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Abstract

The adiabatic groupoid Gad of a smooth groupoid G is a deformation relating G with its
algebroid. In a previous work, we constructed a natural action of R on the C*-algebra of
zero order pseudodifferential operators on G and identified the crossed product with a natural
ideal J(G) of C∗(Gad). In the present paper we show that C∗(Gad) itself is a pseudodifferential
extension of this crossed product in a sense introduced by Saad Baaj. Let us point out that
we prove our results in a slightly more general situation: the smooth groupoid G is assumed
to act on a C*-algebra A. We construct in this generalized setting the extension of order
0 pseudodifferential operators Ψ(A,G) of the associated crossed product A o G. We show
that R acts naturally on Ψ(A,G) and identify the crossed product of A by the action of the
adiabatic groupoid Gad with an extension of the crossed product Ψ(A,G) o R. Note that
our construction of Ψ(A,G) unifies the ones of Connes (case A = C) and of Baaj (G is a Lie
group).

Keywords: Noncommutative geometry; groupoids; pseudodifferential calculus.

1 Introduction

Alain Connes in [7, Chap. VIII] pointed out that smooth groupoids offer a perfect setting
for index theory. Since then, this fact has been explored and exploited by Connes as well as
many other authors, in many geometric situations (see [11] for a review).

In [10, section II.5], A. Connes constructed a beautiful groupoid, which he called the “tangent
groupoid”, that interpolates between the pair groupoid M × M of a (smooth, compact)
manifold M and the tangent bundle TM of M . He showed that this groupoid describes the
analytic index on M in a way not involving (pseudo)differential operators at all, and gave a
proof of the Atiyah-Singer Index Theorem based on this groupoid.

This idea of a deformation groupoid was then used in [15, section III], and extended in [22, 23]
to the general case of a smooth groupoid, where the authors associated to every smooth
groupoid G an adiabatic groupoid Gad, which is obtained by applying the “deformation to the
normal cone” construction to the inclusion G(0) → G of the unit space of G into G. Moreover,
it was shown in [22, Théorème 2.1] that this adiabatic groupoid still describes the analytic
index of the groupoid G in this generalized situation.

1AMS subject classification: Primary 58H05. Secondary 46L89, 58J22.
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In [12], we further explored the relationship between pseudodifferential calculus on G and
its adiabatic deformation Gad. An ideal J(G) ⊂ C∗(Gad) which sits in an exact sequence
0→ J(G)→ C∗(Gad)→ C(G(0))→ 0 plays a crucial role in our constructions. We construct
a canonical Morita equivalence between the algebra Ψ∗(G) of order 0 pseudodifferential op-
erators on G and the crossed product J(G) oR∗+ of J(G) by the natural action of R∗+.
It appeared that J(G) is canonically isomorphic to the crossed product Ψ∗(G) o R associ-
ated with a natural action of R on the algebra Ψ∗(G). A natural question is then: can one
recognize the C∗-algebra C∗(Gad) in these terms ?

In the present paper, we answer this question, thanks to [3, 4], where Baaj constructed an
extension of pseudodifferential operators of order 0 of the crossed product of a C∗-algebra A
by the action of a Lie group H - with Lie algebra H. Denote by S∗H the sphere in H∗. Baaj’s
exact sequence reads

0→ AoH −→ Ψ∗0(A,H)
σ−→ C(S∗H)⊗ A→ 0.

Let µ : C(G(0))→ Ψ∗(G) be the inclusion by multiplication operators. In the present paper,
we construct a commutative diagram, whose first line is Baaj’s exact sequence:

0 // Ψ∗(G) oR // Ψ∗0(Ψ∗(G),R) σ // Ψ∗(G)⊕Ψ∗(G) // 0

0 // J(G) //

'

OO

C∗(Gad) //

OO

C(G(0))

µ0

OO

// 0

(1)

where µ0(f) = (µ(f), 0).

Moreover, we show that all the morphisms of the above diagram are equivariant with respect
to the natural actions of R∗+:

• We consider R∗+ as the dual group of R and thus it acts on the crossed product Ψ∗(G)oR
via the dual action. This dual action extends (uniquely) to Baaj’s pseudodifferential
extension Ψ∗0(Ψ∗(G),R) and is trivial at the quotient level.

• The action of R∗+ on the second line is the canonical action on the adiabatic groupoid
by the natural rescaling, and the crossed product C∗(Gad)oR∗+ is the C∗-algebra of the
“gauge adiabatic groupoid” Gga considered in [12].

In particular, this allows us to give also a description of the algebra C∗(Gga) as a pseudodif-
ferential extension.

As a side construction, we define the pseudodifferential extension of an action α of a smooth
groupoid G - in the setting introduced by Le Gall in [20, 21]. This is a short exact sequence

0→ Aoα G −→ Ψ∗(A,α,G)
σα−→ A⊗C0(M) C(S∗AG)→ 0. (2)

This construction generalizes both the pseudodifferential calculus on a smooth groupoid of
[7, 10, 22, 23] and the pseudodifferential calculus of a crossed product by a Lie group of [3, 4].
Our main result, Theorem 5.6, is stated (and proved) in this general frame: in diagram (1) we
allow the groupoid G to act on a C∗-algebra A and replace groupoid C∗-algebras by crossed
products. We should note that the connecting map of extension (2) is the analytic index in
this context. In the same way as in [22, 23], the crossed product by the adiabatic groupoid
allows to define the analytic index too.

Here are some examples of natural actions of smooth groupoids which are relevant to our
constructions.
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1. Already an interesting case appears when A = C0(X) where X is a smooth manifold,
endowed with a smooth submersion p : X → M = G(0) and G acts on the fibers. The
action of G is given by a diffeomorphism α : Gs ×p X → Xp ×r G of the form (γ, x) 7→
(αγ(x), γ), which satisfies αγ1γ2 = αγ1αγ2 . Here, Gs×pX is a smooth groupoid GX with
objects X, source and range maps given by s(γ, x) = x, r(γ, x) = αγ(x) composition
(γ′, αγ(x))(γ, x) = (γ′γ, x) and inverse (γ, x)−1 = (γ−1, αγ(x)). In that case, the crossed
product Aoα G, the extension Ψ∗(A,α,G), the crossed product (A⊗R+)oGad identify
respectively with the groupoid C∗-algebra C∗(GX), the pseudodifferential extension
Ψ∗(GX) and the C∗-algebra C∗((GX)ad) of the adiabatic deformation of the groupoid
GX .

2. Let G be a Lie group acting on a C∗-algebra A. The corresponding adiabatic and gauge
adiabatic deformations of G are groupoids with objects R+. They naturally act on the
C0(R+) algebra A ⊗ C0(R+) - and the associated action is an important piece in our
constructions - see section 4.3.2.

