0)
1 ); its

source and range maps are Blup(s) and Blup(r) and the product is Blup(m).

e) In the same way, we define the groupoid SBlupr,s(G,Γ). It is the quotient of the restriction

D̃NC+(G,Γ) of D̃NC(G,Γ) to R+ by the action of R∗+.

f) The singular part of SBlupr,s(G,Γ), i.e. its restriction to the boundary SNM
V is the spherical

normal groupoid SNG
Γ . It is the quotient by the action of R∗+ of the restriction of NG

Γ ⇒ NM
V

to the open subset NM
V \ V of its objects.

An analogous result about the groupoid structure on Blupr,s(G,Γ) in the case of Γ(0) being a

hypersurface of G(0) can be found in [16, Theorem 2.8] (cf. also [17]).

3.2.2 Algebroids and anchors

The (total space of the) Lie algebroid AΓ is a closed submanifold (and a subbundle) of AG. The
functoriality enables to get the Lie algebroids of the previous construction. Indeed we have the
following:

a) The Lie algebroid of NG
Γ is NAG

AΓ . Its anchor map is N(\G) : NAG
AΓ → NTG(0)

TΓ(0) ' TNG(0)

Γ(0) .

b) The groupoid DNC(G,Γ) is the union of its open subgroupoid G×R∗ with its closed Lie sub-
groupoid NG

Γ . The Lie algebroid of G×R∗ is AG×R∗ and the anchor is just the map \G× id :
AG×R∗ → T (G(0) ×R∗+). It follows that the Lie algebroid of DNC(G,Γ) is DNC(AG,AΓ).

Its anchor map is DNC(\G) : DNC(AG,AΓ)→ DNC(TG(0), TΓ(0)) ⊂ TDNC(G(0),Γ(0)).

c) Similarly, the Lie algebroid of Blupr,s(G,Γ) is Blupp(AG,AΓ). Its anchor map is Blup(\G) :

Blupp(AG,AΓ) → Blupq(TG
(0), TΓ(0)). Here, p : AG → G(0) and q : TG(0) → G(0) denote

the bundle projections – see fact 2.12.
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3.2.3 Stability under Morita equivalence

Let G1 ⇒ G
(0)
1 and G2 ⇒ G

(0)
2 be Lie groupoids, Γ1 ⊂ G1 and Γ2 ⊂ G2 Lie subgroupoids. A Morita

equivalence of the pair (Γ1 ⊂ G1) with the pair (Γ2 ⊂ G2) is given by a pair (X ⊂ Y ) where Y is
a linking manifold which is a Morita equivalence between G1 and G2 and X ⊂ Y is a submanifold
of Y such that the maps r, s and products of Y (see page 11) restrict to a Morita equivalence X
between Γ1 and Γ2.
Then, by functoriality,

• DNC(Y,X) is a Morita equivalence between DNC(G1,Γ1) and DNC(G2,Γ2),

• DNC+(Y,X) is a Morita equivalence between DNC+(G1,Γ1) and DNC+(G2,Γ2),

• Blupr,s(Y,X) is a Morita equivalence between Blupr,s(G1,Γ1) and Blupr,s(G2,Γ2),

• SBlupr,s(Y,X) is a Morita equivalence between SBlupr,s(G1,Γ1) and SBlupr,s(G2,Γ2)...

Note that if Y and X are sub-Morita equivalences, the above linking spaces are also sub-Morita
equivalences.

3.2.4 Groupoids on manifolds with boundary

Let M be a manifold and V a hypersurface in M and suppose that V cuts M into two manifolds
with boundary M = M−∪M+ with V = M−∩M+. Then by considering a tubular neighborhood of

V in M , DNC(M,V ) = M ×R∗ ∪NM
V ×{0} identifies with M ×R, the quotient D̃NC(M,V )/R∗+

identifies with two copies of M and SBlup(M,V ) identifies with the disjoint union M−tM+. Under
this last identification, the class under the zooming action of a normal vector inNM

V \V ×{0} pointing
in the direction of M+ is an element of V ⊂M+.

Let Mb be manifold with boundary V . A piece of Lie groupoid is the restriction G = G̃Mb
Mb

to Mb of

a Lie groupoid G̃⇒M where M is a neighborhood of Mb and G̃ is a groupoid without boundary.

With the above notation, since V is of codimension 1 in M , SBlup(M,V ) = Mb t M− where
M− = M \ M̊ is the complement in M of the interior M̊ = Mb \ V of Mb in M .
Let then Γ⇒ V be a Lie subgroupoid of G̃.
We may construct SBlupr,s(G̃,Γ) and consider its restriction to the open subset Mb of SBlup(M,V ).
We thus obtain a longitudinally smooth groupoid that will be denoted SBlupr,s(G,Γ).
Note that the groupoid SBlupr,s(G,Γ)⇒Mb is the restriction to Mb of a Lie groupoid G ⇒M for

which Mb is saturated. Indeed SBlupr,s(G,Γ) is an open subgroupoid of SBlupr,s(G̃,Γ)⇒MbtM−
which is a piece of the Lie groupoid D̃NC(G̃,Γ)/R∗+ ⇒ D̃NC(M,V )/R∗+ 'M tM . We may then

let G be the restriction of D̃NC(M,V )/R∗+ to one of the copies of M .

In this way, we may treat by induction a finite number of mutually transverse hypersurfaces and in
particular groupoids on manifolds with (embeded) corners.

Remarks 3.4. a) Let us highlight that we do not assume V to be saturated for G. In particular
the boundary V can happen to be transverse to the groupoid G̃. In that case G is in fact a
manifold with corners. The blowup groupoid SBlupr,s(G,Γ) coincides with G outside V and
V becomes a saturated subset in this new groupoid.

b) If M is a manifold with boundary V and G = M×M is the pair groupoid, then SBlupr,s(G,V )
is in fact the groupoid associated with the 0 calculus in the sense of Mazzeo (cf. [24, 27, 26]),
i.e. the canonical pseudodifferential calculs associated with SBlupr,s(G,V ) is the Mazzeo-
Melrose’s 0-calculus. Indeed, the sections of the algebroid of SBlupr,s(G,V ) are exactly the
vector fields of M vanishing at the boundary V , i.e. those generating the 0-calculus.

c) In a recent paper [34], an alternative description of SBlupr,s(G,V ) is given under the name of
edge modification for G along the “AG-tame manifold” V , thus in particular V is transverse
to G. This is essentially the gluing construction described in 3.3.4 below.
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3.3 Examples of deformation groupoids and blowup groupoids

We examine some particular cases of inclusions of groupoids G1 ⊂ G2. The various constructions of
deformation to the normal cone and blow-up allow us to recover many well known groupoids.
As already noted in section 3.1.5, our constructions immediately extend to the case where we restrict
to a closed saturated subset of a smooth groupoid, in particular for manifolds with corners.

3.3.1 Inclusion F ⊂ E of vector bundles – seen as groupoids

Let E be a real vector space - considered as a group - and F a vector subspace of E. The inclusion
of groups F → E gives rise to a groupoid DNC(E,F ). Using any complementary subspace of F in
E, the space E can be seen as a vector bundle over F ; we thus identify the groupoid DNC(E,F )
with E × R⇒ R. Its C∗-algebra identifies then with C0(E∗ × R).
More generally, if F is a vector-subbundle of a vector bundle E over a manifold M (considered as
a family of groups indexed by M), then the groupoid DNC(E,F )⇒ M × R identifies with E × R
and its C∗-algebra is C0(E∗ × R).
Let pE : E → M be a vector bundle over a manifold M and let V be a submanifold of M . Let
pF : F → V be a subbundle of the restriction of E to V . We use a tubular construction and find an
open subset U of M which is a vector bundle π : Q→ V . Using π, we may extend F to a subbundle
FU of the restriction to F on U . Using that, we may identify DNC(E,F ) with the open subset
E × R∗ ∪ p−1

E (U)× R of E × R. Its C∗-algebra identifies then with C0(E∗ × R∗ ∪ p−1
E∗(U)× R).

3.3.2 Inclusion G(0) ⊂ G: adiabatic groupoid

The deformation to the normal cone DNC(G,G(0)) is the adiabatic groupoid Gad ([32, 35]), it is
obtained by using the deformation to the normal cone construction for the inclusion of G(0) as a Lie
subgroupoid of G. The normal bundle NG

G(0) is the total space of the Lie algebroid A(G) of G. Note
that in this situation its groupoid structure coincides with its vector bundle structure. Thus,

DNC(G,G(0)) = G× R∗ ∪ A(G)× {0}⇒ G(0) × R .

We often denote DNC(G,G(0)) by Gad and G+
ad, G

[0,1]
ad , G

[0,1)
ad its restriction respectively to the

saturated subset G(0) × R+, to G(0) × [0, 1] and to G(0) × [0, 1) of G(0) × R = G
(0)
ad .

Note that Blup(G(0), G(0)) = ∅ = Blupr,s(G,G
(0)).

The particular case where G is the pair groupoid M ×M is the original construction of the “tangent
groupoid” of Alain Connes ([9]).

3.3.3 Gauge adiabatic groupoid

Start with a Lie groupoid G⇒ V .

