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Original Research

Despite its importance, many children struggle to learn the 
conceptual underpinnings of base-10 number system 
(Cheung & Ansari, 2020), and low-achieving children 
exhibit more pronounced difficulties than their typically-
developing (TD) counterparts (e.g., Chan et  al., 2017). 
Place-value concepts are foundational for elementary math-
ematics because they allow children to “crack the code” of 
multidigit numerals and other representations of quantity 
(Mix et al., 2019). To support children’s understanding of 
place value, teachers frequently use concrete objects, such 
as blocks or chips, to represent quantities and perform com-
putations. Providing visual representations with concrete 
objects, or “manipulatives,” has the potential to highlight 
place-value concepts and ultimately impact children’s abil-
ity to interpret representations of multidigit quantities. 
Despite being encouraged to use manipulatives; however, 
teachers are unable to make evidence-based decisions about 
which types of objects would best support children who 
have difficulty with place-value concepts. Our objectives in 
this study were to examine the physical affordances of 
manipulatives on children’s place-value understanding in 
the context of representing and interpreting multidigit 
numerals, and, in particular, to determine the types of 
objects that are best suited for children who struggle the 
most in school mathematics.

Place-Value Knowledge in Children 
With Mathematics Difficulties

Although the term “place value” has been conceptualized in 
a number of different ways (e.g., Fuson et al., 1997; Herzog 
et al., 2019; Ross, 1989), two key principles are at the core 
of the base-10 number system. First, the position of each 
digit in a numeral is associated with a specific denomina-
tion determined by a power of 10 (e.g., 100, or ones; 101, or 
tens; 102, or hundreds). Furthermore, the digit itself indi-
cates the number of groups of a specific denomination. In 
the numeral 26, the 6 represents six groups of 100 (i.e., 
ones) and the 2 represents two groups of 101 (i.e., tens). 
Understanding place-value concepts provides meaning to 
arithmetic (Ho & Cheng, 1997; Moeller et  al., 2011) and 
allows children to draw conceptual connections between 
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Abstract
We investigated the effect of conceptual transparency in the physical structure of manipulatives on place-value understanding 
in typically-developing children and those at risk for mathematics learning disabilities. Second graders were randomly 
assigned to one of three manipulatives conditions: (a) attachable beads that did not make the denominations or ones 
in the denominations transparent, (b) pipe cleaners that made only the denominations transparent, and (c) string beads 
that made both the denominations and the ones in the denominations transparent. Participants used the manipulatives to 
represent double- and triple-digit numerals. Statistical analyses indicated that the transparency of the denominations, but 
not the transparency of the ones in the denominations, is responsible for children’s number representation and place-value 
understanding. Descriptive analyses of their responses revealed that the at-risk children were at a greater disadvantage 
than their typically-developing peers with the attachable beads, failing to use place-value concepts to interpret their 
representations.
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different representations of multidigit quantities (Mix et al., 
2019).

Children with or at risk for mathematics learning dis-
abilities are those who are low performing and have diffi-
culty learning mathematics, particularly in the areas of 
counting, enumeration, and basic arithmetic (Dennis et al., 
2016). Children with mathematics learning disabilities, or 
those at risk, also appear to have particular challenges with 
tasks that rely on with place-value understanding, as evi-
denced by their difficulties in counting quantities repre-
sented with base-ten blocks (Chan et al., 2017), transcoding 
(Moura et  al., 2013), making multidigit magnitude judg-
ments (Landerl & Kölle, 2009), and performing multidigit 
mental addition (Lambert & Moeller, 2019). Therefore, 
examining the impact of materials used in educational set-
tings is particularly important for children who have such 
specific challenges.

Using Manipulatives in Mathematics

Teachers often use concrete objects to illustrate mathemati-
cal concepts, including place value (Mix et  al., 2019). 
Manipulatives are encouraged in part because they have 
been successfully used with both typical achievers and chil-
dren with or at risk for mathematics learning disabilities 
(Satsangi et al., 2016; for reviews, see Carbonneau et al., 
2013; Lafay et  al., 2019). The benefits of manipulatives 
have not been demonstrated consistently, however, and the 
reason could be related to the different physical affordances 
of the materials used (e.g., plastic cubes, popsicle sticks, 
and base-10 blocks).

Conceptual Transparency

Representations used in the classroom can afford different 
types of interactions with mathematical concepts (Kaminski 
& Sloutsky, 2013; McNeil et al., 2009). In the same way, 
the degree of “conceptual transparency” in manipulatives 
could impact children’s physical representations of quanti-
ties and their interpretations—that is, manipulatives can be 
effective when they “look like” the concepts they are 
intended to target, such as illustrating a group of 10 by using 
a representation that is physically 10 times larger than the 
representation for a one. We borrow from Chase and 
Abrahamson (2013) to define the term: A physical object 
can be considered conceptually transparent when, “the user 
can access, perceive, and understand its mechanism, logic, 
and application” (p. 476). Theoretical accounts of concep-
tual transparency can be drawn from the literature on ana-
logical reasoning (e.g., Gentner & Colhoun, 2010). When 
manipulatives are used to represent numerals, for example, 
they can be seen as “pedagogical analogs” (English, 2004) 
because they share a common underlying structure with 
place-value concepts. Reasoning with analogies involves a 
process called “structure mapping” (Gentner, 1983), which 

entails finding common points between two systems so that 
a higher order relationship, or schema, can be induced (Gick 
& Holyoak, 1983; Richland & Simms, 2015).