3. An interesting family of examples of groupoid actions comes from 1-cocycles (general-
ized morphisms in the sense of [15, section I], [20, Section 2.2]) of a groupoid G to a
Lie group. For instance, an equivariant vector bundle is equivalent to a cocycle from
G to GLn(R). Then every algebra A endowed with an action of G gives rise to a
G-algebra. This construction is studied in [20] where several examples connected with
K-theory and index theory are studied. The corresponding pseudodifferential extension
and associated actions of the adiabatic groupoid appear very naturally in this context.

The paper is organized as follows:

In the second section, we briefly review the action of a locally compact groupoid and the
corresponding full and reduced crossed products (cf. [20, 21, 29, 28, 24]).

In the third section, we review Baaj’s construction and discuss the dual action.

In the fourth section we generalize Baaj’s construction to the case of actions of smooth
groupoids.

The fifth section establishes the above mentioned equivariant commutative diagram.

Finally, we gathered a few rather well known facts on unbounded multipliers in an appendix.

Notation 1.1. If A is a C∗-algebra, we denote by M(A) its multiplier algebra.

Recall that, if A and B are C∗-algebras, a morphism f : A → M(B) is said to be non
degenerate if f(A).B = B; a non degenerate morphism extends uniquely to a morphism
f̃ : M(A) → M(B) - this extension is strictly continuous (i.e. continuous with respect to
the natural topologies of the multipliers).

Recall that an ideal J of a C∗-algebra A is said to be essential if the morphism A→M(J)
is injective, i.e. if a ∈ A is such that aJ = {0} then a = 0.

Remark 1.2. Note that if π : A → B is a surjective morphism of C∗-algebras and J an
essential ideal in B then π−1(J) is essential in A.
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2 Actions of locally compact groupoids and crossed

products

In this section we briefly recall a few facts about actions of locally compact groupoids and
the corresponding crossed products as defined by Le Gall in [20, 21]. See also [29, 28, 24].

2.1 Actions of locally compact groupoids

2.1.1 C0(X)-algebras

C0(X)-algebras. Recall ([13], [16, Def. 1.5]) that if X is a locally compact space, a
C0(X)-algebra is a pair (A, θ), where A is a C∗-algebra and θ is a non degenerate
∗-homomorphism θ : C0(X) → ZM(A) from C0(X) to the center of the multiplier
algebra of A.

Fibers. If A is a C0(X)-algebra, we define its fiber Ax for every point x ∈ X by setting
Ax = A/CxA where Cx = {h ∈ C0(X); h(x) = 0}. Let a ∈ A and denote by ax ∈ Ax
its class; we have ‖a‖ = sup

x∈X
‖ax‖. In particular a is completely determined by the

family (ax)x∈X and the bundle A is semi-continuous in the sense that for all a ∈ A the
map x 7→ ‖ax‖ is upper semi-continuous.

C0(X)-morphisms. A C0(X)-linear homomorphism α : A → B of C0(X)-algebras deter-
mines for each x ∈ X a ∗-homomorphism αx : Ax → Bx. Since α(a) is determined by
the family (α(a))x = αx(ax), the morphism α is determined by the family (αx)x∈X .

Restriction to locally closed sets; pull back. More generally, if U ⊂ X is an open sub-
set, we define the C0(U)-algebra AU by putting AU = C0(U)A; if F ⊂ X is a closed
subset, we define the C0(F )-algebra AF = A/AX\F ; if Y = U ∩ F is a locally closed
subset of X we put AY = (AU)Y (which is canonically isomorphic to (AF )Y ).

Recall that if f : Y → X is a continuous map between locally compact spaces and A is
a C0(X)-algebra, we may define f ∗(A) in the following way: we restrict the C0(X×Y )-
algebra A ⊗ C0(Y ) to the graph {(x, y) ∈ X × Y ; f(y) = x} of f which is a closed
subset of X × Y canonically homeomorphic with Y .

Notation 2.1. As f ∗(A) is a quotient of A ⊗ C0(Y ), we have a non degenerate morphism
a 7→ a ◦ f from A to the multiplier algebra of f ∗(A), where a ◦ f is the image of a⊗ 1 in the
quotient f ∗(A) of A⊗ C0(Y ).

2.1.2 Actions of groupoids

Definition 2.2. ([21, Definition 2.2]). Let G be a locally compact groupoid with basis
X. A continuous action of G on a C0(X)-algebra A is an isomorphism of C0(G)-algebras
α : s∗A→ r∗A such that, for all (γ1, γ2) ∈ G(2) we have αγ1γ2 = αγ1 ◦ αγ2 .

Remark 2.3. An action of a non Hausdorff groupoid G on a C0(X)-algebra A (withX = G(0))
is given by isomorphisms αU : s∗U(A) → r∗U(A) for every Hausdorff open subset U of X -
where sU , rU are the restrictions of r and s to U . These isomorphisms must agree on the
intersection U ∩ V of two such sets. It follows that the family (rU) gives rise to isomor-
phisms αγ : As(γ) → Ar(γ) for γ ∈ G. We further impose that these isomorphisms satisfy
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αγ1γ2 = αγ1 ◦ αγ2 for all (γ1, γ2) ∈ G(2).
In the sequel of the paper, we will consider Hausdorff groupoids for simplicity of the expo-
sition. Nevertheless, all our constructions and results extend in the usual way to the non
Hausdorff case [9, section 6], see also [17, section I.B]. Note that the non trivial part of any
kind of pseudodifferential calculus concentrates in a Hausdorff neighborhood of the space of
units.

2.2 Crossed products

The (full and reduced) crossed product A oα G of an action α of a groupoid G with (right)
Haar system (νx)x∈X on a C∗-algebra A is defined in [21, 25]. Let us briefly recall these
constructions.

2.2.1 The full crossed product

The vector space Cc(r
∗A) = Cc(G).r∗(A) of elements of r∗A with compact support is naturally

a convolution ∗-algebra. For f, g ∈ Cc(r∗A) and γ ∈ G, we have

(f ∗ g)γ =

∫
Gr(γ)

fγ1αγ1(gγ−1
1 γ) dν

r(γ)(γ1) and (f ∗)γ = α−1
γ (fγ−1)

There is a ‖ ‖1 norm given by

‖f‖1 = sup
x∈X

max

(∫
Gx
‖fγ‖dνx(γ),

∫
Gx
‖fγ−1‖dνx(γ)

)
on this algebra and the corresponding completion is a Banach ∗-algebra L1(r∗A, ν) (recall
that X is the basis G(0) of G).

The full crossed product Aoα G is the enveloping C∗-algebra of L1(r∗A, ν). The algebras A
and C∗(G) sit in the multipliers of Aoα G in a non degenerate way, and Aoα G is the closed
vector span of products a.f with a ∈ A and f ∈ C∗(G). Note that C0(X) sits both in the
multipliers of C∗(G) and of A; its images in M(Aoα G) agree.

2.2.2 Covariant representations (see [25, p. 1466] - see also [26, section II.1])

The representations of Aoα G can easily be described as in [26, Theorem 1.21, p. 65]. Such
a representation gives rise to representations of A and C∗(G). We thus obtain:

• The representation of C0(X) corresponds to a measure µ on X and a measurable field
of Hilbert spaces (Hx)x∈X .