Let G× (R× R)
r̃,s̃

⇒ V × R be the product groupoid of G with the pair groupoid over R.
First notice that since V × {0} is a codimension 1 submanifold in V × R, SBlup(V × R, V × {0})
is canonically isomorphic to V × (R− tR+). Then SBlupr̃,s̃(G× (R×R), V × {(0, 0)})V×R+

V×R+
is the

semi-direct product groupoid Gad(V × R+) oR∗+:

SBlupr̃,s̃(G× (R× R), V × {(0, 0)})V×R+

V×R+
= G+

ad oR∗ ⇒ V × R+ .

In other words, SBlupr̃,s̃(G × (R × R), V × {(0, 0)})V×R+

V×R+
is the gauge adiabatic groupoid used in

[12]; we often denote it by Gga .

Indeed, as G× (R×R) is a vector bundle over G, DNC(G× (R×R), V ×{(0, 0)}) ' DNC(G,V )×
R2 (remark 2.4.e). Under this identification, the zooming action of R∗ is given by λ.(w, t, t′) =
(λ.w, λ−1t, λ−1t′). The maps DNC(s̃) and DNC(r̃) are respectively (w, t, t′) 7→ (DNC(s)(w), t′)
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and (w, t, t′) 7→ (DNC(r)(w), t). It follows that SBlupr̃,s̃(G× (R×R), V × {(0, 0)}) is the quotient
by the diagonal action of R∗+ of the open subset DNC(G,V )× (R∗)2 of DNC+(G,V )× R2.
According to the description of the groupoid of a group action on a groupoid given in [14, section
2.3] it is isomorphic to DNC(G,V )+ oR∗+ × {−1,+1}2 where {−1,+1}2 is the pair groupoid over
{−1,+1}.

3.3.4 Inclusion of a transverse submanifold of the unit space

Let G be a Lie groupoid with set of objects M = G(0) and let V be a transverse submanifold of M .

Put G̊ = G
M\V
M\V . Upon arguing locally, we can assume that V is compact.

By Remark 3.2, V admits a tubular neighborhood W ' NM
V such that GWW is the pull back of GVV

by the retraction q : W → V .

The DNC groupoid DNC(GWW , V ) identifies with the pull back groupoid (DNC(GVV , V ))qq of the

adiabatic deformation DNC(GVV , V ) = (GVV )ad by the map q : NM
V → V .

The (spherical) blowup groupoid SBlupr,s(G
W
W , V ) identifies with the pull back groupoid (DNC+(GVV , V )o

R∗+)pp of the gauge adiabatic deformation DNC+(GVV , V )oR∗+ = (GVV )ga by the map p : SNM
V → V .

In order to get SBlupr,s(G,V ), we then may glue (DNC+(GVV , V ) oR∗+)pp with G̊ in their common

open subset
(
(GVV )qq

)W\V
W\V ' G

W\V
W\V .

3.3.5 Inclusion GVV ⊂ G for a transverse hypersurface V of G: b-groupoid

If V is a hypersurface of M , the blowup Blup(M×M,V ×V ) is just the construction of Melrose of the
b-space. Its open subspace Blupr,s(M×M,V ×V ) is the associated groupoid of Monthubert [30, 31].
Moreover, if G is a groupoid on M and V is transverse to G we can form the restriction groupoid
GVV ⊂ G which is a submanifold of G. The corresponding blow up construction Blupr,s(G,G

V
V )

identifies with the fibered product Blupr,s(M ×M,V × V )×M×M G (cf. remark 2.4.f).

Iterating (at least locally) this construction, we obtain the b-groupoid of Monthubert for manifolds
with corners - cf. [30, 31].

Remark 3.5. The groupoid Blupr,s(G,V ) corresponds to inflating all the distances when getting
close to V .

The groupoid Blupr,s(G,G
V
V ) is a kind of cylindric deformation groupoid which is obtained by

pushing the boundary V at infinity but keeping the distances along V constant.

Remark 3.6. Intermediate examples between these two are given by a subgroupoid Γ⇒ V of GVV .
In the case where G = M ×M , such a groupoid Γ is nothing else than the holonomy groupoid
Hol(V,F) of a regular foliation F of V (with trivial holonomy groups). The groupoid SBlupr,s(M×
M,Hol(V,F)) is a holonomy groupoid of a singular foliation of M : the sections of its algebroid. Its
leaves are M \ V and the leaves of (V,F). The corresponding calculus, when M is a manifold with
a boundary V is Rochon’s generalization ([38]) of the φ calculus of Mazzeo and Melrose ([25]).

Iterating (at least locally) this construction, we obtain the holonomy groupoid associated to a
stratified space in [11].

3.3.6 Inclusion GVV ⊂ G for a saturated submanifold V of G: shriek map for immersions

Suppose now that V is saturated, thus GVV = GV = GV .

In such a situation the groupoidGVV acts on the normal bundleNG
GV

V
= r∗(NG(0)

V ) andDNC(G,GVV )⇒

DNC(G(0), V ) coincides with the normal groupoid of the immersion ϕ : GVV → G. This construction
was defined in the case of foliation groupoids in [21, section 3] and was used in order to define ϕ! as
its associated KK-element.
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3.3.7 Inclusion G1 ⊂ G2 with G
(0)
1 = G

(0)
2

This is the case for the tangent and adiabatic groupoid discussed above. Let us mention two other
kinds of this situation1 that can be encountered in the literature:

a) The case of a subfoliation F1 of a foliation F2 on a manifold M : shriek map for submersion.
As pointed out in remark 3.19 of [21] the corresponding deformation groupoid DNC(G2, G1)
gives an alternative construction of the element ϕ! where ϕ : M/F1 →M/F2 is a submersion
of leaf spaces.

b) The case of a subgroup of a Lie group.

• If K is a maximal compact subgroup of a reductive Lie group G, the connecting map
associated to the exact sequence of DNC(G,K) is the Dirac extension mapping the
twisted K-theory of K to the K-theory of C∗r (G) (see [18]).

• In the case where Γ is a dense (nonamenable) countable subgroup of a compact Lie group
K, the groupoid DNC(K,Γ) was used in [19] in order to produce a Hausdorff groupoid
for which the Baum-Connes map is not injective.

3.3.8 Wrong way functoriality

Let f : G1 → G2 be a morphism of Lie groupoids. If f is an (injective) immersion the construction
of DNC+(G2, G1) gives rise to a short exact sequence

0 −→ C∗(G2 × R∗+) −→ C∗(DNC+(G2, G1)) −→ C∗(NG2
G1

) −→ 0.

and consequently to a connecting map from the K-theory of the C∗-algebra of the groupoid NG2
G1

,
which is a VB groupoid over G1, to the K-theory of C∗(G2) (cf. Appendix, def. A.1 for a discussion
on VB groupoids). This wrong way functoriality map will be discussed in the next section.

More generally let G = G
(0)
1 ×G2×G(0)

1 be the product of G2 by the pair groupoid of G
(0)
1 . Assume

that the map x 7→ (r(x), f(x), s(x)) is an immersion from G1 → G.
The above construction gives a map from K∗(C

∗(N GG1
)) to K∗(C

∗(G)) which is isomorphic to
K∗(C

∗(G2)) since the groupoids G2 and G are canonically Morita equivalent.

3.3.9 Some more recent examples

Since the present paper appeared as a preprint, several papers have used it and applied our DNC
and Blup constructions in order to build interesting groupoids illustrating important geometric
phenomena. See e.g. [1, 28, 29, 36, 40, 42, 41].

4 The C∗-algebra of a deformation and of a blowup groupoid, full
symbol and index map

Let G ⇒ M be a Lie groupoid and Γ ⇒ V a Lie subgroupoid of G. The groupoids DNC+(G,Γ)
and SBlupr,s(G,Γ) that we constructed admit the closed saturated subsets NM

V × {0} and SNM
V

respectively. We apply results of [14] in order to compute various KK-elements involved in index
theory for such situation.

In order to shorten the notation we put M̊ = M \ V .
The full symbol algebras are the quotient C∗-algebras:

• ΣDNC+(G,Γ) = Ψ∗(DNC+(G,Γ))/C∗(G× R+∗);

1Note that in this case Blup(G
(0)
2 , G

(0)
1 ) = ∅, whence Blupr,s(G2, G1) = ∅.
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• ΣSBlup(G,Γ) = Ψ∗(SBlupr,s(G,Γ))/C∗(GM̊
M̊

).

They give rise to the exact sequences

0 −→ C∗(GM̊
M̊

) −→ C∗(SBlupr,s(G,Γ)) −→ C∗(SNG
Γ ) −→ 0 (E∂SBlup)

and
0 −→ C∗(G× R∗+) −→ C∗(DNC+(G,Γ)) −→ C∗(NG

Γ ) −→ 0 (E∂DNC+
)

of groupoid C∗-algebras as well as index type ones

0 −→ C∗(GM̊
M̊

) −→ Ψ∗(SBlupr,s(G,Γ)) −→ ΣSBlup(G,Γ) −→ 0 (E ĩnd
SBlup)

and
0 −→ C∗(G× R∗+) −→ Ψ∗(DNC+(G,Γ)) −→ ΣDNC+(G,Γ) −→ 0 (E ĩnd

DNC+
)

We will compare the K-theory exact sequences given by DNC and by SBlup.
If V is AG-small (see notation 4.5 below), we will show that, in a sense, DNC and SBlup give rise
to equivalent exact sequences - both for the “connecting” ones and for the “index” ones.
We will then compare these KK-elements with a coboundary construction.
We will compute these exact sequences when Γ = V ⊂ M . Finally, we will study a refinement of
these constructions using relative K-theory.