Drawing out higher-order relationships between two 
perceptually dissimilar systems does not come naturally to 
young children, however, who tend to focus on surface sim-
ilarities (Gentner & Toupin, 1986; Uttal et  al., 2008). 
Because they need instructional support to base their com-
parisons on structural similarities (Richland et  al., 2007; 
Vendetti et al., 2015), it stands to reason that the more phys-
ically similar the two systems are, the greater the likelihood 
they will abstract the common conceptual structure between 
them. With respect to manipulatives specifically, propor-
tional manipulatives—those that made the relative sizes of 
the denominations transparent—were more beneficial for 
children’s transfer of place-value concepts than objects that 
relied on color alone to distinguish the size of the denomi-
nations (Osana et al., 2018).

Cognitive Skills Underlying Manipulative Use

Using manipulatives in base-10 numeration tasks, such as 
representing quantities, requires several mathematical and 
cognitive skills. First, counting skill likely plays a central 
role in place-value tasks that require students to physically 
represent multidigit quantities, seeing that such tasks would 
require counting out ones and other denominations. Indeed, 
as Fuson et  al. (1997) and Cobb and Wheatley (1988) 
argued, counting base-10 units (e.g., tens and ones) is a cen-
tral mechanism for the development of place-value knowl-
edge. Similarly, we assume that early number sense is 
required for children to accurately and quickly discriminate 
between different quantities represented by the objects 
(e.g., efficiently ascertaining that 9 ones is closer to a group 
of 10 than 7 ones). Finally, working memory may be 
required to align elements of concrete and written systems, 
including in mathematical domains (Mix et al., 2019).

Considerable research has reported that children with or 
at risk for mathematics learning disabilities differ from their 
TD peers in place-value understanding (e.g., Chan et  al., 
2017), counting skill (e.g., Jordan et al., 2007), and early 
number sense (e.g., Landerl et al., 2009; Mazzocco et al., 
2011). Furthermore, there is evidence to suggest that work-
ing memory plays an important explanatory role in chil-
dren’s difficulties in mathematics (e.g., Geary, 2013). Taken 
together, therefore, it is reasonable to expect that TD chil-
dren and those with or at risk for mathematics learning dis-
abilities would respond differently to base-10 materials 
when representing quantities.

The Current Study

Different varieties of concrete objects have been used to 
make place-value concepts visible, but no research has 
explored why some may be more beneficial than others. 



Lafay et al.	 3

Objects that “transparently” illustrate place-value concepts 
are likely to support children’s performance on place-value 
tasks, but which concepts to make visible to which children 
is an open question. Furthermore, variability in children’s 
counting and number sense skills could be reflected in how 
children work with concrete objects, and any lags in count-
ing and number sense could account for differences in 
manipulative use between TD children and those with or at 
risk for mathematics learning disabilities (hereafter referred 
to as at-risk children).

The objective of the present study was to examine the 
physical affordances of manipulatives, specifically the 
transparency of denominations or the number of ones within 
each denomination, on children’s place-value understand-
ing in the context of constructing and interpreting physical 
representations of quantity. We also tested whether the 
manipulatives’ specific features have different effects for 
at-risk children than for TD children. We asked children to 
use manipulatives to represent multidigit numerals and to 
further probe their place-value understanding, we asked 
them to verbally interpret their displays. We were interested 
in examining two physical affordances: the visibility of (a) 
the denominations, and (b) the ones in the denominations. 
To this end, we constructed three sets of manipulatives: (a) 
pipe cleaners cut in lengths that preserved the proportional 
size of the denominations, making only the denominations 
visible; (b) beads attached on a string in groups of 10 and 
100, making both the denominations and the ones in the 
denominations visible; and (c) individual beads that could 
be attached, showing no pre-configured denominations. 
The two research questions were

Research Question 1 (RQ1): Does conceptual transpar-
ency in manipulatives support children’s physical repre-
sentations and interpretations of multidigit numerals?
We expected that the manipulatives that made the 
denominations transparent would support performance 
relative to those that did not show the denominations. 
We also expected that the visibility of the ones in the 
denominations would support children’s performance 
compared to manipulatives that hid the exact size of the 
denominations. Finally, we expected that making both 
the denominations and the number of ones in the denom-
inations visible would support better performance than 
materials that made neither transparent.
Research Question 2 (RQ2): Does conceptual transpar-
ency in manipulatives offer specific advantages in per-
formance on representations and interpretations of 
multidigit numerals to at-risk children?
For the children in the at-risk group, we expected the same 
pattern of differences, but with larger effects. In particular, 
we hypothesized that for at-risk children, who often strug-
gle to interpret the meaning of multidigit numerals, the 
absence of transparency of the denominations and the 

number of ones in each denomination would be particu-
larly detrimental.

Method

Participants

A total of 123 second-grade children (M = 92.0 months,  
SD = 5.2 months; range from 82 to 108 months; 46% 
female) were recruited from 12 French-speaking public 
schools in a large urban area in the province of Quebec in 
Canada. Instruction in all subjects in the participating 
schools was delivered in French. Table 1 presents the par-
ticipant demographic information.

The sample included TD children and at-risk children. 
We classified the at-risk children as such because we were 
not able to use already-existing diagnoses for mathematics 
learning disabilities to establish our groups (i.e., diagnostic 
testing is not frequently conducted in the province of 
Quebec). We used data from teachers and parents and con-
firmed their reports with an arithmetic fluency measure that 
we ourselves administered to all children in the sample. 
Teachers were given a paper-and-pencil survey and asked to 
choose one of the following options regarding the child: (a) 
had no mathematics difficulties in class, (b) struggled with 
mathematics in the class compared to other children, or (c) 
had a known diagnosis of mathematics learning disabilities. 
Parents were given the same survey about their child. There 
were no discrepancies between the responses of the teach-
ers and parents in any case and no child had a known diag-
nosis of mathematics learning disabilities. No participant 
was excluded at this point.