• The representation of the C0(X)-algebra A is given by a measurable family π = (πx)x∈X
where πx : Ax → L(Hx) is a ∗-representation.

• The representation of C∗(G) gives rise to a representation of G in the sense of [26,
def. 1.6, p. 52]. In other words, the measure µ is quasi-invariant (i.e. µ ◦ ν is quasi-
invariant by the map γ 7→ γ−1) and we have a measurable family U = (Uγ)γ∈G where
Uγ : Hs(γ) → Hr(γ) is (almost everywhere) unitary and satisfies (almost everywhere)
Uγ1γ2 = Uγ1Uγ2 .

• The covariance property then reads: πr(γ) ◦ αγ = AdUγ ◦ πs(γ) (almost everywhere).

Conversely, such data (µ,H, π, U) can be integrated to a representation of Aoα G.
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2.2.3 The reduced crossed product (see [26, 17])

The reduced crossed product Aoα,redG is the quotient of AoαG corresponding to the family
of regular representations on the Hilbert modules Ax ⊗ L2(Gx; νx) for x ∈ X.

If G is amenable (see [1] for a discussion on amenability of groupoids) then the morphism
Aoα G → Aoα,red G is an isomorphism.

The reduced crossed product has a faithful representation on the Hilbert A-module E =
L2(G; ν)⊗C0(X)A where L2(G; ν) is the Hilbert C0(X) module described in [17, Theorem 2.3]
(if G is Hausdorff). The module E is the completion of Cc(G; s∗A) with respect to the A-

valued inner product satisfying (〈ξ|η〉)x =

∫
Gx
ξ∗γηγdνx(γ). Here (νx)x∈X is the corresponding

left Haar system given by

∫
f(γ)dνx(γ) =

∫
f(γ−1)dνx(γ)) and right action given by (ξa)γ =

ξγas(γ).

Denote by λ the action of C∗red(G) by (left) convolution on the Hilbert C0(X)-module L2(G; ν);
the left action of C∗(G) is given by f 7→ λ(f) ⊗C0(X) 1. The action of A is given by a.ξ =(
α−1(a ◦ r)

)
ξ: in other terms (a.ξ)γ = α−1

γ (ar(γ))ξγ.

It follows, that if π =

∫ ⊕
X

πx dµ(x) is a faithful representation of A, the corresponding

representation of Aoα,red G on

∫ ⊕
X

L2(Gx, νx)⊗Hx dµ(x) is faithful.

2.2.4 Invariant ideals and exact sequences (see [25, Theorem 3])

Let J ⊂ A be an ideal in A. Note that both J and A/J are then C0(X) algebras - recall that
X = G(0). Assume that J is invariant under the action of G which means that α(s∗(J)) =
r∗(J). Then α yields actions of G on J and A/J .

Lemma 2.4. [25, Theorem 3] We have an exact sequence of full crossed products:

0→ J oα G → Aoα G → (A/J) oα G → 0.

Proof. The only thing which is not completely obvious in this sequence is that the morphism
(A oα G)/(J oα G) → A/J oα G is injective. To see that, take a faithful representation of
(A oα G)/(J oα G); it is a covariant representation of A and G which vanishes on J , and
therefore a covariant representation of A/J and G.

If J is a G-invariant essential ideal in A, then at the level of reduced crossed products, the
ideal J oα,red G of Aoα,red G is essential.

2.2.5 Invariant open sets

Let U be an open subset of G, which is saturated for G (i.e. for all γ ∈ G, we have s(γ) ∈
U ⇐⇒ r(γ) ∈ U). Put F = X \ U . Define the subgroupoids GU = s−1(U) = r−1(U) and
GF = s−1(F ) = r−1(F ). The action α of G on A gives actions αU of GU on AU and αF of GF
on AF . We may note that AU oαU GU = AU oα G and AF oαv GF = AF oα G. Let us quote
some results that we will use:
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a) We have an exact sequence of full crossed products:

0→ AU oαU GU → Aoα G → AF oαF GF → 0.

b) If GF is amenable, the same is true for the reduced crossed products - exactness at the
middle terms follows from the diagram

0 // AU oαU GU //

��

Aoα G //

��

AF oαF GF → 0 //

'
��

0

0 // AU oαU ,red GU // Aoα,red G // AF oαF ,red GF // 0

where the first line is exact and the vertical arrows are onto, the last one being an
isomorphism.

c) If AU is an essential ideal in A, then AU oαU ,red GU is an essential ideal in Aoα,red G.

d) It follows from Rem. 1.2 that, if GF is amenable and AU is an essential ideal in A, then
AU oαU GU is an essential ideal in Aoα G.

3 Baaj’s pseudodifferential extension

In this section, we briefly review Baaj’s construction of the pseudodifferential extension of
a crossed product by a Lie group G. We note that the dual action extends to the pseu-
dodifferential extension (and is trivial at the symbol level) and discuss the corresponding
crossed product. Although this is not necessary in our framework, we will not assume G to
be abelian, so that this dual action is a coaction of G, since this doesn’t really add any diffi-
culty. We then establish an isomorphism between the crossed product of the algebra of the
pseudodifferential operators by the dual action and a natural pseudodifferential extension.
Finally, we examine the case where the Lie group is R - which is the relevant case for our
results of section 5.

3.1 Baaj’s pseudodifferential calculus for an action of a Lie group

Let us begin by recalling the extension of pseudodifferential operators associated with a
continuous action α by automorphisms of a Lie group G on a C∗-algebra A ([3, 4], the results
of Baaj concern the case G = Rn - but immediately generalize to the general case of a Lie
group).

Recall first that the order 0 pseudodifferential operators on a Lie group G give rise to an
exact sequence

0→ C∗(G) −→ Ψ∗(G)
σ−→ C(S∗g)→ 0

where C∗(G) is the (full) group C∗-algebra of G and S∗g denotes the (compact) space of half
lines in the dual space g∗ of the Lie algebra g.

Now, the algebras A and C∗(G) sit in the multiplier algebra of Aoα G in a non degenerate
way, and the elements ax with a ∈ A and x ∈ C∗(G) span a dense subspace of AoαG. This
holds for the full group algebra and crossed product, as well as for the reduced group algebra
and crossed product. Note however that, at the level of full C∗-algebras, the morphism
C∗(G)→M(AoαG) needs not be injective in general - it is easily seen to be injective at the
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level of reduced C∗-algebras. We will somewhat abusively identify C∗(G) and A with their
images in the multiplier algebra M(Aoα G).