4.1 “DNC” versus “Blup”

Let Γ⇒ V be a submanifold and a subgroupoid of a Lie-groupoid G⇒M . We will further assume
that the groupoid Γ is amenable. We still put M̊ = M \ V and let N̊G

Γ be the restriction of the
groupoid NG

Γ to the open subset N̊M
V = NM

V \ V of its unit space NM
V .

4.1.1 The connecting KK-element

As the groupoid Γ is amenable we have exact sequences both for the reduced and for the maximal
C∗-algebras:

0 −→ C∗(GM̊
M̊

) −→ C∗(SBlupr,s(G,Γ)) −→ C∗(SNG
Γ ) −→ 0 (E∂SBlup)

and
0 −→ C∗(G× R∗+) −→ C∗(DNC+(G,Γ)) −→ C∗(NG

Γ ) −→ 0 (E∂DNC+
)

By amenability, these exact sequences admit completely positive cross sections and therefore define

elements ∂G,ΓSBlup ∈ KK
1(C∗(N̊G

Γ /R∗+), C∗(GM̊
M̊

)) and ∂G,ΓDNC+
∈ KK1(C∗(NG

Γ ), C∗(G× R∗+)).

With the notation of section 3.2, write DNC+ for DNC restricted to R+ and D̃NC+ for D̃NC
restricted to R+.
By [14, section 5.3], we have a diagram where the vertical arrows are KK1-equivalences and the
squares commute in KK-theory.

0 // C∗(GM̊
M̊

) //

β′

C∗(SBlupr,s(G,Γ)) //

β

C∗(N̊G
Γ /R∗+) //

β′′

0 (E∂SBlup)

0 // C∗(GM̊
M̊
× R∗+) // C∗(D̃NC+(G,Γ)) // C∗(N̊G

Γ ) // 0 (E∂
D̃NC+

)

Denote by ∂G,Γ
D̃NC+

the connecting KK-element associated to (E∂
D̃NC+

). We thus have, according to

[14, prop. 5.3]:

Fact 4.1. ∂G,ΓSBlup ⊗ β
′ = −β′′ ⊗ ∂G,Γ

D̃NC+

∈ KK1(C∗(SNG
Γ ), C∗(GM̊

M̊
× R∗+)).
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We also have a commutative diagram where the vertical maps are inclusions:

0 // C∗(GM̊
M̊
× R∗+) //

j′

��

C∗(D̃NC+(G,Γ)) //

j

��

C∗(N̊G
Γ ) //

j′′

��

0

0 // C∗(G× R∗+) // C∗(DNC+(G,Γ)) // C∗(NG
Γ ) // 0

(4.1)

We thus find

Fact 4.2. (j′′)∗(∂G,ΓDNC+
) = j′∗(∂

G,Γ

D̃NC+

) ∈ KK1(C∗(N̊G
Γ ), C∗(G× R∗+)).

4.1.2 The full symbol index

We now compare the elements ĩnd
G,Γ

SBlup ∈ KK1(ΣSBlup(G,Γ), C∗(GM̊
M̊

)) and

ĩnd
G,Γ

DNC+
∈ KK1(ΣDNC+(G,Γ), C∗(G× R∗+)) defined by the semi-split exact sequences:

0 −→ C∗(GM̊
M̊

) −→ Ψ∗(SBlupr,s(G,Γ)) −→ ΣSBlup(G,Γ) −→ 0 (E ĩnd
SBlup)

and
0 −→ C∗(G× R∗+) −→ Ψ∗(DNC+(G,Γ)) −→ ΣDNC+(G,Γ) −→ 0 (E ĩnd

DNC+
)

Put Σ
D̃NC+

(G,Γ) = Ψ∗(D̃NC+(G,Γ))/C∗(GM̊
M̊
×R∗+). By [14, prop. 5.4], we have a diagram where

the vertical arrows are KK1-equivalences and the squares commute in KK-theory.

0 // C∗(GM̊
M̊

) //

β′

Ψ∗(SBlupr,s(G,Γ)) //

βΨ

ΣSBlup(G,Γ) //

βΣ

0

0 // C∗(GM̊
M̊
× R∗+) // Ψ∗(D̃NC+(G,Γ)) // Σ

D̃NC+
(G,Γ) // 0

We let ĩnd
G,Γ

D̃NC+
∈ KK1(Σ

D̃NC+
(G,Γ), C∗(GM̊

M̊
×R∗+)) be the connecting map induced by the second

exact sequence. We thus have:

Fact 4.3. ĩnd
G,Γ

SBlup ⊗ β′ = −βΣ ⊗ ĩnd
G,Γ

D̃NC+
∈ KK1(ΣSBlup(G,Γ), C∗(GM̊

M̊
× R∗+)).

We also have a commutative diagram where the vertical maps are inclusions:

0 // C∗(GM̊
M̊
× R∗+) //

j′

��

Ψ∗(D̃NC+(G,Γ)) //

jΨ

��

Σ
D̃NC+

(G,Γ) //

jΣ

��

0

0 // C∗(G× R∗+) // Ψ∗(DNC+(G,Γ)) // ΣDNC+(G,Γ) // 0

(4.2)

We thus find:

Fact 4.4. j∗Σ(ĩnd
G,Γ

DNC+
) = j′∗(ĩnd

G,Γ

D̃NC+
) ∈ KK1(Σ

D̃NC+
(G,Γ), C∗(G× R∗+)).

4.1.3 When V is AG-small

If V is small in each G orbit, i.e. if the Lebesgue measure (in the manifold Gx) of GxV is 0 for

every x, it follows from prop. 4.6 below that the inclusion i : C∗(GM̊
M̊

) ↪→ C∗(G) is an isomorphism.

Also, if M̊ meets all the orbits of G, the inclusion i is a Morita equivalence. In these cases ∂G,ΓDNC+

determines ∂G,ΓSBlup.
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Definition 4.5. We will say that V is AG-small if, for every x ∈ V , the composition AGx
\x−→

TxM −→ (NM
V )x is not the zero map

If V is AG-small, then the orbits of the groupoid NG
Γ are never contained in the 0 section, i.e.

they meet the open subset N̊M
V , and in fact the set V × {0} is small in every orbit of the groupoid

DNC(G,Γ). It follows that the map j is an isomorphism - as well of course as j′ and j′′ of diagram
(4.1). In that case, ∂G,ΓDNC+

and ∂G,ΓSBlup correspond to each other under these isomorphisms.

Proposition 4.6. (cf. [20, 13]) Let G ⇒ Y be a Lie groupoid and let Z ⊂ Y be a (locally closed)

submanifold. Assume that, for every x ∈ Z, the composition AGx
\x−→ TxY −→ (NY

Z )x is not the

zero map. Then the inclusion C∗(GY \ZY \Z )→ C∗(G) is an isomorphism.

Proof. For every x ∈ Z, we can find a neighborhood U of x ∈ Y , a section X of AG such that,
for every y ∈ U , \y(X(y)) 6= 0 and, if y ∈ U ∩ Z, \y(X(y)) 6∈ Ty(Z). Denote by F the foliation
of U associated with the vector field X. It follows from [20, Lemme 4] that C0(U \ Z)C∗(U,F) =
C∗(U,F). As C∗(U,F) acts in a nondegenerate way on the Hilbert-C∗(G) module C∗(GU ), we
deduce that C0(U \ Z)C∗(GU ) = C∗(GU ). We conclude using a partition of the identity argument
that Cc(Y \ Z)C∗(G) = Cc(Y )C∗(G), whence C0(Y \ Z)C∗(G) = C0(Y )C∗(G) = C∗(G).

Proposition 4.7. We assume that Γ is amenable and that V is AG-small.

Then, the inclusions jΣ : Σ
D̃NC+

(G,Γ)→ ΣDNC+(G,Γ), jΨ : Ψ∗(D̃NC+(G,Γ))→ Ψ∗(DNC+(G,Γ))

and jsymb : C0(SA∗(D̃NC+(G,Γ)))→ C0(SA∗(DNC+(G,Γ))) are KK-equivalences.

Proof. We have a diagram

0

��

0 // C∗(D̃NC+(G,Γ)) //

j

��

Ψ∗(D̃NC+(G,Γ)) //

jΨ
��

C0(SA∗(D̃NC+(G,Γ))) //

jsymb

��

0

0 // C∗(DNC+(G,Γ)) // Ψ∗(DNC+(G,Γ)) // C0(SA∗(DNC+(G,Γ)) //

��

0

C0(SA∗G|V × R+)

��
0

As j is an equality, we find an exact sequence

0 −→ Ψ∗(D̃NC+(G,Γ))
jΨ−→ Ψ∗(DNC+(G,Γ)) −→ C0(SA∗G|V × R+) −→ 0.

As j′ : C∗(GM̊
M̊
× R∗+) → C∗(G × R∗+) is also an equality, we find (using diagram (4.2)) an exact

sequence

0 −→ Σ
D̃NC+

(G,Γ))
jΣ−→ ΣDNC+(G,V ) −→ C0(SA∗G|V × R+) −→ 0.

As the algebra C0(SA∗G|V × R+) is contractible, we deduce that jsymb and then jΨ and jΣ are
KK-equivalences.