We administered the Raven’s Colored Progressive 
Matrices (Raven, 1977) to assess the participants’ non-verbal 
intelligence. The reliability estimate for the Raven’s was 
good, Cronbach’s alpha = .85. Any participant who scored 
below the 10th percentile would have been removed from the 
sample, but none fell into this category. We also administered 
the Tempo Test Rekenen (TTR; De Vos, 1992; Lafay et al., 
2020) to all children in the sample. The TTR is a paper-and-
pencil test designed to assess arithmetic fluency (i.e., speed 
and accuracy in solving addition and subtraction problems), a 
construct that has been used in previous research to deter-
mine the presence of mathematics difficulties (e.g., De 
Visscher & Noël, 2014; Träff et al., 2017). The internal reli-
ability for the TTR was excellent (Cronbach’s α = .92).

We used the TTR and the data from the parents and 
teachers to classify the children into four groups: those 
whose parents and teachers reported no mathematics diffi-
culties (94 children), categorized as (a) above the 25th per-
centile on the TTR (all 94 children, classified as TD) or (b) 
below the 25th percentile (no child); and those whose par-
ents and teachers reported mathematics difficulties (32 chil-
dren) who scored (c) above the 25th percentile on the TTR 
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(3 of the 32 children, who were excluded from the sample) 
and (d) below the 25th percentile (29 students of the 32 chil-
dren, classified as at-risk). According to Dennis et  al. 
(2016)’s literature review, the 25th percentile was the most 
frequently used cut-off point for at-risk identification.

The final sample thus consisted of 94 TD children  
(Mage = 92.3 months, SD = 4.8) and 29 at-risk children 
(Mage = 90.7 months, SD = 6.3). The two groups did not 
differ statistically in mean age, F(1, 117) = 1.89, p = .17. 
Performance on the TTR was statistically lower in the at-
risk sample than in the TD sample, t(121) = 5.44, p < .001, 
d = 1.16.

Design and Experimental Manipulation

In each school, children in each of the TD and at-risk groups 
were randomly assigned in approximately equal numbers to 
three manipulative conditions: attachable beads (n = 39; 30 
TD and 9 at-risk), string beads (n = 43; 31 TD and 12 at-
risk), or pipe cleaners (n = 41; 33 TD and 8 at-risk). This 
resulted in a 2 (Mathematics Group) × 3 (Condition) 
between-subjects design.

Figure 1 presents the manipulatives used in the three 
conditions. In the attachable beads condition, children were 
given a bin with plastic beads that could be attached to form 

groups. The attachable beads made the ones visible only; no 
distinct objects were used to represent the denominations. 
In the string beads condition, children were given wooden 
beads, some of which were individual and not attachable, 
and others were strung together in groups of 10 and 100 and 
were not detachable. The groupings of 10 and 100 beads 
made the denominations distinct from the ones, and thereby 
transparent, and the individual beads made the ones in each 
denomination also visible. In the pipe cleaners condition, 
children were given a bin with pipe cleaners in proportional 
lengths: ones were 0.8 cm in length, tens were 10 times as 
long as the ones (i.e., 8 cm), and hundreds were 10 times as 
long as the tens (i.e., 80 cm). The pipe cleaners made the 
denominations transparent only; no ones were visible in the 
tens or hundreds denominations.

Measures

Cognitive, numeracy, and mathematics abilities.  All children 
first underwent general assessments tapping the cognitive 
and numerical abilities sensitive to place-value understand-
ing. The assessments were used to ensure no initial condi-
tion differences on these measures and to provide a cognitive 
description of the TD and at-risk groups. We administered 
two measures of working memory: (a) the Digit Span 

Table 1.  Participant Demographic Information by Mathematics Group.

Variables

Mathematics group

TD At-risk

N % N %

Sex
  Female 43 46.2 13 44.8
  Male 50 53.8 16 55.2
SES
  High 23 24.5 6 20.7
  Middle 45 47.9 11 37.9
  Low 26 27.7 12 41.4
Language
  French 49 53.3 17 60.7
  French and English 3 3.3 2 7.1
  French, English, and another language 10 10.9 3 10.7
  French and another language 30 32.6 6 21.4
Intelligencea

  M (SD) 26.53 (4.61) 20.41 (4.47)
  Range 10–35 11–29

Note. The two groups were equivalent in terms of gender distribution, χ2(1, N = 122) = .02, p = .90. Schools are classified according to a 
socioeconomic status (SES) index published by Québec’s Ministère de l’Éducation et de l’Enseignement Supérieur (MEES, 2018-2019) based on 
mother’s education and family income level. All schools in Quebec are ranked from 1 to 10, with lowest indices representing highest SES. We defined 
high SES as Ranks 1–3, middle as Ranks 4–7, and low as 8–10. The two groups were equivalent in terms of SES distribution, χ2(2, N = 123) = 1.97,  
p = .37. The two groups were also equivalent in terms of language distribution, χ2(3, N = 120) = 1.89, p = .60. Some children spoke a language other 
than French and English at home: Arabic 30.6%, Spanish 8.2%, Persian 8.2%, Romanian 8%, Russian 8%, Chinese 6.1%, Kabyle 6.1%, Creole 4.1%, Farsi 
4.1%, Mandarin 4.1%, Bosnian 2%, Coreen 2%, Czech 2%, Dari 2%, Gujrati 2%, and Portuguese 2%. TD = typically-developing.
aAssessed using Raven’s Colored Progressive Matrices (Raven, 1977).
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Backwards (WISC-5, Wechsler, 2014), a standardized test 
to assess children’s verbal working memory; and (b) the 
standardized Corsi Block Test (Corsi, 1972) to assess chil-
dren’s visuospatial working memory. The internal reliabil-
ity for a composite working memory measure was 
acceptable (Cronbach’s α = .66). The assessment battery 
also included two measures of numerical skills: (a) the 
Numeracy Screener—French version (NS-f, Lafay et  al., 
2018; originally designed and validated by Nosworthy, 
2013), a standardized test that assesses early number sense 
involving symbolic (Arabic numbers) and non-symbolic 
(sets of dots) magnitude comparison tasks (Cronbach’s α = 
.95); and (b) a verbal counting task to assess children’s 
knowledge of the number sequence and cardinality (Cron-
bach’s α = .27). The counting task required children to 
count as high as they could to 30, to skip count by 10 as 
high as possible to 110, to skip count by 100 as high as pos-
sible to 1,100, and to determine how many chips were on 
the table. The counting score was the number of correct 
responses out of a maximum of 4 points.