In what follows, since we will consider the crossed product by the dual action, we will mainly
use the reduced crossed product. Note also that we will mainly use Baaj’s construction in
the case where G is R which is amenable and there is no distinction between the full and the
reduced case. In particular the morphism C∗(G) →M(A oα G) is injective in that case (if
A 6= {0}).
The nondegenerate morphism C∗(G) → M(A oα G) extends to the multiplier algebra of
C∗(G) and in particular to the subalgebra Ψ∗(G) of order 0 pseudodifferential operators of
G. We still identify (abusively) the elements of Ψ∗(G) with their images in M(A oα G).
Recall that we have:

Proposition 3.1. [3, section 4]

a) For every P ∈ Ψ∗(G) and a ∈ A, the commutator [P, a] belongs to Aoα G.

b) The closure of the linear span of products of the form Pa with P ∈ Ψ∗(G) and a ∈ A
is a C∗-subalgebra Ψ∗(A,α,G) ⊂M(Aoα G) and we have an exact sequence:

0→ Aoα G −→ Ψ∗(A,α,G)
σα−→ C(S∗g)⊗ A→ 0. (3)

Let us briefly discuss some naturality properties of this construction:

Proposition 3.2. Let (A,G, α) and (B,G, β) be C∗-dynamical systems and γ : A→M(B)
a G-equivariant morphism

a) We obtain a morphism γ̂ : Ψ∗(A,α,G)→M(Ψ∗(B, β,G)) and a commutative diagram

Ψ∗(A,α,G)
σα //

γ̂
��

C(S∗g)⊗ A

id⊗γ
��

M(Ψ∗(B, β,G))
σ̃β //M(C(S∗g)⊗B).

both for the full and the reduced versions - where we denoted by σ̃β the extension of σβ
to the multipliers.

b) If γ(A) ⊂ B then γ̂(Ψ∗(A,α,G)) ⊂ Ψ∗(B, β,G). Moreover, if γ : A → B is an
isomorphism, then γ̂ : Ψ∗(A,α,G)→ Ψ∗(B, β,G) is an isomorphism.

c) If γ is injective then so is the reduced version of γ̂.

Proof. a) By construction the inclusion of B in Ψ∗(B, β,G) is a nondegenerate morphism
(i.e. BΨ∗(B, β,G) = Ψ∗(B, β,G)). It therefore extends to a morphism M(B) →
M(Ψ∗(B, β,G)). In this way, we find a representation γ̂ : A→M(Ψ∗(B, β,G)). Now
the images of A andG inM(BoβG) ⊃M(Ψ∗(B, β,G)) form a covariant representation
so that we get a morphism AoαG→M(BoβG) (both for the reduced and full versions
of the crossed products). The image of this morphism is spanned by elements a.h with
a ∈ A and h ∈ C∗(G); it therefore sits inM(Ψ∗(B, β,G)). Finally, upon replacing A by
the algebra obtained by adjoining a unit, we may assume that γ is non degenerate. It
follows that γ̂ : AoαG→M(BoβG) is non degenerate and therefore uniquely extends
to the multiplier algebra. We thus get a morphism γ̂ : Ψ∗(A,α,G) → M(B oβ G).
The image of a.P is γ̂(a).P (for a ∈ A and P ∈ Ψ∗(G)) and therefore γ̂(Ψ∗(A,α,G)) ⊂
M(Ψ∗(B, β,G)).
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b) This is obvious.

c) If γ is one to one, then the reduced version γred : A oα,red G → M(B oβ,red G) is
injective. Therefore ker γ̂red ∩ Aoα,red G = {0} whence ker γ̂red = {0} since Aoα,red G
is an essential ideal in Ψ∗red(A,α,G) - see prop. 4.3.

3.2 The dual action

We now restrict to the reduced group algebras and crossed products.

The coproduct of C∗red(G) is a non degenerate morphism δ : C∗red(G)→M(C∗red(G)⊗C∗red(G)).
It therefore extends to a morphism δ̃ :M(C∗red(G))→M(C∗red(G)⊗ C∗red(G)).

Proposition 3.3. The restriction of δ̃ to Ψ∗(G), is a coaction: for P ∈ Ψ∗red(G) and f ∈
C∗red(G), we have δ̃(P )(1 ⊗ f) ∈ Ψ∗red(G) ⊗ C∗red(G) and the span of such products is dense
in Ψ∗red(G) ⊗ C∗red(G). Moreover, for P ∈ Ψ∗red(G) and f ∈ C∗red(G), we have (δ̃(P ) − P ⊗
1)(1⊗ f) ∈ C∗(G×G).

Proof. Let (Xi)1≤i≤d be an (orthonormal) basis of g and let ∆ = −
∑
i

X2
i be the associated

(positive) laplacian, seen as an unbounded (elliptic, positive) multiplier of C∗red(G).

The non degenerate morphism δ has an extension δ̌ to unbounded multipliers: for 1 ≤ i ≤ d,
set pi = Xi(1 + ∆)−1/2 ∈ Ψ∗red(G).
We let now C∗red(G × G) act faithfully on L2(G × G). The following equalities hold on the
infinite domain of the laplacian of the group G×G, which is a dense subspace of L2(G×G).

We have δ̌(Xi) = Xi⊗ 1 + 1⊗Xi. It follows that δ̌(∆) = ∆⊗ 1 + 1⊗∆− 2
∑
i

Xi⊗Xi. For

f ∈ C∞c (G) (acting as a convolution operator), we may then write:

(1⊗f)(δ̃(pi)−pi⊗1) = (1⊗fXi)δ((1 + ∆)−1/2) + (Xi⊗f)(δ((1 + ∆)−1/2)− (1 + ∆)−1/2⊗1).

Now fXi and (1+∆)−1/2 extend to elements of C∗red(G) therefore Ci = (1⊗fXi)δ((1+∆)−1/2)
extends as well to an element of C∗red(G×G). We write (1 + ∆)−1/2 as an integral (cf. [5]):

(1 + ∆)−1/2 =
2

π

∫ +∞

0

(1 + ∆ + λ2)−1dλ.

Write also

(1+∆+λ2)−1⊗1−δ(1+∆+λ2)−1 = ((1+∆+λ2)−1⊗1)(1⊗∆+2
∑
j

Xj⊗Xj)δ(1+∆+λ2)−1

Putting Di = (Xi ⊗ f)
(

(1 + ∆)−1/2 ⊗ 1− δ((1 + ∆)−1/2)
)

, we find

Di =
2

π
(Xi ⊗ f)

∫ +∞

0

((1 + ∆ + λ2)−1 ⊗ 1)− δ(1 + ∆ + λ2)−1dλ

=
2

π

∫ +∞

0

(Xi(1 + ∆ + λ2)−1 ⊗ f∆)δ(1 + ∆ + λ2)−1dλ

− 4

π

∑
j

∫ +∞

0

(Xi(1 + ∆ + λ2)−1Xj ⊗ fXj)δ(1 + ∆ + λ2)−1dλ

Now all the terms appearing are bounded operators:
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• Xi(1 + ∆ + λ2)−1 is pseudodifferential of order −1 and therefore Xi(1 + ∆ + λ2)−1 ∈
C∗red(G);

• f∆ and fXj are smoothing therefore in C∗red(G);

• (1⊗ fXj)δ(1 + ∆ + λ2)−1 ∈ C∗red(G)⊗ C∗red(G).