As a summary of these considerations, we find:
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Theorem 4.8. Let G ⇒ M be a Lie groupoid and Γ ⇒ V a Lie subgroupoid of G. Assume that Γ

is amenable and put M̊ = M \ V . Let i : C∗(GM̊
M̊

) → C∗(G) be the inclusion. Put β̂′′ = j′′∗ (β
′′) ∈

KK1(C∗(SNG
Γ ), C∗(NG

Γ )) and β̂Σ = (jΣ)∗(βΣ) ∈ KK1(ΣSBlup(G,Γ),ΣDNC+(G,V )).

a) We have equalities

• ∂G,ΓSBlup ⊗ [i] = β̂′′ ⊗ ∂G,ΓDNC+
∈ KK1(C∗(SNG

Γ ), C∗(G)) and

• ĩnd
G,Γ

SBlup ⊗ [i] = β̂Σ ⊗ ĩnd
G,Γ

DNC+
∈ KK1(C∗(ΣSBlup(G,Γ), C∗(G)))

b) If V is AG-small, then i is an isomorphism and the elements β̂′′ and β̂Σ are invertible.

�

4.2 The KK-element associated with DNC

The connecting element ∂G,ΓDNC+
can be expressed in the following way: let G be the restriction of

DNC(G,Γ) to [0, 1], i.e. G = NG
Γ × {0} ∪G× (0, 1]. We have a semi-split exact sequence:

0→ C∗(G× (0, 1])→ C∗(G)
ev0−→ C∗(NG

Γ )→ 0 .

As C∗(G× (0, 1]) is contractible, ev0 is a KK-equivalence. Let ev1 : C∗(G)→ C∗(G) be evaluation
at 1 and let δGΓ = [ev0]−1 ⊗ [ev1] ∈ KK(C∗(NG

Γ ), C∗(G)). Let [Bott] ∈ KK1(C, C0(R∗+)) be the
Bott element.
We then have a diagram:

0 // C∗(G(0, 1)) // C∗(DNC(G,Γ))
ev0 //

��

C∗(NG
Γ ) //

��

0 (E∂DNC+
)

0 // C∗(G(0, 1)) // C∗(G)
ev0⊕ev1 // C∗(NG

Γ )⊕ C(G) // 0

0 // C∗(G(0, 1)) // C∗(G(0, 1])
ev1 //

OO

C∗(G) //

OO

0 (E−Bott)

It follows that, [ev0]⊗∂G,ΓDNC+
+[ev1]⊗∂−Bott = 0. As ∂−Bott define the opposite of the Bott element

in KK1(C∗(G), C∗(G× (0, 1)), we find

Fact 4.9. ∂G,ΓDNC+
= δGΓ ⊗

C
[Bott].

Consider now the groupoid G = G[0,1]
ad . It is a family of groupoids indexed by [0, 1]× [0, 1]:

• its restriction to {s} × [0, 1] for s 6= 0 is G
[0,1]
ad ;

• its restriction to {0} × [0, 1] is (NG
Γ )

[0,1]
ad ;

• its restriction to [0, 1]× {s} for s 6= 0 is G;

• its restriction to [0, 1]× {0} is the algebroid AG which is the restriction of DNC(AG,AΓ) to
[0, 1].

For every locally closed subset X ⊂ [0, 1]× [0, 1], denote by GX the restriction of G to X.
For every closed subset X ⊂ [0, 1]× [0, 1], denote by qX : C∗(G)→ C∗(GX) the restriction map.
We thus have the following commutative diagram:
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C∗(NG
Γ )

δGΓ

,,G //oo C∗(G)

C∗((NG
Γ )

[0,1]
ad )

��

OO

C∗(G)

q(0,0)uukkk
kkk

kkk
kkk

kkk

q(0,1)

iiSSSSSSSSSSSSSSSS

q(1,1)

66mmmmmmmmmmmmmmm

q(1,0)

((QQ
QQQ

QQQ
QQQ

QQQ
Q

q{1}×[0,1] //

q[0,1]×{0}

��

q{0}×[0,1]oo

q[0,1]×{1}

OO

C∗(G
[0,1]
ad )

OO

��
C∗(NAG

AΓ )

indNG
Γ

;;

δAG
AΓ

22C∗(AG, )oo // C0(A∗G)

indG

cc

For every locally closed subset T ⊂ [0, 1], the C∗-algebras C∗(G(0,1]×T ) and C∗(GT×(0,1]) are

contractible as well as C∗(G[0,1]2\{0,0)}). It follows that q{0}×[0,1], q[0,1]×{0} and q{(0,0)} are KK-
equivalences.
Now [q(0,0)]

−1 ⊗ [q(0,1)] = indNG
Γ

and it follows that [q(0,0)]
−1 ⊗ [q(1,1)] = indNG

Γ
⊗ δGΓ .

In the same way, [q(0,0)]
−1 ⊗ [q(1,0)] = δAGAΓ and it follows that [q(0,0)]

−1 ⊗ [q(1,1)] = δAGAΓ ⊗ indG.

Finally, it follows from example 3.3.1 that δAGAΓ is associated with a morphism ϕ : C0(A∗(NG
V )) ↪→

C0(A∗G) corresponding to an inclusion of A∗(NG
Γ ) in A∗G as a tubular neighborhood.

We thus have established:

Fact 4.10. indNG
Γ
⊗ δGΓ = [ϕ]⊗ indG.

Similar groupoids and commutative diagrams for the special case of V being the normal bundle of
the inclusion of a manifold M into some Rn, G = V × V and Γ = V ×

M
V appeared in section 6.1 of

[10] in order to give a K-theoretical proof using groupoids of the Atiyah-Singer index theorem.

4.3 The case of a submanifold of the space of units

Let G be a Lie groupoid with objects M and let Γ = V ⊂M be a closed submanifold of M . In this
section, we push further the computations of the connecting maps and indices i.e. the connecting

maps of the exact sequences (E∂SBlup), (E∂DNC+
), (E ĩnd

SBlup) and (E ĩnd
DNC+

).

Let N = NG
V and N ′ = NM

V be the normal bundles. We identify N ′ with a subbundle of N by
means of the inclusion M ⊂ G. The submersions r, s : G → M give rise to bundle morphisms
rN , sN : N → N ′ that are sections of the inclusion N ′ → N . By construction, using remark A.3.a),
the groupoid DNC(G,V ) is the union of G × R∗ with the family of linear groupoids NrN ,sN (N).

It follows that SBlupr,s(G,V ) is the union of G
M\V
M\V with the family (SN, rN , sN ) of spherical

groupoids.

If V is transverse to G, the bundle map rN − sN : N = NG
V → N ′ = NM

V is surjective; it follows
that

• NrN ,sN (N) identifies with the pull-back groupoid
(
A(GVV )

)q
q

where q : N ′ → V is the projection,

• (SN, rN , sN ) with the pull-back groupoid
(
A(GVV ) oR∗+

)p
p

where p : S(N ′)→ V is the projec-
tion.

4.3.1 Connecting map and index map

From prop. A.6, [14, propositions 4.1, 4.6, 4.7] and fact 4.10, we find

Proposition 4.11. a) The index element indNG
V
∈ KK(C0(A∗NG

V ), C∗(NG
V )) is invertible.

b) The inclusion j : ΣNM
V ×{0}

(DNC+(G,V )) ↪→ ΣDNC+(G,V ) is invertible in KK-theory.
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c) The C∗-algebra ΣDNC+(G,V ) is naturally KK1-equivalent with the mapping cone Cχ of the

map χ : C0(A∗G× R∗+)→ C0(DNC+(M,V )) defined by χ(f)(x) =

{
f(x, 0) if x ∈M × R∗+
0 if x ∈ NM

V .

d) The connecting element ∂G,VDNC+
∈ KK1(C∗(NG

V ), C∗(G × R∗+)) = KK(C∗(NG
V ), C∗(G)) is

δGV = ind−1
NG

V

⊗ [ϕ] ⊗ indG where ϕ : C0(A∗NG
V ) → C0(A∗G) is the inclusion using the tubular

neighborhood construction.

e) Under the KK1 equivalence of c), the full index element

ĩnd
G,V

DNC+
∈ KK1(ΣDNC+(G,V ), C∗(G× R∗+)) = KK1(Cχ, C

∗(G))

is q∗([Bott]⊗
C

indG) where q : Cχ → C0(A∗G× R∗+) is evaluation at 0. �

The element [χ] ∈ KK(C0(A∗G×R∗+), C0(DNC+(M,V ))) is the Kasparov product of the “Euler ele-
ment” of the bundle A∗G which is the class in KK(C0(A∗G), C0(M)) = KK(C0(A∗G×R∗+), C0(M×
R∗+)) of the map x 7→ (x, 0) with the inclusion C0(M × R∗+) → C0(DNC+(M,V )). It follows that
[χ] is often the zero element of KK(C0(A∗G × R∗+), C0(DNC+(M,V ))). In particular, this is the
case when the Euler class of the bundle A∗G vanishes. In that case, the algebra ΣDNC+(G,V ) is
KK-equivalent to C0(A∗G)⊕ C0(DNC+(M,V )).

If V is AG small, then, by theorem 4.8, ∂G,VSBlup and ĩnd
G,V

SBlup are immediately deduced from propo-
sition 4.11.