Finally, the Picture Place Value Task (PicPVT), a task 
developed by the authors (Osana & Lafay, 2019), was 
administered to assess the children’s understanding of the 
value of the digits in a numeral. Children were shown a 

double- or triple-digit numeral with one of the digits under-
lined. Below the number was presented sets of black hexa-
gons. The number of sets always matched the underlined 
digit, but the number of hexagons in each set was 1, 10, or 
100. Children were required to indicate, by saying “yes” or 
“no,” whether the picture matched the underlined digit in 
the numeral. Ten double-digit numerals and 10 triple-digit 
numerals were randomly ordered, with every child complet-
ing the items in the same order. Half of the double-digit 
items and half of the triple-digit items matched the corre-
sponding picture (e.g., 237 matched the picture of 2 sets of 
100 dots). The score was the number of correct responses 
out of a maximum of 20. The reliability estimate was good 
(Cronbach’s α = .87).

Manipulatives task
Task procedure.  The manipulatives task consisted of two 

parts: the representation task and the interpretation task. The 
researcher began the representation task by showing the 
manipulatives to the child and describing each denomina-
tion. In the attachable beads condition, the researcher con-
structed a ten by attaching 10 beads together and counting 
them out loud. She constructed a hundred by attaching 10 
tens together in one string, after which she counted out loud 
to 100 by tens, showing each group of ten between her thumb 
and index finger. In the string beads and pipe cleaners con-
ditions, the researchers showed the different objects repre-
senting the denominations. She counted the number of ones 
in each denomination, by ones and tens, in the string beads 
condition. In the pipe cleaners condition, the researcher did 
not count any ones or tens because these were not visible in 
the objects. Instead, she used her finger to sweep along each 
denomination while counting out loud by ones for the tens 
and by tens for the hundreds denomination. The researcher 
then demonstrated how to represent 62 with the manipula-
tives and then counted all 62, first by counting the 60 by 
tens, and then the two ones, saying “61, 62.”

For the test items, the child was asked to use the manipu-
latives to represent the numeral indicated on an index card. 
A legend was left on the table during the entire task, which 
consisted of a one, a tens denomination, and a hundreds 
denomination and a laminated index card with the numerals 
1, 10, and 100 underneath the corresponding denomination. 
In the attachable beads condition, the children were pro-
vided a bin of single beads. In the other conditions, the chil-
dren were given three bins of objects, one for each 
denomination.

Place-value understanding was probed using the inter-
pretation task, on which the children verbally interpreted 
the meaning of each digit by pointing to its value in their 
displays. After the children represented the numeral, they 
were asked to show how each individual digit was repre-
sented in their display: “Can you show me this [researcher 
pointed to each individual digit] in your display?” To 

Figure 1.  Manipulatives used in each condition.
Note. Manipulatives used in the three conditions: attachable beads (A), 
string beads (B), and pipe cleaners (C).
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interpret their displays, children were permitted to use any 
of the manipulatives in their display and any in the bins they 
were provided. The task consisted of two double-digit 
numerals (i.e., 19 and 32) and two triple-digit numerals 
(i.e., 127 and 208) to assess the children’s representations of 
three denominations (i.e., ones, tens, hundreds). No com-
mon digits were included in any one numeral to assist us in 
the interpretation of the children’s responses. The task was 
video recorded for subsequent data coding.

Coding.  The total representation score measured the 
extent to which the child’s representation matched the over-
all quantity represented by the numeral and the place-value 
groupings represented by the digits (i.e., groups of tens and 
hundreds for triple-digit numerals). All responses that were 
quantitatively accurate and represented the correct num-
ber place-value groupings were assigned 1 point. A child 
received 1 point if he or she represented the numeral 32 with 
three separate groups of tens and two ones (in the attachable 
beads condition, the groups of tens needed to be clustered 
together, either attached or not). All other responses were 
assigned 0 points. Sample responses receiving 0 points are 
representing the numeral with 32 individual ones, either 
attached or not attached; one group of 10 and 22 individual 
ones; and one set of three ones and one with two ones. The 
total representation score was the mean number of points 
received across all four items. Cronbach’s alpha reliability 
estimate was .66.

We then created five categories to code the types of dis-
plays produced on the representation task. The four first 
categories were constructed using an orthogonal crossing of 
two dimensions, namely quantitative accuracy and align-
ment with the place-value groupings in the target numeral. 
Responses that were quantitatively accurate had the correct 
number of ones corresponding to the target numeral, regard-
less of whether the denominational groupings were 
respected. Responses that were aligned with the place-value 
groupings showed groupings of tens and ones for double-
digit numerals and groupings of hundreds, tens, and ones 
for three-digit numerals, regardless of whether the number 
of groups in each denomination corresponded with the tar-
get numeral. This resulted in four response categories: (a) 
Quantitatively accurate and place-value aligned responses 
(Optimal), (b) Quantitatively accurate without place-value 
alignment (All-ones), (c) Quantitatively inaccurate with 
place-value groupings, likely because of counting errors 
(Grouping), and (d) Quantitatively inaccurate without 
place-value alignment (Face Value; Barnett-Clarke et  al., 
2010). The fifth category was Figural responses, character-
ized by children drawing the numeral with the objects.