It follows that the integrand extends to an element of C∗red(G)⊗ C∗red(G).

Furthermore, Xk(1 + ∆ + λ2)−1/2 = Xk(1 + ∆)−1/2hλ(∆) where ‖hλ‖∞ ≤ 1, whence ‖Xi(1 +
∆ + λ2)−1‖ and ‖Xi(1 + ∆ + λ2)−1Xj‖ are bounded independently of λ. Hence, this integral
is norm convergent and Di extends to an element D̄i of C∗red(G)⊗ C∗red(G).
Thus, we have proved that (1⊗ f)(δ̃(pi)− pi ⊗ 1) = Ci + D̄i belongs to C∗red(G)⊗ C∗red(G).

The set A of P ∈ Ψ∗red(G) such that (1⊗ C∗red(G))(δ̃(P )− P ⊗ 1) ⊂ C∗red(G)⊗ C∗red(G) and
(1 ⊗ C∗red(G))(δ̃(P ∗) − P ∗ ⊗ 1) ⊂ C∗red(G) ⊗ C∗red(G) is a closed ∗-subalgebra of Ψ∗red(G); it
contains C∗red(G). As pi + p∗i ∈ C∗red(G), it follows by the above calculation that pi ∈ A.

Since the symbols of the pi’s generate a dense subalgebra of the symbol algebra C(S∗g) we
conclude that A = Ψ∗red(G).

Finally, the closed vector span of (1⊗ f)δ̃(P ) contains the closed vector span of (1⊗ f)δ(h)
(with f, h ∈ C∗(G)) hence, C∗red(G) ⊗ C∗red(G). Therefore (1 ⊗ f)δ̃(P ) − P ⊗ f is in this
span: the same holds for P ⊗ f .

3.3 Isomorphisms

Let α be an action of a Lie group G on a C∗-algebra A. Denote by α̂ the dual action on
the reduced crossed product A oα,red G as well as its extension to Ψ∗red(A,α,G) discussed

above. Recall that in the context of non abelian groups, B o Ĝ is just a notation for the
crossed product by a dual action, - it is a C∗-algebra generated by products bf with b ∈ B
and f ∈ C0(G) subject to the equivariance condition.

The Takesaki-Takai duality ([27]) for non abelian groups, (see [19, 18]), is an isomorphism

(Aoα,red G) oα̂ Ĝ ' A⊗K which is based on the following facts:

a) There are natural morphisms of the C∗-algebras A and C0(G) to the multiplier algebra

M((Aoα,redG)oα̂ Ĝ), as well as a (strictly continuous) morphism of the group G to the
unitary group of this multiplier algebra, yielding a morphism of C∗r (G) toM((Aoα,red

G) oα̂ Ĝ).

The double crossed product (Aoα,red G)oα̂ Ĝ is generated by the products f.a.h with

a ∈ A, h ∈ C∗r (G) and f ∈ C0(G) (sitting in the multiplier algebra of (Aoα,redG)oα̂ Ĝ).
Now, since the dual action is trivial on A, the images of A and C0(G) commute so that

we find in the multiplier algebra of (Aoα,red G) oα̂ Ĝ a copy of the C∗-tensor product
A⊗C0(G). The group G acts on A⊗C0(G) through the action α⊗λ (where λ denotes
the action of G on C0(G) by left translation).

The morphisms of the C∗-algebra A and the group G (resp. of C0(G) and G) to

M((A oα,red G) oα̂ Ĝ) form a covariant representation of the C∗-dynamical system
(A,G, α) (resp. (C0(G), G, λ)). It follows that the morphisms of A ⊗ C0(G) and G

in the multiplier algebra M((Aoα,red G) oα̂ Ĝ) form a covariant representation of the
C∗-dynamical system (A⊗ C0(G), G, α⊗ λ).

In this way, we get an isomorphism (Aoα,red G) oα̂ Ĝ ' (A⊗ C0(G)) oα⊗λ,red G.
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b) Now, on A⊗C0(G), the actions α⊗λ and id⊗λ are conjugate through the automorphism
γ of C0(G;A) = A⊗ C0(G) given by the formula (γf)(x) = αx(f(x)) for f ∈ C0(G;A)
and x ∈ G. We find an isomorphism (A⊗ C0(G)) oα⊗λ,red G ' (A⊗ C0(G)) oid⊗λ G.

c) Finally (A⊗ C0(G)) oid⊗λ G ' A⊗ (C0(G) oλ G) ' A⊗K.

Proposition 3.4. The isomorphism f : (Aoα,redG)oα̂ Ĝ
∼−→ (A⊗C0(G))oα⊗λ,redG extends

to an isomorphism Ψ∗red(A,α,G) oα̂ Ĝ ' Ψ∗red(A⊗ C0(G), α⊗ λ,G).

Proof. SinceAoα,redG is an essential ideal in Ψ∗red(A,α,G) (see 4.3), the algebra Ψ∗red(A,α,G)oα̂

Ĝ sits in the multiplier algebra M((Aoα,red G) oα̂ Ĝ).

In the same way, the algebra Ψ∗red(A⊗C0(G), α⊗λ,G) sits also inM((A⊗C0(G))oα⊗λ,redG).

Both algebras are generated by products aPh where a ∈ A, P ∈ Ψ∗red(G) and h ∈ C0(G).

Now the inclusions of A and of C0(G) inM correspond to each other under the extension f̃

of f to the multipliers. As the inclusions of C∗red(G) to M((Aoα,red G) oα̂ Ĝ) and M((A⊗
C0(G))oα⊗λ,redG) correspond to each other under f̃ , the same holds for the extension to the
multipliers, and in particular for the inclusions of Ψ∗red(G).

The actions α⊗ λ and id⊗ λ of G on A⊗ C0(G) are conjugate. Using prop. 3.2, we deduce

isomorphisms Ψ∗red(A,α,G) oα̂ Ĝ ' A⊗Ψ∗red(C0(G), λ,G) ' A⊗ (Ψ∗red(G) oλ̂ Ĝ).

Definition 3.5. Let B be a subalgebra of C(S∗g) ⊗ A. We denote by Ψ∗red(A,α,G;B) the
B-valued pseudodifferential extension of α i.e. the subalgebra

Ψ∗red(A,α,G;B) = {P ∈ Ψ∗red(A,α,G); σ(P ) ∈ B}

of Ψ∗red(A,α,G).

In the case of the trivial action, Ψ∗red(A, id, G;B) = {P ∈ A⊗Ψ∗red(G); (σ ⊗ id)(P ) ∈ B}.

3.4 The case of R

When G = R, then g∗ = R which has two half lines, i.e. C(S∗g) = C⊕ C.

Extension (3) reads therefore

0→ Aoα R −→ Ψ∗(A,α,R)
σ±−→ A⊕ A→ 0,

where σ+ and σ− are morphisms from Ψ∗(A,α,R)→ A.