Proposition 4.12. Let G ⇒ M be a Lie groupoid and let V ⊂ M be a AG small submanifold.
Then the algebra C∗(N̊G

V ) is naturally KK1-equivalent to C0(U) where U is a tubular neighborhood
of V in A∗G. Under this KK-equivalence, the connecting element of the exact sequence (E∂SBlup)
is the composition of the index element [indG] ∈ KK(C0(A∗G), C∗(G)) with the inclusion C0(U)→
C0(A∗G). �

Remark 4.13. Let Mb be a manifold with boundary and V = ∂Mb. Put M̊ = Mb \ V . Let G be a
piece of Lie groupoid on Mb in the sense of section 3.2.4. Thus G is the restriction of a Lie groupoid
G̃⇒M , where M is a neighborhood of Mb. Recall that in this situation, SBlup(M,V ) = MbtM−,
where M = Mb ∪M− and M ∩M− = V , and we let SBlupr,s(G,V ) ⇒ Mb be the restriction of

SBlupr,s(G̃, V ) to Mb.

Let us denote by N̊G
V the open subset of N G̃

V made of (normal) tangent vectors whose image under
the differential of the source and range maps of G̃ are nonvanishing elements of NM

V pointing in the

direction of Mb. The groupoid SBlupr,s(G,V ) is the union N̊G
V /R∗+ ∪GM̊M̊ .

We have exact sequences

0→ C∗(GM̊
M̊

)→ C∗(SBlupr,s(G,V ))→ C∗(N̊G
V /R∗+)→ 0

0→ C∗(GM̊
M̊

)→ Ψ∗(SBlupr,s(G,V ))→ ΣSBlup(G,V )→ 0.

As V is of codimension 1, we find that V is AG̃-small if and only if it is transverse to G̃. In that case,
Proposition 4.11 computes the KK-theory of C∗(N̊G

V /R∗+) and of ΣSBlup(G,V ) and the KK-class
of the connecting maps of these exact sequences.
In particular, we obtain a six term exact sequence

K0(C(Mb)) // K0(ΣSBlup(G,V )) // K1(C0(A∗GM̊
M̊

))

χ

��
K0(C0(A∗GM̊

M̊
))

χ

OO

K1(ΣSBlup(G,V ))oo K0(C(Mb))oo
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and the index map K∗(ΣSBlup(G,V )) → K∗+1(GM̊
M̊

) is the composition of K∗(ΣSBlup(G,V )) →
K∗+1(C0(A∗GM̊

M̊
)) with the index map of the groupoid GM̊

M̊
.

This holds, in particular, if G = Mb×Mb since the boundary V = ∂Mb is transverse to G̃ = M×M .
Note that if Mb is connected with nonempty boundary, χ = 0 (in KK(C0(T ∗M̊), C0(Mb))) so that
we obtain a (noncanonically) split short exact sequence:

0 // K∗(C0(Mb)) // K∗(ΣSBlup(G,V )) // K∗+1(C0(A∗GM̊
M̊

)) // 0.

4.3.2 The index map via relative K-theory

It follows now from [14, prop. 4.8]:

Proposition 4.14. Let ψDNC : C0(DNC+(M,V )) → Ψ∗(DNC+(G,V )) be the inclusion map
which associates to a (smooth) function f the order 0 (pseudo)differential operator of multiplication
by f and σfull : Ψ∗(DNC+(G,V )) → ΣDNC+(G,V ) the full symbol map. Put µDNC = σfull ◦
ψDNC . Then the relative K-group K∗(µDNC) is naturally isomorphic to K∗+1(C0(A∗G)). Under
this isomorphism, indrel : K∗(µDNC)→ K∗(C

∗(G× R∗+)) = K∗+1(C∗(G)) identifies with indG. �

Let us say also just a few words on the relative index map for SBlupr,s(G,V ), i.e. for the map
µSBlup : C0(SBlup+(M,V )) → ΣSBlup(G,V ) which is the composition of the inclusion ψSBlup :
C0(SBlup(M,V ) → Ψ∗(SBlupr,s(G,V )) with the full index map σfull : Ψ∗(SBlupr,s(G,V )) →
ΣSBlup(G,V )), and the corresponding relative index map indrel : K∗(µSBlup) → K∗(C

∗(GM̊
M̊

)). We
restrict to the case when V is AG small. Equivalently we wish to compute the relative index map

indrel : K∗(µD̃NC)→ K∗+1(C∗(GM̊
M̊

)), where µ
D̃NC

: C0(D̃NC+(M,V ))→ Σ
D̃NC+

(G,V ).

We have a short exact sequence

0 // C0(D̃NC+(M,V )) // C0(DNC+(M,V )) // C0(V × R+) // 0

and it follows that the inclusion C0(D̃NC+(M,V ))→ C0(DNC+(M,V )) is a KK-equivalence.

Since the inclusions Ψ∗(D̃NC+(G,V )) → Ψ∗(DNC+(G,V )) and Σ
D̃NC+

(G,V ) → ΣDNC+(G,V )

are also KK-equivalences (prop. 4.7), it follows that the inclusion Cµ
D̃NC

→ CµDNC of mapping

cones is a KK-equivalence - and therefore the relative K-groups K∗(µD̃NC) and K∗(µDNC) are
naturally isomorphic. Using this, together with the Connes-Thom isomorphism, we deduce:

Corollary 4.15. We assume that V is AG small

a) The relative K-group K∗(µD̃NC) is naturally isomorphic to K∗+1(C0(A∗G)). Under this iso-
morphism, indrel : K∗(µD̃NC)→ K∗(C

∗(G× R∗+)) = K∗+1(C∗(G)) identifies with indG.

b) The relative K-group K∗(µSBlup) is naturally isomorphic to K∗(C0(A∗G)). Under this iso-
morphism, indrel : K∗(µSBlup)→ K∗(C

∗(G)) identifies with indG. �

5 Application: a Boutet de Monvel type calculus

Recall (see [4, 5, 15, 39]) that if M is a manifold with boundary ∂M , the Boutet de Monvel algebra

consists of matrices of the form

(
Φ+ + S P
T Q

)
. Without entering details, let us say that

• Φ is a pseudodifferential operator on M̃ (a smooth neighborhood of M) satisfying a property
called the transmission property, and Φ+ the corresponding operator on smooth functions on
M ;

• S is a singular Green operator acting on M ;
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• P is a singular Poisson (or Potential) operator mapping functions on ∂M to functions on M ;

• T is a singular trace operator mapping functions on M to functions on ∂M ;

• Q is a (usual) pseudodifferential operator on ∂M .

The Boutet de Monvel algebra has two symbol maps:

• A “usual” symbol

(
Φ+ + S P
T Q

)
7→ σ(Φ) (often called “interior symbol”) whose kernel is the

algebra of operators of the form

(
S P
T Q

)
.

• A non-commutative one of the form

(
Φ+ + S P
T Q

)
7→
(
σGreen(Φ+ + S) σPoisson(P )

σTrace(T ) σ∂M (Q)

)
(where

σ∂M is the usual symbol of ∂M).

In this section, we consider the SBlup construction in the special case of a transverse submanifold of
the unit space of a groupoid. We use the bimodule that we constructed in [12] in order to obtain an
algebra resembling the algebra of 2×2 matrices in the Boutet de Monvel pseudodifferential calculus
(of order 0) on manifolds with boundary.

From now on, we suppose that V is a transverse submanifold of M with respect to the Lie groupoid
G ⇒ M . In particular V is AG-small – of course, we assume that (in every connected component
of V ), the dimension of V is strictly smaller than the dimension of M .

5.1 The Poisson-trace bimodule

As V is transverse to G, the groupoid GVV is a Lie groupoid, so that we can construct its “gauge
adiabatic groupoid” (GVV )ga (see section 3.3.3).
In [12], we constructed a bimodule relating the C∗-algebra of the groupoid (GVV )ga and the C∗-algebra
of pseudodifferential operators of GVV .

In this section,

• We first show that the groupoid (GVV )ga, is (sub-) Morita equivalent to SBlupr,s(G,V ) (cf.
also section 3.3.4 for a local construction).

• Composing the resulting bimodules, we obtain the “Poisson-trace” bimodule that relates the
C∗-algebras C∗(SBlupr,s(G,V )) and Ψ∗(GVV ).

5.1.1 The SBlupr,s(G,V )− (GVV )ga-bimodule E (G,V )

Define the map j : M t (V × R)→M by letting j0 : M →M be the identity and j1 : V × R→M
the composition of the projection V × R→ V with the inclusion. Let G = Gjj . As V is assumed to
be transverse, the map j is also transverse, and therefore G is a Lie groupoid.
It is the union of four clopen subsets

• the groupoids Gj0j0 = G = GMM and Gj1j1 = GVV × (R× R) = GV×RV×R .

• the linking spaces Gj0j1 = GMV×R = GV × R and Gj1j0 = GV×RM = GV × R.

By functoriality, we obtain a sub-Morita equivalence of SBlupr,s(G
V
V ×R×R, V ) and SBlupr,s(G,V )

(see section 3.2.3).
Let us describe this sub-Morita equivalence in a slightly different way:
Let also Γ = V × {0, 1}2, sitting in G:

V × {(0, 0)} ⊂ G = Gj0j0 ; V × {(0, 1)} ⊂ GV × {0} ⊂ Gj0j1 ;

V × {(1, 0)} ⊂ GV × {0} ⊂ Gj1j0 ; V × {(1, 1)} ⊂ GVV × {(0, 0)} ⊂ Gj1j1 .
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It is a subgroupoid of G. The blowup construction applied to Γ ⊂ G gives then a groupoid
SBlupr,s(G,Γ) which is the union of:

SBlupr,s(G,V ) ; SBlupr,s(GV × R, V ) ;

SBlupr,s(G
V × R, V ) ; SBlupr,s(G

V
V × R× R, V ) .