We illustrate the categories of responses here with the 
numeral 32. A response showing three tens and two ones 
would be coded as optimal because it was quantitatively 
accurate and matched the place-value groupings in the 

numeral because the digit 3 was represented with three 
groups of tens and the digit 2 was represented with two indi-
vidual ones. An all-ones representation would consist of a 
set of 32 non-attached ones in any condition or a set of 32 
ones attached in one string in the attachable beads condi-
tion. A grouping representation could consist of two tens 
and two ones or four tens and two ones, or any other place-
value grouping that resulted in a quantitatively inaccurate 
display. A face-value response would consist of three ones 
and two ones. A figural response would be to configure the 
objects to look like the numeral 32.

A pair of trained research assistants coded 100% of the 
videos. A second pair independently coded the same set of 
videos. The videos were approximately evenly distributed 
between the raters in each pair. This resulted in two sets of 
independent codes for the whole data set. Percent agree-
ment between the two pairs of coders was 94.4%, which 
corresponded to a Cohen’s kappa of 0.91. All disagreements 
were resolved through discussion with the first author.

Procedure

Testing took place from October to December during the 
school year. Each child was tested in one individual session 
lasting 60 min with a researcher. During the session, the 
researcher administered the mathematics and cognitive 
measures (i.e., TTR, NS-f, counting task, working memory 
measures, and non-verbal reasoning task), followed by the 
PicPVT and the manipulatives task. The administration of 
the measures was counterbalanced across participants.

Data Analysis

We first conducted separate 2 (group: TD, at-risk) by 3(con-
dition: attachable beads, string beads, pipe cleaners) analy-
sis of variance (ANOVA) tests on the cognitive and 
mathematics measures to check for differences between the 
two mathematics groups as a function of condition. We paid 
specific attention to the participants’ performance on the 
PicPVT to provide information on the children’s level of 
understanding prior to the manipulatives task.

Second, we conducted a 2 (group: TD, at-risk) by 3(con-
dition: attachable beads, string beads, pipe cleaners) 
ANOVA on the total representation score to test for a group 
by condition interaction. The omnibus test was followed up 
with pairwise comparisons to test the specific affordances 
of interest. In particular, the denominations visibility affor-
dance was tested by comparing performance between the 
pipe cleaners and the attachable beads. The ones in denomi-
nations visibility affordance was tested by comparing the 
string beads and the pipe cleaners. Comparing the string 
beads and the attachable beads served to test the combina-
tion of both affordances. Finally, we conducted a response 
analysis by examining the frequencies of the different types 
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of representations and interpretations observed to reveal 
patterns of manipulatives use within and across conditions 
and mathematics groups.

Results

Cognitive, Numeracy, and Mathematics Abilities

Both TD and at-risk children had been randomly assigned 
to the three manipulation conditions and so no between-
conditions differences were expected on either of the two 
numerical measures nor on a composite score of the two 
working memory measures. Analyses of variance con-
firmed that expectation. Initial statistical differences 
between the TD and at-risk children emerged on those mea-
sures in all but one of the analyses conducted, with the 
exception being for working memory in the pipe cleaners 
condition.

On the PicPVT (range: 0–20), a main effect of group was 
found, F(1, 117) = 32.58, p < .001, partial eta-squared = 
.22, showing that at-risk children (M = 10.42; SD = 2.61) 
were less successful than TD children (M = 15.94; SD = 
4.34) on place-value knowledge. To further examine group 
differences, we created profiles of place-value knowledge 
by identifying patterns of responses on the correct display 
and incorrect display items on the PicPVT. Children who 
correctly answered more than five incorrect-display items 
and more than five correct-display items were placed in the 
Proficient-with-Place-Value profile (n = 81) as understand-
ing the value of each digit by its position in the numeral. 
The remaining children were placed in the Lacking-
Proficiency-in-Place-Value profile (n = 42). Results indi-
cated that a larger proportion of children in the TD group 
were in the Proficient-with-Place-Value profile (79%) than 
were the at-risk group (24%), χ2 (1, N = 123) = 29.37,  
Φ = .49, p < .001. Using the more stringent criteria of 
more than 6 correct in each of the incorrect- and correct-
display categories and more than 7 correct in each category 
yielded similar results. Taken together, these results suggest 
not only that the at-risk children demonstrated statistically 
lower performance on the PicPVT than their TD peers, but 

also that only one quarter of them demonstrated knowledge 
of the meaning of the digits in multidigit numerals.

Effects of Manipulatives on Representation Task 
Performance

Means and standard deviations for the representation task 
by mathematics group (TD, at-risk) and by condition 
(attachable beads, string beads, pipe cleaners) are presented 
in Table 2. To test the effects of the manipulatives and math-
ematics group on child representation performance, a 2 
(group: TD, at-risk) by 3 (condition: attachable beads, string 
beads, pipe cleaners) ANOVA with unequal cell sizes was 
performed, based on a Type I error probability of .05 per 
source of variance. With this analysis, each source of vari-
ance (the group main effect, the condition main effect, and 
the group x condition interaction) was tested while statisti-
cally controlling for the effect of the two other sources of 
variance. Because this was a randomized experimental 
study with theoretically driven predictions, it was important 
that the analysis was conducted on equally weighted cell 
means so that the substantially different cell sizes did not 
bias the results and conclusions. As a relevant aside, the 
specific ANOVA procedure that we applied is computation-
ally equivalent to constructing a simultaneous regression 
model in which the group and condition factors are spe-
cially coded variables and the outcome variable of interest 
(here, representation task performance) is regressed on the 
coded variables and their products. A main effect of mathe-
matics group was found, F(1, 117) = 23.16, p < .001, d = 
1.03, with performance of the at-risk children statistically 
and substantially lower than that of the TD children.