It is helpful for our discussion to identify the dual group of R with R∗+ through the pairing
〈t|u〉 = uit for u ∈ R∗+ and t ∈ R. Under this identification, C∗(R) ' C0(R∗+) and Ψ∗0(R) '
C([0,+∞]). The maps σ− and σ+ correspond to evaluation at 0 and +∞ in the sense that
σ−(Pa) = P (0)a and σ+(Pa) = P (+∞)a, where a ∈ A and P ∈ C([0,+∞]) ' Ψ∗(R).

The algebra A sits inM(AoαR) and we have a strictly continuous family (ut)t∈R inM(Ao
R). Then we can write ut = Qit

α where Qα is a regular unbounded, selfadjoint, positive
multiplier with dense range - i.e. such that Q−1

α is also densely defined, and therefore a
regular unbounded, selfadjoint, positive multiplier. The algebra AoR is spanned by af(Qα)
with f ∈ C0(R∗+) and Ψ∗(A,α,R) is spanned by af(Qα) with a ∈ A and f ∈ C([0,+∞]).
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Definition 3.6. Let A be a C∗-algebra and let α = (αt)t∈R be a continuous action of R on
A by ∗-automorphisms. Let B be a C∗-subalgebra of A. We set

Ψ∗(A,α,R, 0, B) = {x ∈ Ψ∗(A,α,R); σ−(x) ∈ B, σ+(x) = 0}.

The algebra Ψ∗(A,α,R, 0, B) is spanned by elements af(Qα) + b(1 + Qα)−1 for a ∈ A, b ∈
B, f ∈ C0(R∗+) = C∗(R) all sitting naturally as multipliers of Aoα R.

4 Pseudodifferential extension associated to an action

of a smooth groupoid

In this section, we recall a few facts on smooth groupoids: the pseudodiffelential calculus,
the adiabatic groupoid G of a smooth groupoid G [22, 23], its ideal J(G) ([12, section 4.1]),
the action of R∗+. We then extend all these to the case of an action of G on a C∗-algebra A.

Recall that AG denotes the total space of the normal bundle of the inclusion of G(0) ⊂ G,
A∗G the total space of its dual bundle, and S∗AG the associated sphere bundle, i.e. the set
of half lines in A∗G.

4.1 The extension of pseudodifferential operators

On every Lie groupoid G, there is a (longitudinal) pseudodifferential calculus. For every
m ∈ R (and even for m ∈ C - [30, section 3]) we have a space Pm(G) of classical pseudod-

ifferential operators of order m (with polyhomogeneous symbol σ ∼
+∞∑
k=0

am−k where am−k is

homogeneous of order m − k) and a symbol map which is a linear map σm from Pm(G) to
homogeneous functions of order m defined on A∗G (outside the zero section) - with kernel
Pm−1(G).

The smooth functions of M = G(0) define elements of P0(G); the sections of the algebroid
define elements of P1(G). The algebra generated by these is the algebra of differential opera-
tors. Given a positive definite quadratic form q on the bundle A∗G, we may find a (positive)
laplacian ∆G ∈ P2(G) which is a positive and whose principal symbol is q.

At the level of C∗-algebras we obtain an extension Ψ∗(G) of C∗(G) and an exact sequence of
order 0 pseudodifferential operators

0→ C∗(G) −→ Ψ∗(G)
σ0−→ C(S∗AG)→ 0.

Recall (cf. [7, 22, 23]) that Ψ∗(G) is the closure of the algebra P0(G) of order zero pseu-
dodifferential operators on G in the multiplier algebra of C∗(G) and σ0 is the (extension by
continuity of the) principal symbol map.

4.2 The adiabatic groupoid and the ideal J(G)

Let G be a Lie groupoid. We denote by M = G(0) its set of objects. The associated adiabatic
groupoid Gad is obtained by applying the “deformation to the normal cone” construction to
the inclusion M → G of the unit space of G into G. This construction was introduced by
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Connes in the case of a pair groupoid G = M ×M ([10, section II.5]), and generalized in
[22, 23].

As a set, and as a groupoid, Gad = AG × {0} ∪ G × R∗+ where AG is (the total space of) the
Lie algebroid of G, i.e. the normal bundle of the inclusion in G of the space of objects M of
G; its groupoid structure is given by addition of vectors - source and range coincide and are
just the bundle map AG →M . These sets are glued using an exponential map AG → G (see
[22, 6, 12] for further details).

The C∗-algebra of the adiabatic groupoid of G sits in an exact sequence

0→ C∗(G)⊗ C0(R∗+) −→ C∗(Gad)
ev0−→ C0(A∗G)→ 0,

where A∗G denotes the total space of the dual bundle to the Lie algebroid AG of G. Consider
the morphism ε : C0(A∗G) → C(M) which associates to a function on A∗G its value on
the 0-section M of the bundle A∗G - i.e. the trivial representation of the group AxG. We
denote by J(G) the kernel of ε◦ ev0, which is an ideal of C∗(Gad). We therefore have an exact
sequence:

0→ J(G)→ C∗(Gad)→ C(M)→ 0.

Remark 4.1. It follows from [17, Corollary 2.4], since M ×R∗+ is dense in M ×R+ that the
ideal C0(R∗+)⊗ C∗red(G) is essential in C∗red(Gad).
Thanks to remark 1.2 we deduce that C0(R∗+)⊗ C∗(G) is also an essential ideal in C∗(Gad).
As it contains C0(R∗+) ⊗ C∗(G), the ideal J(G) is essential in C∗(Gad) both for the reduced
and the full C∗-norm.

Note also that the subset A∗G \M is dense in A∗G (unless the groupoid G is r-discrete in the
sense of [26, def. 2.6, p. 18] - i.e. the dimension of the algebroid is 0), and therefore ker ε is
essential in C0(A∗G). In this way we have another proof that J(G) is essential in C∗(Gad).

We denote by τ the action of the group R∗+ by groupoid automorphisms on Gad. This
action is given by τt(γ, u) = (γ, tu) for γ ∈ G and t, u ∈ R∗+ τt(x, U, 0) = (x, t−1U, 0) for
(x, U) ∈ AG (x ∈M).

We therefore get an action still denoted by τ of R∗+ on C∗(Gad). Note that J(G) is invariant
under this action and that the quotient action of R∗+ on C∗(Gad)/J(G) = C(M) is trivial.

We will also use from [12, section 3.1] the dense subspaces S(Gad) of C∗(Gad) and J (G) of J(G)
consisting of smooth functions with Schwartz decay properties. Recall ([12, Theorem 3.7])

that for f ∈ J (G) and m ∈ R, the operator

∫ +∞

0

ft
dt

tm+1
is an order m pseudodifferential

operator of the groupoid G i.e. an element of Pm(G); its principal symbol σ is given by

σ(x, ξ) =

∫ +∞

0

f̂(x, tξ, 0)
dt

tm+1
·

4.3 Pseudodifferential extension of smooth groupoid actions

We now extend Baaj’s construction of the pseudodifferential extension to the case of an action
α of a smooth groupoid G on a C∗-algebra A - in the sense of [20, 21] - see section 2.1.
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4.3.1 Smooth elements

Let G be a smooth groupoid with base M acting on a C0(M) algebra A. We denote by
α : s∗A→ r∗A this action.