Recall that SBlup(V ×R, V ×{0}) ' V ×(R−tR+). Thus SBlupr,s(G,Γ) is a groupoid with objects
SBlup(M,V ) t V × R− t V × R+.

The restriction of SBlupr,s(G,Γ) to V ×R+ coincides with the restriction of SBlupr,s(G
V
V ×R×R, V )

to V × R+: it is the gauge adiabatic groupoid (GVV )ga of GVV (cf. section 3.3.3).

Put SBlupr,s(GV ×R, V )+ = SBlupr,s(G,Γ)
SBlup(M,V )
V×R+

. It is a linking space between the groupoids

SBlupr,s(G,V ) and (GVV )ga. Put also SBlupr,s(G
V × R, V )+ = SBlupr,s(G,Γ)

V×R+

SBlup(M,V ).

With the notation used in fact 3.3, we define the C∗(SBlupr,s(G,V )) − C∗((GVV )ga)-bimodule
E (G,V ) to be C∗(SBlupr,s(GV × R, V )+). It is the closure of Cc(SBlupr,s(GV × R, V )+) in
C∗(SBlupr,s(G,Γ)). It is a Hilbert-C∗(SBlupr,s(G,V ))− C∗((GVV )ga)-bimodule.
The Hilbert-C∗((GVV )ga)-module E (G,V ) is full and K(E (G,V )) is the ideal C∗(SBlupr,s(G

Ω
Ω, V ))

where Ω = r(GV ) is the union of orbits which meet V .

Notice that Ω = M \ V t V × R∗ and F = SNM
V t V t V gives a partition by respectively open

and closed saturated subsets of the units of SBlupr,s(G,Γ). Furthermore SBlupr,s(G,Γ)Ω
Ω = GΩ

Ω and
C∗(GΩ

Ω) = C∗(G) according to proposition 4.6. This decomposition gives rise to an exact sequence
of C∗-algebras.

0 // C∗(G) // C∗(SBlupr,s(G,Γ)) // C∗(SNGΓ ) // 0

This exact sequence gives rise to an exact sequence of bimodules:

0 // C∗(G) //

E̊ (G,V )

C∗(SBlupr,s(G,V )) //

E (G,V )

C∗(SNG
V ) //

E ∂(G,Γ)

0

0 // C∗(G
V×R∗+
V×R∗+

) // C∗((GVV )ga) // C∗(AGVV oR∗+) // 0

where E̊ (G,V ) = C∗(GM\VV×R∗+
) and E ∂(G,Γ) = C∗

(
(SNGΓ )

SNM
V

V

)
= E (G,V )/E̊ (G,V ).

5.1.2 The Poisson-trace bimodule EPT

In [12], we constructed, for every Lie groupoid H a C∗(Hga)−Ψ∗(H)-bimodule EH .
Recall that the Hilbert Ψ∗(H)-module EH is full and that K(EH) ⊂ C∗(Hga) is the kernel of a

natural ∗-homomorphism C∗(Hga) → C0(H(0) × R). We also showed that the bimodule EH gives
rise to an exact sequence of bimodules as above:

0 // C∗(H × R∗+ × R∗+) //

E̊H

C∗(Hga) //

EH

C∗(AH oR∗+) //

E ∂
H

0

0 // C∗(H) // Ψ∗(H) // C0(SA∗H) // 0

Putting together the bimodule E (G,V ) and EGV
V

we obtain a C∗(SBlupr,s(G,V ))−Ψ∗(GVV ) bimodule

E (G,V ) ⊗C∗((GV
V )ga) EGV

V
that we call the Poisson-trace bimodule and denote by EPT (G,V ) - or

just EPT . It leads to the exact sequence of bimodule:
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0 // C∗(G) //

E̊PT (G,V )

C∗(SBlupr,s(G,V )) //

EPT (G,V )

C∗(SNG
V ) //

E ∂
PT (G,V )

0

0 // C∗(GVV ) // Ψ∗(GVV ) // C0(SA∗GVV ) // 0

The Poisson-trace bimodule is a full Hilbert Ψ∗(GVV )-module and K(EPT (G,V )) is a two sided ideal of
C∗(SBlupr,s(G,V )). Denote by EPT (G,V )∗ its dual module, i.e. the Ψ∗(GVV )−C∗(SBlupr,s(G,V ))-
bimodule K(EPT (G,V ),Ψ∗(GVV )).

5.2 A Boutet de Monvel type algebra

The C∗-algebra C∗BM (G,V ) is the algebra K
(
C∗(SBlupr,s(G,V ))⊕EPT (G,V )∗

)
of compact opera-

tors of the Hilbert C∗(SBlupr,s(G,V ))-module C∗(SBlupr,s(G,V ))⊕ EPT (G,V )∗. Its elements are

matrices of the form

(
K P
T Q

)
where

• K ∈ C∗(SBlupr,s(G,V )) = K
(
C∗(SBlupr,s(G,V ))

)
,

• P ∈ EPT (G,V ) = K
(
EPT (G,V )∗, C∗(SBlupr,s(G,V ))

)
,

• T ∈ EPT (G,V )∗ = K
(
C∗(SBlupr,s(G,V ),EPT (G,V )∗)

)
,

• Q ∈ Ψ∗(GVV ) = K
(
EPT (G,V )∗

)
.

We have an exact sequence (where M̊ t V 6= M denotes the topological disjoint union of M̊ with
V ):

0→ C∗(GM̊tV
M̊tV )→ C∗BM (G,V )

rC
∗

V−→ ΣC∗
bound(G,V )→ 0,

where the quotient ΣC∗
bound(G,V ) is the algebra of the Boutet de Monvel type boundary symbols.

It is the algebra of matrices of the form

(
k p
t q

)
where k ∈ C∗(SNG

V ), q ∈ C(SA∗GVV ), p, t∗ ∈

E V
PT (G,V ) := EPT (G,V )⊗Ψ∗(GV

V ) C(SA∗GVV ). The map rC
∗

V is of the form

rC
∗

V

(
K P
T Q

)
=

(
r GV (K) rV (P )
rV (T ) σV (Q)

)
where:

• the quotient map σV is the ordinary order 0 principal symbol map on the groupoid GVV ;

• the quotient maps r GV , rV , rV are restrictions to the boundary NM
V :

r GV : C∗(SBlupr,s(G,V ))→ C∗(SNG
V ) = C∗(SBlupr,s(G,V ))/C∗(GM̊

M̊
),

rV : EPT (G,V )→ E V
PT (G,V ) = EPT (G,V )/C∗(GM̊V ),

and rV (T ) = rV (T ∗)∗.

The map rC
∗

V is called the zero order symbol map of the Boutet de Monvel type calculus.
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5.3 A Boutet de Monvel type pseudodifferential algebra

We denote by Ψ∗BM (G,V ) the algebra of matrices

(
Φ P
T Q

)
with Φ ∈ Ψ∗(SBlupr,s(G,V )), P ∈

EPT (G,V ), T ∈ EPT (G,V )∗ and Q ∈ Ψ∗(GVV ).

Such an operator R =

(
Φ P
T Q

)
has two symbols:

• the classical symbol σc : Ψ∗BM (G,V )→ C0(SA∗SBlupr,s(G,V )) given by σc

(
Φ P
T Q

)
= σc(Φ);

its kernel is C∗BM (G,V ).

• the boundary symbol rBMV : Ψ∗BM (G,V )→ ΣΨ∗
bound(G,V ) defined by

rV

(
Φ P
T Q

)
=

(
rψV (Φ) rV (P )
rV (T ) σV (Q)

)
where rψV : Ψ∗(SBlupr,s(G,V ))→ Ψ∗(SNG

V ) is the restriction.

Here ΣΨ∗
bound(G,V ) denotes the algebra of matrices of the form

(
φ p
t q

)
with φ ∈ Ψ∗(SNG

V ), p, t∗ ∈

E V
PT (G,V ) and q ∈ C(SA∗GVV ).

The full symbol map is the morphism

σBM : Ψ∗BM (G,V )→ ΣBM (G,V ) := C0(SA∗SBlupr,s(G,V ))×C0(SA∗SNG
V ) ΣΨ∗

bound(G,V )

defined by σBM (R) = (σc(R), rV (R)).

We have an exact sequence:

0→ C∗(GM̊tV
M̊tV )→ Ψ∗BM (G,V )

σBM−→ ΣBM (G,V )→ 0. (EBM )

We may note that Ψ∗(SBlupr,s(G,V )) (resp. Ψ∗(SNG
V )) identifies with the full hereditary subalgebra

of Ψ∗BM (G,V ) (resp. of ΣBM (G,V )) consisting of elements of the form

(
x 0
0 0

)
.

5.4 K-theory of the symbol algebras and index maps

In this section we examine the index map corresponding to the Boutet de Monvel type calculus and
in particular to the exact sequence (EBM ). We compute the K-theory of the symbol algebra ΣBM

and the connecting element ĩndBM ∈ KK1(ΣBM , C
∗(G)) (2).

We then extend this computation by including bundles into the picture i.e. by computing a relative
K-theory map.