There was also a statistically significant condition effect, 
F(2, 117) = 10.91, p < .001, partial eta-squared = .16. 
Follow-up Fisher Least Significant Difference (LSD) com-
parisons (Levin et  al., 1994) were conducted to test the 
effects of the two physical affordances. First, to test the 
effect of the denominations visibility affordance, we com-
pared the mean of the pipe cleaners condition with the mean 
of the attachable beads condition. The comparison revealed 

Table 2.  Means and (Standard Deviations) on Total Representation Score as a Function of Condition and Mathematics Group.

TD At-risk

Unweighted meansConditions N M (SD) N M (SD)

Attachable beads 30 .65 (.34) 9a .37 (.33) .51
String beads 31 .93 (.17) 12 .63 (.27) .78
Pipe cleaners 33 .89 (.17) 8 .69 (.35) .79
Unweighted means .82 .56  

Note. Main entries are the averages of four 0–1 items and therefore range from 0 to 1. The mean square error associated with these data is .0647.  
TD = typically-developing.
aCell sizes within the at-risk group are unequal because of exclusion criteria and participant absences.
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that the children’s performance in the pipe cleaners condi-
tion surpassed that in the attachable beads condition, t(117) 
= 4.01, p < .001, d = 1.10. This finding suggests a benefit 
of making the denominations visible. Next, to test the effect 
of visibility of the ones in the denominations, we compared 
the performance in the string beads condition with that in 
the pipe cleaners condition. The results revealed no statisti-
cal difference between the two conditions, |t| < 1, with 
mean performance in the two conditions essentially equal 
(see Table 2). This finding suggests no effect of making the 
ones visible in the denominations.

Finally, to test the effect of visibility of both the denomi-
nations and the ones in the denominations relative to the 
visibility of neither, we compared the performance of the 
children in the string beads condition with that in the attach-
able beads condition. A difference emerged between the 
two conditions, t(117) = 4.09, p < .001, d = 1.05. Superior 
performance in the string beads condition thus suggests a 
benefit of making visible both denominations and the ones 
in the denominations. No group by condition interaction 
was found, F < 1, indicating that condition differences in 
the children’s mean representation score were statistically 
comparable for the two mathematics groups and, therefore, 
this portion of the analysis does not support our initial 
expectations (see Table 2).

Response Types and Interpretations by 
Mathematics Group and Physical Affordance

In this section, we present a description of the children’s 
responses to gain insight into how the two mathematics 
groups used the manipulatives in their representations and 
how they interpreted their displays on the follow-up inter-
pretation task. Our focus was on differences in how the chil-
dren used the manipulatives as a function of both group (TD 
and at-risk) and object affordance (i.e., denominations and 
ones visibility). Thus, the descriptive comparisons reported 
in this section jointly examine representation types and the 
children’s follow-up interpretations to obtain a coherent 
picture of their place-value understanding.

The percentage of responses on the representation task in 
each mathematics group and in each condition is presented 
in Figure 2. Some of the percentages reported below are 
aggregates either across groups or across conditions. The 
analyses incorporate the children’s responses as the units of 
analysis because our categorization of responses was spe-
cific to the item and not the child, given that each child 
represented four items with the manipulatives.

Mathematics group differences across conditions.  In line with 
the earlier-reported statistical results, the across-conditions 
percentages on the representation task reveal that at-risk 
children produced fewer optimal responses than did TD 
children (TD: 82%; at-risk: 57%). The group differences 

seem to be explained by the larger percentage of face-value 
responses in the at-risk group than in the TD group (TD: 
5%; at-risk: 28%). These data suggest that the at-risk chil-
dren had more difficulty than their TD counterparts in 
understanding the quantitative value of the digits in the tar-
get numerals.

Effects of physical affordances.  With respect to denomina-
tions visibility, which was tested by comparing the responses 
of the children who used attachable beads to those with the 
pipe cleaners, fewer optimal responses were produced with 
the attachable beads (56%) than with the pipe cleaners 
(85%). This discrepancy seems to be explained by the pres-
ence of all-ones responses when children used the attach-
able beads. As shown in Figure 2, all-ones representations 
(i.e., correctly using ones only) with the attachable beads 
were produced in both mathematics groups at similar rates 
(27% and 26% for the TD and at-risk groups, respectively), 
but such representations were never observed with the pipe 
cleaners, despite the fact that all-ones responses were pos-
sible with those objects.

The percentages presented in Figure 2 further show that 
the attachable beads were particularly difficult for the chil-
dren in the at-risk group. Specifically, with the attachable 
beads, 39% of their responses were optimal compared to 
69% with the pipe cleaners and also compared to TD chil-
dren with either object (61% with attachable beads and 89% 
with pipe cleaners).

Figure 3 presents the percentages of interpretation types 
in each mathematics group that followed optimal and all-
ones representations with attachable beads. These data 
show additional place-value difficulties for the children 
with at-risk when using attachable beads. First, 42% of their 
optimal responses were followed by face-value interpreta-
tions. No comparable discrepancy was found when they 
used the pipe cleaners (82% were followed by optimal 
interpretations, not shown here) and almost all optimal 
responses in the TD group were followed by optimal inter-
pretations regardless of object type. Second, 83% of the all-
ones representations with the attachable beads in the at-risk 
group were followed by face-value interpretations, consist-
ing of pointing to individual ones when asked about the tens 
digit in the target numeral. This stands in contrast to the TD 
children’s interpretations of their all-ones responses, the 
vast majority of which (88%) were optimal.