We may define elements of A which are smooth along the action in the following way:

• Let W be an open subset in G diffeomorphic to U × V where U ⊂ M is open and V
is an open ball in Rk, and such that r(u, v) = u. Then the C0(W ) algebra (r∗A)W is
isomorphic to C0(V ;AU); an element a ∈ r∗A is said to be of class C∞,0 if for every
such W and f ∈ C∞c (W ), we have fa ∈ C∞c (V ;AU) ⊂ C0(V ;AU) ' AW .

• An element a ∈ A is said to be smooth for the action of G if for all f ∈ C∞c (G), the
element α(f.(a ◦ s)) of r∗A is of class C∞,0. Here f.(a ◦ s) is the class of a⊗ f in s∗A -
i.e. the restriction of a⊗ f to the graph of s. In other words, we have(

α(f.(a ◦ s))
)
γ

= f(γ)αγ(as(γ)).

The smooth elements form a dense sub-algebra A∞ of A. Indeed, if a ∈ A and f ∈ C∞c (G),

the element f ∗a given by (f ∗a)x =

∫
Gx

f(γ)αγas(γ)dν
x(γ) is easily seen to be smooth. Take

then a sequence fn with fn ∈ C∞c (G) positive with support tending to M and such that
νx(fn) = 1: we have fn ∗ a→ a.

4.3.2 Crossed product by the adiabatic groupoid

Let G be a smooth groupoid with base M acting on a C0(M) algebra A. Consider the
morphism Gad → G × R+ which is the identity on G × R∗+ and satisfies (x, ξ, 0) 7→ (x, 0) for

x ∈ M = G(0) ⊂ G and ξ ∈ gx. Using this morphism, the adiabatic groupoid Gad acts on
the C0(R+ ×M)-algebra C0(R+) ⊗ A: we have Ax,t = Ax (for t ∈ R+ and x ∈ M) and, for
t ∈ R∗+, γ ∈ G and b ∈ As(γ), we have αγ,t(b) = αγ(b); for x ∈M , ξ ∈ gx and b ∈ Ax, we have
αx,ξ,0(b) = b.

We have an exact sequence

0→ (Aoα G)⊗ C0(R∗+)→ (A⊗ C0(R+)) oα Gad → A⊗C0(M) C0(A∗G)→ 0.

As the groupoid AG is amenable, the same exact sequence holds with reduced crossed prod-
ucts.

Note also that the action τ of R∗+ extends on (A ⊗ C0(R+)) oα Gad: it acts naturally on
(A⊗ C0(R+)) = C0(R+;A) by (τt(a))(u) = a(t−1u).

We will also use the ideal J(G, A) ⊂ (A⊗C0(R+))oαGad which is the kernel of the morphism
(A⊗ C0(R+)) oα Gad → A obtained as the composition

(A⊗ C0(R+)) oα Gad → A⊗C0(M) C0(A∗G)→ A⊗C0(M) C0(M) = A.

It is the closed vector span of elements f.a with f ∈ J(G) and a ∈ A. It is an essential ideal
in A⊗ C0(R+) oα Gad (see remark 4.1).

Lemma 4.2. If a ∈ A is smooth for the G action and f ∈ Sc(Gad) (cf. [12, section 3.1]),
then ‖[ft, a]‖AoαG = O(t).
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Proof. Note that f.a, a.f are in (A ⊗ C0(R+)) oα Gad and since they are equal in A ⊗C0(M)

C0(A∗G), we find that ‖[ft, a]‖AoαG → 0.

Let θ : V ′ → V be an “exponential map” which is a diffeomorphism of a (relatively compact)
neighborhood V ′ of the 0 section M in AG onto a tubular neighborhood V of M in G.
We assume that r(θ(x, U)) = x for x ∈ M and U ∈ AxG. Let W ′ = {(x, U, t) ∈ AG ×
R+; (x, tU) ∈ V ′} and W be the open subset W = AG × {0} ∪ V × R∗+ of Gad; finally let
Θ : W ′ × R+ → W be the diffeomorphism defined by Θ(x, U, 0) = (x, U, 0) and Θ(x, U, t) =
(θ(x, tU), t).

If f ∈ Sc(R∗+ × G), then we have ‖[ft, a]‖AoαG = O(tn) for all n.

We may therefore assume that f is of the form g ◦ Θ where g ∈ Sc(W ′); then [ft, a] is the

image in Aoα G of the function bt ∈ r∗A, where (bt)γ = ft(γ)
(
ar(γ) − αγ

(
as(γ)

))
.

Note that there is a well defined element c ∈ (r ◦ Θ)∗(A ⊗ C0(R+)) given by c(x,U,t) =

g(x, U, t)
1

t

(
ax − αθ(x,tU)

(
as(θ(x,tU))

))
for t 6= 0 and −c(x,U,0) is the derivative at 0 of t 7→

αθ(x,tU)

(
as(θ(x,tU))

)
, and f.(c ◦ Θ−1) gives an element d ∈ (A ⊗ C0(R+)) oα Gad; we have

tdt = [ft, a].

4.3.3 Pseudodifferential extension

Proposition 4.3. a) For P ∈ Ψ∗(G) and a ∈ A sitting in M(A oα G), we have [P, a] ∈
Aoα G.

b) The closed vector span of products aP where a ∈ A and P ∈ Ψ∗(G) is a C∗-subalgebra
Ψ∗(A,α,G) ⊂M(Aoα G).

c) We have an exact sequence

0→ Aoα G −→ Ψ∗(A,α,G)
σα−→ A⊗C0(M) C(S∗AG)→ 0.

Proof. a) We can assume P is in a dense subalgebra of Ψ∗(G) and a smooth. Whence, by

[12, Theorem 3.7], we may choose P =

∫ +∞

0

ft
dt

t
where f = (ft) ∈ J (G). Then, by

Lemma 4.2, [P, a] is a norm converging integral of elements in Aoα G.

b) This closed subspace contains A oα G and its image in M(A oα G)/(A oα G) is a
C∗-algebra since Ψ∗(G) and A commute in this quotient.

c) Using (a) and the compatibility of the inclusions of C0(M) in Ψ∗(G) and in M(A), we
find a morphism $ : C(S∗AG)⊗C0(M)A→M(AoαG)/(AoαG) such that $(σ(P )⊗a)
is the class of Pa. We just have to show that $ is injective.

Equivalently, we wish to show that Aoα G is an essential ideal in the fibered product
Ψ̃∗(G;A) = Ψ∗(G;A)×$(C(S∗AG)) C(S∗AG).