As the Hilbert Ψ∗(GVV ) module EPT (G,V ) is full,

• the subalgebra
{(K 0

0 0

)
; K ∈ C∗(SBlupr,s(G,V ))

}
is a full hereditary subalgebra of

C∗BM (G,V );

• the subalgebra
{(Φ 0

0 0

)
; Φ ∈ Ψ∗(SBlupr,s(G,V ))

}
is a full hereditary subalgebra of Ψ∗BM (G,V );

• the subalgebra
{(x 0

0 0

)
; x ∈ ΣSBlup(G,V )

}
is a full hereditary subalgebra of ΣBM (G,V );

2We use the Morita equivalence of C∗(G) with C∗(GM̊tV
M̊tV ).
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• the subalgebra
{(k 0

0 0

)
; k ∈ C∗(SNG

V )
}

is a full hereditary subalgebra of ΣC∗
bound(G,V );

• the subalgebra
{(φ 0

0 0

)
; φ ∈ Ψ∗(SNG

V )
}

is a full hereditary subalgebra of ΣΨ∗
bound(G,V ).

We have a diagram of exact sequences where the vertical inclusions are Morita equivalences:

0 // C∗(GM̊
M̊

) //
� _

��

Ψ∗(SBlupr,s(G,V ))
σfull //

� _

��

ΣSBlup(G,V ) //
� _

��

0

0 // C∗(GM̊tV
M̊tV ) // Ψ∗BM (G,V )

σBM // ΣBM (G,V ) // 0

We thus deduce immediately from theorem 4.8 and prop. 4.11 (with the notation of prop. 4.11) :

Corollary 5.1. The algebra ΣBM (G,V )) is KK-equivalent with the mapping cone Cχ and, under

this K-equivalence, the index ĩndBM is q∗([Bott]⊗CindG) where q : Cχ → C0(A∗G×R∗+) is evaluation
at 0.

A Bundle groupoids

In this section, we describe the structure of the normal groupoid NG
Γ , i.e. the restriction of

DNC(G,Γ) to its singular part NM
V , as well as the projective normal groupoid PNG

Γ , the restriction
of Blupr,s,(G,Γ) to its singular part PNM

V . The groupoid NG
Γ is a VB groupoid in the sense of

Pradines [37, 23]. In the particular case where Γ = V is just a space, the groupoids NG
Γ and PNG

Γ

are bundles of linear and projective groupoids over the base V in a sense defined bellow. In that
case, a Thom-Connes isomorphism computes the KK-theory of C∗(NG

Γ ) (prop. A.6).

A.1 VB groupoids

In [37], Pradines introduced the notion of a VB groupoid (see also [23]). Such groupoids naturally
appear in our construction, as well as their projective and spherical analogues.
Recall from [37, 23] that a VB groupoid is a groupoid which is a vector bundle over a groupoid G.
More precisely:

Definition A.1. Let G //
rG,sG// G(0) be a groupoid. A VB groupoid over G is a vector bundle

p : E → G with a groupoid structure E //
rE ,sE// E(0) such that all the groupoid maps are linear

vector bundle morphisms. This means that E(0) ⊂ E is a vector subbundle of the restriction of E
to G(0) and that rE , sE , x 7→ x−1 and the composition are linear bundle maps:

E ////

��

E(0)

��
G //// G(0)

We also assume that the bundle maps rE : E → r∗G(E(0)) and sE : E → s∗G(E(0)) are surjective.

When Γ is a closed Lie subgroupoid of G, the projection NG
Γ → Γ is a groupoid morphism and it is

easily seen that NG
Γ is a VB groupoid over Γ.

In fact every VB groupoid E → Γ can be seen as a normal groupoid: the normal groupoid to the
inclusion Γ→ E.

To any VB groupoid p : E → G we can associate a projective bundle groupoid and a spherical bundle
groupoid.
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Definition A.2. Let p : E → G. Denote by Ẽ(0) the complement in E(0) of the zero-section G(0).

Let Ẽ be the restriction EẼ
(0)

Ẽ(0)
= r−1

E (Ẽ(0)) ∩−1
E (Ẽ(0)) of E to its open subset Ẽ(0) of its objects.

The natural scaling action α of the group R∗ on the vector bundle E is free and proper on Ẽ;
for every λ, αλ is an automorphism of the groupoid E. The quotient spaces PE = Ẽ/R∗ and
SE = Ẽ/R∗+ are Lie groupoids respectively called the projective bundle groupoid and the spherical

bundle groupoid of E their units are respectively PE(0) and SE.

A.2 Linear groupoids

An easy case of VB groupoids G → Γ, relevant to our discussion, is when the base groupoid Γ is
just a space. In that case, a natural Connes-Thom isomorphism relates the K-theory of C∗(G) with
that of the space C0(G).
In order to understand this case, we examine linear, projective and spherical groupoids in an even
simple case, when the base groupoid is just one point. We briefly examine examine this situation.
Let E be a vector space over a field K and let F be a vector sub-space. Let r, s : E → F be linear
retractions of the inclusion F → E.

A.2.1 The linear groupoid

The space E is endowed with a groupoid structure E with base F . The range and source maps are
r and s and the product is (x, y) 7→ (x · y) = x + y − s(x) for (x, y) composable, i.e. such that
s(x) = r(y). One can easily check:

• Since r and s are linear retractions: r(x · y) = r(x) and s(x · y) = s(y).

• If (x, y, z) are composable, then (x · y) · z = x+ y + z − (r + s)(y) = x · (y · z).

• The inverse of x is (r + s)(x)− x.

Remarks A.3. a) Note that, given E and linear retractions r, s : E ⇒ F , the only possible
linear groupoid structure(3) on E is the one described above. Indeed, for any x ∈ E one must
have x · s(x) = x and r(x) · x = x. By linearity, it follows that for every composable pair
(x, y) = (x, s(x)) + (0, y − s(x)) we have x · y = x · s(x) + 0 · (y − s(x)) = x+ y − s(x).

b) The morphism r− s : E/F → F gives an action of E/F on F by addition. The groupoid E is
in fact the groupoid E/F o F ⇒ F associated with this action.

c) Given a linear groupoid structure on a vector space E, we obtain the “dual” linear groupoid
structure E∗ on the dual space E∗ given by the subspace F⊥ = {ξ ∈ E∗; ξ|F = 0} and the
two retractions r∗, s∗ : E∗ → F⊥ with kernels (ker r)⊥ and (ker s)⊥: for ξ ∈ E∗ and x ∈ E,
r∗(ξ)(x) = ξ(x− r(x)) and similarly s∗(ξ)(x) = ξ(x− s(x)).

A.2.2 The projective groupoid

The multiplicative group K∗ acts on E by groupoid automorphisms. This action is free on the
restriction Ẽ = E \ (ker r ∪ ker s) of the groupoid E to the subset F \ {0} of E(0) = F .
The projective groupoid is the quotient groupoid PE = Ẽ/K∗. It is described as follows.
As a set PE = P(E) \ (P(ker r) ∪ P(ker s)) and P(0) = P(F ) ⊂ P(E). The source and range maps
r, s : PE → P(F ) are those induced by r, s : E → F . The product of x, y ∈ PE with s(x) = r(y) is
the line x · y = {u+ v − s(u); u ∈ x, v ∈ y; s(u) = r(v)}. The inverse of x ∈ PE is (r+ s− id)(x).

3A linear groupoid is a groupoid G such that G(0) and G are vector spaces and all structure maps (unit, range,
source, product) are linear.
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Remarks A.4. a) When F is just a vector line, PE is a group. Let us describe it:

we have a canonical morphism h : PE → K∗ defined by r(u) = h(x)s(u) for u ∈ x. The kernel
of h is P(ker(r − s)) \ P(ker r). Note that F ⊂ ker(r − s) and therefore ker(r − s) 6⊂ ker r,
whence ker r ∩ ker(r − s) is a hyperplane in ker(r − s). The group kerh is then easily seen to
be isomorphic to ker(r)∩ ker(s). Indeed, choose a nonzero vector w in F ; then the map which
assigns to u ∈ ker(r) ∩ ker(s) the line with direction w + u gives such an isomorphism onto
kerh.

Then:

• If r = s, PE is isomorphic to the abelian group ker(r) = ker(s).

• If r 6= s, choose x such that r and s do not coincide on x and let P be the plane F ⊕ x.
The subgroup P(P )\{ker r∩P, ker s∩P} of PE is isomorphic through h with K∗. It thus
defines a section of h. In that case PE is the group of dilations (ker(r) ∩ ker(s)) oK∗.

b) In the general case, let d ∈ P(F ). Put Edd = r−1(d) ∩ s−1(d).

• The stabilizer (PE)dd is the group PEdd = P(Edd) \ (P(ker r) ∪ P(ker s)) described above.

• The orbit of a line d is the set of r(x) for x ∈ PE such that s(x) = d. It is therefore
P(d+ r(ker s)).

c) the following are equivalent:

(i) (r, s) : E → F × F is onto;

(ii) r(ker s) = F ;

(iii) (r − s) : E/F → F is onto;

(iv) the groupoid PE has just one orbit.

d) When r = s, the groupoid PE is the product of the abelian group E/F by the space P(F ).

When r 6= s, the groupoid Ẽ is Morita equivalent to E since F \ {0} meets all the orbits of E .

If K is a locally compact field and r 6= s, the smooth groupoid PE is Morita equivalent to the
groupoid crossed-product Ẽ oK∗.
In all cases, when K is a locally compact field, PE is amenable.