The effects of the ones visibility affordance were exam-
ined by comparing the performance of the children in the 
string beads and pipe cleaners conditions. The proportions 
in Figure 2 show that across the two mathematics groups, 
the types of responses on the representation task were dis-
tributed similarly in both the string beads and pipe cleaners 
conditions. Finally, we investigated the effect of combining 
the two affordances of denominations visibility and ones 
visibility on children’s performance by comparing the 
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representations in the string beads condition to those in the 
attachable beads condition. The proportions in Figure 2 
reveal similar patterns to those found for the denominations 

visibility affordance alone (i.e., attachable beads vs. pipe 
cleaners). The interpretation data also show similar pat-
terns—that is, at-risk children were at a particular 

Figure 2.  Proportions of response types on the representation task within group and condition.
Note. Typically developing (TD) children produced 92 responses in the attachable beads condition, 120 responses in the string beads condition, and 
130 responses in pipe cleaners condition. Children in the at-risk group produced 29 responses in the attachable beads condition, 45 responses in the 
string beads condition, and 32 responses in pipe cleaners condition. In the case where we compare groups across conditions, the reported proportions 
were calculated by dividing the frequency of each response type across the three conditions divided by the total number of responses within each 
group (i.e., TD or at-risk).

Figure 3.  Proportion of interpretation types after optimal and all-ones representations with attachable beads as a function of 
mathematics group.
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disadvantage with the attachable beads, which prompted a 
relatively larger number of face-value interpretations rela-
tive to the string beads.

Discussion

The objective of the present study was to examine the 
effects of making place-value concepts transparent in 
manipulatives on children’s performance on number tasks. 
In particular, we compared the effects of two different types 
of conceptual transparency on the performance of second-
grade TD and at-risk children. We asked the children to rep-
resent multidigit numerals with manipulatives and to 
explain how the digits in the numerals were represented in 
their displays. We constructed materials with specific phys-
ical features to test two transparency affordances. The first 
set of materials made the denominations visible, where the 
groups of tens and hundreds were distinct objects. The 
denominations were also visible in the second set of materi-
als, but the manipulatives had the added feature of ones vis-
ibility—that is, the ones were discrete entities, and therefore 
countable, in the tens and hundreds objects. To test the 
physical affordances of denominations visibility and the 
visibility of the ones in the denominations, we compared 
these two sets of manipulatives to a third set that consisted 
of attachable individual ones only, with no distinct objects 
representing the different denominations and no informa-
tion about the size of the denominations.

First, we expected that the physical affordances of the 
manipulatives would systematically affect the children’s 
performance with the objects and the interpretations of their 
own displays, regardless of mathematics group membership 
(TD or at-risk). Performance would be superior when the 
denominations were visible than when they were not, when 
the ones in the denominations were visible than when the 
ones were hidden, and when both the denominations and 
the ones in the denominations were visible than when nei-
ther was visible. Second, we expected an interactive effect 
between physical affordance and mathematics group. 
Because of weaker place-value knowledge, number sense, 
and counting skills of at-risk children, we predicted that 
those children would be at a greater disadvantage relative to 
their TD peers when using the attachable beads, manipula-
tives that made neither of the place-value concepts 
transparent.

Our predictions regarding the affordances of the manipu-
latives, regardless of mathematics group, were partially 
supported. Specifically, performance accuracy was higher 
when denominations were visible than when they were not 
and also when both the denominations and ones in the 
denominations were visible than when neither was visible. 
At the same time, no difference emerged when the ones in 
the denominations were visible and when they were not 
(keeping the visibility of the denominations itself constant). 

Together, these results suggest that making base-ten group-
ings transparent affords more accurate physical representa-
tions, regardless of the visibility of the ones in those 
denominations.

The descriptive analysis of the children’s representations 
indicated that the pipe cleaners and the string beads afforded 
representations that more frequently displayed place-value 
groupings than the attachable beads, even if those group-
ings contained counting errors. In contrast, the attachable 
beads were the only manipulatives that were conducive to 
all-ones representations. We suggest that it would be con-
siderably more difficult for children with weak place-value 
knowledge and counting skills to create their own denomi-
nations accurately. An alternate explanation may be that the 
children were not patient or interested enough to create 
denominations with the attachable beads, particularly for 
larger numerals. We rule out this explanation, however, 
because all the children who produced all-ones representa-
tions with the attachable beads connected them one by one 
into one long string, which also took effort and patience. 
These observations together allow us to speculate that the 
visibility of the denominations, by itself, in both the pipe 
cleaners and the string beads conditions, can account for the 
stronger performance in these two conditions.

The interactive effects of affordance and mathematics 
group did not emerge from the statistical analyses, but the 
descriptive analysis provided insight into why at-risk chil-
dren struggled relative to the TD children on the representa-
tion task. Specifically, the descriptive analysis showed that 
regardless of object type, the at-risk group produced a pro-
portionally higher number of face-value representations 
than the TD group, which in part serves to explain the main 
effect of mathematics group that emerged from the statisti-
cal analysis. In addition, we found that all-ones representa-
tions were produced at a higher rate with the attachable 
beads than the other manipulatives, regardless of group. 
The larger number of all-ones representations served to fur-
ther disadvantage the at-risk children: Their performance 
was hampered not only by their mathematics group status 
(i.e., weaker place-value knowledge, number sense, and 
counting skill) but also by the physical features of the 
objects they were given.

We speculate that the at-risk children viewed multidigit 
quantities as collections of ones rather than as groups of 
differently-sized units. An illustration of such a “unitary 
conception of number” (Fuson et al., 1997) is when a child 
sees the quantity 53 as 53 ones rather than as a quantity 
decomposed into specific base-10 groupings (i.e., five tens 
and three ones). With attachable beads, it would be particu-
larly difficult for children with a unitary conception of num-
ber to interpret their representations using place-value 
concepts—even when those representations were optimal. 
When interpreting the multidigit numerals in the manipula-
tives task, the at-risk children likely viewed them as 
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“concatenated digits” (Fuson et  al., 1997) rather than as 
symbols that represented base-10 groupings, and there were 
no physical features in the attachable beads they could use 
to overcome their unitary conceptions. When they used 
manipulatives that made the denominations transparent, 
however, such as the string beads and pipe cleaners, the at-
risk children were more likely to provide optimal interpre-
tations of their displays. The TD children, however, were 
able to marshal their place-value knowledge to better over-
come the physical affordances of the manipulatives: They 
were more likely to correctly interpret their displays regard-
less of whether the denominations were present in the 
manipulatives or not.

In contrast to the representation data, the descriptive 
analyses of the interpretation data suggested an interaction 
between mathematics group and physical affordance. 
Specifically, the difference in proportion of face-value 
interpretations after optimal and all-ones representations in 
the at-risk group was considerably larger than in the TD 
group. Thus, the interpretation assessment appeared to be 
more sensitive to group differences as a function of the 
physical affordances of manipulatives than the assessment 
of the children’s representations. We suggest, however, that 
a more valid and reliable way to access children’s interpre-
tations would be to provide a range of representations that 
varied on various dimensions (e.g., all-ones, face-value, 
optimal representations) for children to interpret. Such a 
refinement to the instrument would allow for more robust 
quantitative analyses that are nuanced and more useful for 
practitioners.

Implications for Practice

Psychologists have made tremendous advances in charac-
terizing the numerical cognition of at-risk children, such as 
their number processing, magnitude comparison, and trans-
coding skills (e.g., Lafay et al., 2017; Moura et al., 2013; 
Rousselle & Noël, 2007). Our research contributes to this 
literature by documenting the domain-specific knowledge 
of at-risk children, which has received considerably less 
research attention. More particularly, the results showed 
that relative to their TD counterparts, at-risk children pro-
duced a larger proportion of face-value representations and 
were more likely to interpret their all-ones representations, 
despite being quantitatively accurate, by emphasizing the 
face values of the digits in the numerals. Although in line 
with previous work (Chan et al., 2017; Lambert & Moeller, 
2019; Landerl & Kölle, 2009; Moura et al., 2013), our study 
is one of the first to describe the types of place-value diffi-
culties that are closely aligned with the school curriculum 
and, therefore, particularly valuable in the context of 
instruction (Newcombe et  al., 2009). Given the complex 
nature of children’s numeration knowledge (Fuson et  al., 
1997; Herzog et  al., 2019), further investigation on other 

facets of the place-value understanding in this population is 
warranted.

Furthermore, knowing that conceptual transparency can 
influence children’s numeration understanding allows edu-
cators to tailor their mathematical representations to chil-
dren’s needs. Our results suggest that making denominations 
visible by using distinct, and “unseparatable,” objects is 
helpful for children struggling with place value. Despite 
this finding, however, the design used in the present study 
did not permit conclusions about children’s learning of 
place value, but only about their performance on number 
tasks as a function of manipulative type. The implication for 
teachers is that they should be aware that the materials they 
choose will influence how children think about the mathe-
matics targeted by those materials. Consistent with the find-
ings of two studies recently published in this journal 
(Doabler et al., 2020; Liu et al., 2020), our results provide a 
potentially important instructional consideration: The use 
of materials will shape children’s thinking about numera-
tion and should be taken into account in the future design of 
high-quality interventions with at-risk children.

Another key implication of the present findings is related 
to the degree of information that can be gleaned from place-
value tasks typically given in elementary mathematics 
classrooms. Teachers often ask children to produce repre-
sentations of multidigit quantities using manipulatives or 
other materials. Our data suggest that the children’s inter-
pretations of their own representations do not always cor-
respond to what is seen in their displays, and in many 
instances, expose deep-seated misconceptions that are not 
evident in their representations. For example, several of the 
at-risk children displayed place-value groupings when 
using objects that made the denominations visible, but they 
could not explain how those groupings corresponded to the 
digits in the numerals. Conversely, we also observed chil-
dren correcting mistakes in their representations when they 
were asked to show the digits in their displays. Our results 
imply, therefore, that representation tasks alone do not pro-
vide teachers with enough information on the quality of 
their children’s mathematical understandings (Niemi, 
1996). As such, when developing and evaluating interven-
tion materials, teachers should consider the ways in which 
children use and interpret their representations and provide 
opportunities for discourse related to their use.

Strengths and Limitations

One of the primary strengths of the present study is that it 
employed a true experimental design that permitted 
causal claims about the role of conceptual transparency in 
children’s mathematics performance. Random assign-
ment to the three experimental conditions diminished the 
likelihood of initial differences between the conditions, 
thereby reducing alternative explanations for the 
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findings. Another strength of the study was that we were 
able to target two specific aspects of place value—the vis-
ibility of the denominations and the visibility of the ones 
in the denominations—by constructing the manipulatives 
ourselves. Creating manipulatives that were unfamiliar to 
the participants as mathematics tools also had the effect 
of controlling for previous exposure to base-10 materials. 
Aside from likely weak ecological validity resulting from 
the use of unfamiliar manipulatives, other limitations of 
the present study include the small sample of at-risk chil-
dren and the resultant low numbers in each condition in 
this group.

Conclusion

The purpose of the present study was to test the influence of 
conceptual transparency in the physical structure of manip-
ulatives on number representation and numeration under-
standing in TD and at-risk children. The results suggest that 
for all children regardless of mathematics group, the physi-
cal affordance of transparency did indeed impact their per-
formance. Specifically, the children’s performance was 
augmented when the denominations were made visible. In 
addition, fine-grained descriptive analyses of the types of 
representations the children provided revealed that at-risk 
children were at a greater disadvantage than their TD peers 
when the place-value concepts were not visible in the mate-
rials. Our study also sheds light on how at-risk children 
respond to place-value tasks that are typically given in ele-
mentary mathematics classrooms: We observed specific dif-
ficulties with place value in this population, which up to this 
point have not been adequately addressed in the literature. A 
major contribution to the literature is the set of immediately 
actionable recommendations for educators that stem from 
the findings.
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