A.2.3 The spherical groupoid

If the field is R, we may just take the quotient by R∗+ instead of R∗. We then obtain similarly the

spherical groupoid SE = S(E) \ (S(ker r) ∪ S(ker s)) where S(0)(E) = S(F ) ⊂ S(E).
The involutive automorphism u 7→ −u of E leads to a Z/2Z action, by groupoid automorphisms
on SE. Since this action is free (and proper!), it follows that the quotient groupoid PE and the
crossed product groupoid SE o Z/2Z are Morita equivalent. Thus SE is also amenable.
As for the projective case, if (r, s) : E → F × F is onto, the groupoid SE has just one orbit. The
stabilizer of d ∈ S(F ) identifies with the group (ker r ∩ ker s) oR∗+, and therefore the groupoid SE
is Morita equivalent to the group (ker r ∩ ker s) oR∗+.

A.3 A Connes-Thom isomorphism for families of linear groupoids

We may of course perform the constructions of section A.2.2 (with say K = R) when E → X is a
(real) vector bundle over a locally compact space X, F is a subbundle and r, s : E → F are linear
bundle maps. We obtain respectively families E , (PE, r, s) and (SE, r, s) of linear, projective and
spherical groupoids.

Remarks A.5. a) A family of linear groupoids is just given by a bundle morphism α = (r− s) :
E/F → F . It is isomorphic to the semi-direct product F oα E/F .
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b) All the groupoids defined here are amenable, since they are continuous fields of amenable
groupoids (cf. [2, Prop. 5.3.4]).

The groupoid E is a vector bundle E over a locally compact space X, E(0) is a vector subbundle F
and E is given by a linear bundle map (r − s) : E/F → F .

Proposition A.6 (A Thom-Connes isomorphism). Let E → X be a family of linear groupoids.
Then C∗(E) is KK-equivalent to C0(E). More precisely, the index indE : KK(C0(A∗E), C∗(E)) is
invertible.

Proof. Put F = E(0) and H = E/F . Then H acts on C0(F ) and C∗(E) = C0(F ) oH.
We use the equivariant KK-theory of Le Gall (cf. [22]) KKH(A,B).
The Thom element of the complex bundle H ⊕H defines an invertible element

tH ∈ KKH(C0(X), C0(H ⊕H)).

We deduce that, for every pair A,B of H algebras, the morphism

τC0(H) : KKH(A,B)→ KKH(A⊗C0(X) C0(H), B ⊗C0(X) C0(H))

is an isomorphism. Its inverse is x 7→ tH ⊗ τC0(H)(x)⊗ t−1
H .

Note that for every H-algebra A, the H-algebra C0(H)⊗C(X)A is the algebra of continuous sections
of the form (x, ξ) 7→ ϕ(x, ξ) ∈ Ax (where x ∈ X, ξ ∈ Hx and Ax is the fibre of A at x ∈ X) vanishing

at infinity. The fibre of
(
C0(H)⊗C(X) A

)
x

is C0(Hx, Ax) and the action of Hx on the fibre is given

by (ξ · ϕ)(η) = ξ ·
(
ϕ(η − ξ)

)
.

Denote by A0 the C0(X) algebra A endowed with the trivial action of H. We have an isomorphism

of H-algebras uA : C0(H)⊗C(X) A0 ' C0(H)⊗C(X) A: put
(
uA(ϕ)

)
(x, ξ) = ξ ·

(
ϕ(x, ξ)

)
.

It follows that the restriction map KKH(A,B) to KKX(A,B) (associated to the groupoid morphism
X → H) is an isomorphism - compatible of course with the Kasparov product.
Let vA ∈ KKH(A0, A) be the element whose image in KKX(A0, A) is the identity. Its descent
jH(vA) ∈ KK(C0(H∗)⊗C(X) A,AoH) is a KK-equivalence.

The index map is given by letting G = DNC(E,F )[0,1] and putting ind = ev1 ⊗ ev−1
0 where

ev0 : C∗(G) → C∗(AG) = C∗(H) ⊗ C0(F ) is evaluation at 0, which is a KK-equivalence and
ev1 : C∗(G) = C0(F × [0, 1]) oH → C∗(E) = C0(F ) oH is evaluation at 1. Since the evaluation
F × [0, 1] → F at 1 is a KKX equivalence, it is also KKH invertible. It follows that [ev1] is also
invertible.

List of Symbols

Groupoids, deformation and blowup spaces

G
r,s

⇒ G(0) A Lie groupoid with source s, range r and space of units G(0)

AG The Lie algebroid of the groupoid G

GA, GB, GAB If A and B are subsets of G(0), GA = {x ∈ G; r(x) ∈ A}, GB = {x ∈ G; s(x) ∈
B} and GBA = GA ∩GB, page 10

Gf , Gg, G
f
g If f : A→ G(0) and g : B → G(0) are maps, Gf = {(a, x) ∈ A×G; r(x) = f(a)},

Gg = {(x, b) ∈ G×B; s(x) = g(b)} and Gfg = Gf ∩Gg, page 10

NM
V The normal bundle of a submanifold V of a manifold M

DNC(Y,X) The deformation to the normal cone of the inclusion of a submanifold X in a
manifold Y , DNC(Y,X) = Y × R∗ ∪NY

X , page 6
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DNC+(Y,X) The restriction DNC(Y,X) \ Y × (−∞, 0)., page 8

Blup(Y,X) The blowup of the inclusion of a submanifold X in a manifold Y , Blup(Y,X) =
Y \X ∪ P(NY

X ), page 8

SBlup(Y,X) The spherical blowup of the inclusion of a submanifold X in a manifold Y ,
SBlup(Y,X) = Y \X ∪ S(NY

X ), page 8

Blupf (Y,X) The subspace of Blup(Y,X) on which Blup(f) : Blupf (Y,X) → Blup(Y ′, X ′)
can be defined for a smooth map f : Y → Y ′ (with f(X) ⊂ X ′), page 9

DNC(G,Γ)⇒ DNC(G(0),Γ(0)) The deformation groupoid where Γ is a closed Lie subgroupoid of
a Lie groupoid G, page 12

D̃NC(G,Γ), D̃NC+(G,Γ) The open subgroupoid of DNC(G,Γ) consisting of elements whose im-
age by DNC(r) and DNC(s) is not in Γ(0)×R and its restriction to R+, page 12

Blupr,s(G,Γ)⇒ Blup(G(0),Γ(0)) The blowup groupoid Blupr(G,Γ) ∩ Blups(G,Γ) where Γ is a

closed Lie subgroupoid of a Lie groupoid G, it is the quotient of D̃NC(G,Γ)
under the zooming action, page 12

SBlupr,s(G,Γ) The spherical version of Blupr,s(G,Γ), it is quotient of D̃NC+(G,Γ) under the
restricted zooming action, page 12

C∗-Algebras

C∗(G) The (either maximal or reduced) C∗-algebra of the groupoid G

Ψ∗(G) The C∗-algebra of order ≤ 0 pseudodifferential operators on G vanishing at
infinity on G(0)

Cf The mapping cone of a morphism f : A→ B of C∗-algebra

ΣW (G) The quotient Ψ∗(G)/C∗(GW )

ΣDNC+(G,Γ), Σ
D̃NC+

(G,Γ) Respectively the algebras Ψ∗(DNC+(G,Γ))/C∗(G× R+∗) and

Ψ∗(D̃NC+(G,Γ))/C∗(GM̊
M̊
× R∗+), page 17

ΣSBlup(G,Γ) The algebra Ψ∗(SBlupr,s(G,Γ))/C∗(GM̊
M̊

), page 17

KK-elements

[f ] The KK-element, in KK(A,B) associated to a morphism of C∗-algebra f : A→
B

indG The KK-element [ev0]−1⊗ [ev1], which belongs to KK(C0(A∗G), C∗(G)), associ-

ated to the deformation groupoid G
[0,1]
ad = G× (0, 1]∪A(G)×{0}⇒ G(0)× [0, 1]

ĩndG The connecting element, which belongs to KK1(C(SA∗G), C∗(G)) associated to
the short exact sequence 0→ C∗(G)→ Ψ∗(G)→ C(SA∗G)→ 0

∂WG The connecting element, which belongs to KK1(C∗(G|F ), C∗(G|W )), associated

to the short exact sequence 0 // C∗(G|W ) // C∗(G) // C∗(G|F ) // 0

where W is a saturated open subset of G(0) and F = G(0) \W

∂G,ΓSBlup, ∂
G,Γ
DNC+

, ∂G,Γ
D̃NC+

Respectively the element ∂M̊SBlupr,s(G,Γ), ∂
M×R∗+
DNC+(G,Γ) and ∂

M̊×R∗+
D̃NC+(G,Γ)

, page 17

32



ĩnd
W

full(G) The connecting element, which belongs to KK1(ΣW (G), C∗(GW )) associated to

the short exact sequence 0 −→ C∗(GW ) −→ Ψ∗(G) −→ ΣW (G) −→ 0

ĩnd
G,Γ

SBlup, ĩnd
G,Γ

DNC+
, ĩnd

G,Γ

D̃NC+
Respectively the elements ĩnd

M̊

full(SBlupr,s(G,Γ)), ĩnd
M×R∗+
full (DNC+(G,Γ))

and ĩnd
M̊×R∗+
full (D̃NC+(G,Γ))
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