We have a representation of Ψ̃(G, A) as multipliers of J(G, A) given, for (T, σ) ∈
Ψ̃∗(G;A), by (((T, σ)f)t = Tft for t 6= 0 and ̂((T, σ)f)0)(x, ξ) = σ(x, ξ)f̂0(x, ξ), where
T ∈ Ψ∗(G, A) and σ ∈ C(S∗AG). This representation is faithful: indeed, if (T, σ) is in
its kernel, taking its value at 0 it follows that σ = 0; therefore T ∈ A oα G; but the
representation of Aoα G in J(G;A) is faithful since Aoα G ⊗ C0(R∗+) ⊂ J(G, A).
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Now as C0(R∗+)⊗AoαG is an essential ideal in J(G;A), it follows that the representation

P 7→ 1⊗ P of Ψ̃∗(G;A) on C0(R∗+)⊗ Aoα G is faithful, whence Aoα G is essential in

Ψ̃∗(G;A).

5 Action of the adiabatic groupoid and pseudodiffer-

ential extension

Let G be a smooth groupoid acting on the C∗-algebra A. In this section we prove the main
results of this paper:

• We construct an action of R on the associated C∗-algebra Ψ∗(G, A) of pseudodifferential
operators - extending a construction sketched in [12, Remark 4.10].

• We establish the isomorphism J(G, A) ' Ψ∗(G, A) oβ R - which was sketched in [12,
Remark 4.10] in the case where A = C0(M) and the action is trivial.

• Finally we identify (A⊗C0(R+))oα̃Gad as a pseudodifferential extension of the above
crossed product.

5.1 The unbounded multiplier D of C∗(Gad)

We first recall the construction of an unbounded multiplier D of C∗(Gad) which was given in
[12, section 4.4].

Let G be a longitudinally smooth groupoid with compact space of objects M = G(0).

Fix a metric on AG (and therefore on A∗G) and choose a positive invertible pseudodifferential
operator D1 on G with principal symbol σD1(x, ξ) = ‖ξ‖. It is shown in [30, Prop. 21] that
D1 is a regular multiplier of C∗(G).

Proposition 5.1. (cf. [12, Prop. 4.8]) Let G be a Lie groupoid with compact set of objects
G(0) = M and Gad its adiabatic groupoid. Fix a metric on AG (and therefore on A∗G)
and choose a positive invertible pseudodifferential operator D1 on G with principal symbol
σD1(x, ξ) = ‖ξ‖. There is a unique regular unbounded multiplier D of C∗(Gad) satisfying:

(i) the evaluation at 1 of D is D1;

(ii) we have βu(D) = uD for u ∈ R∗+.

Moreover,

a) The evaluation at 0 of D, D0, is the unbounded multiplier q of C0(A∗G) = C∗(AG)
where q(x, ξ) = ‖ξ‖.

b) The multiplier (1 +D)−1 is in fact a strictly positive element of C∗(Gad).

c) For all f ∈ C0(R∗+) we have f(D) ∈ J(G). Moreover, the representation f 7→ f(D) is
non degenerate: if h ∈ C0(R∗+) is strictly positive in R∗+, then f(D) is a strictly positive
element of J(G)..
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Proof. If D satisfies (i) and (ii), then Du = uD1 for all u > 0, and this establishes uniqueness
of D.

Choose a finite family (X1, . . . , Xm) of sections of AG in such a way that the embedding
ξ 7→ 〈Xi|ξ〉 is an isometry from A∗G to the trivial bundle. In [12, prop. 4.8], we constructed

an unbounded multiplier, call it D̃ such that D̃1 =
(∑

X∗iXi+1
)1/2

, D̃0 = q and D̃u = uD̃1

for u ∈ R∗+. Now, D1 − D̃1 is a 0-order operator, whence bounded. We may then define an

unbounded multiplier D by putting Du = D̃u + u(D1 − D̃1) and D0 = D̃0.

Let us prove property (b).
Let c ∈ R∗+. Since M × [0, c] is compact and D is elliptic of order 1 ([30, Th. 18 and Prop.
21]), the restriction of (1+D)−1 to (Gad)|[0,c] is in C∗(Gad)|[0,c]. Let m ∈ R∗+ such that D1 ≥ m,
we have 1+Du ≥ 1+um and therefore ‖(1+Du)

−1‖ ≤ (1+um)−1. It follows that (1+D)−1

belongs to C∗(Gad).
Now, (1 +D)−1C∗(Gad) is the domain of the multiplier D, whence it is dense, and (1 +D)−1

is strictly positive.

Property (c) follows from [12, Prop. 4.8.b)]. Note that our D1 here is slightly more general
than the one used there, but the same proof applies.

5.2 The Action of R on Ψ∗(G, A)

Let S ∈ P1/2(G) be a positive elliptic pseudodifferential operator of order 1/2 (for instance

take S such that σ1/2(S) = (σ2(∆G))
1/4 where ∆G is a laplacian as defined in the section 4.1).

Denote by ∂S the associated derivation on M(Aoα G) (see appendix - facts 6.3).

Lemma 5.2. Every smooth element a ∈ A and every classical pseudodifferential P on G of
order 0 are in the domain of the derivation ∂S.

Proof. We may write S = R + S1 where S1 =

∫ +∞

0

ft t
−3/2 dt, (ft) is a positive element in

J (G) and R ∈ P−1/2(G). This integral means that domS1 is the set of x ∈ A oα G such

that the integral

∫ +∞

0

ftx t
−3/2 dt converges in norm to some y ∈ Aoα G and then S1x = y.

(Indeed, by [30, Prop. 21], S1 is selfadjoint regular and it is clear that (x, y) is then in the
graph of S∗1).

Since a is assume to be smooth, the integral

∫ +∞

0

[ft, a] t−3/2 dt converges in norm (by Lemma

4.2) to some element b ∈ Aoα G. Then, for x ∈ domS = domS1, the sequence∫ +∞

1/n

ftax t
−3/2 dt =

∫ +∞

1/n

(aft + [ft, a])x t−3/2 dt

converges in norm to aS1x+ bx. Thus ax ∈ domS1 = domS. It follows that a ∈ dom ∂S and
∂S(a) = b+ [R, a].

If P ∈ P0(G), the operator (S2 + 1)1/2P (S2 + 1)−1/2 ∈ Ψ∗(G); it follows that PdomS ⊂
domS. Moreover, [S, P ] ∈ P1/2(G) and since σ1/2[S, P ] = [σ1/2(S), σ1/2(P )] = 0, we find
[S, P ] ∈ P−1/2(G) ⊂ C∗(G).
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Proposition 5.3. Let D1 ∈ P1(G) be any positive invertible pseudodifferential operator el-
liptic of order 1. Then we have an action β of R on Ψ∗(G;A) given by βt(P ) = Dit

1 PD
−it
1 .

This action is trivial at the symbol level.

Proof. By [30, Theorem 41] there exists S ∈ P1/2 positive elliptic of order 1/2 and T ∈ C∗(G)

such that
√
D1 = S + T . It follows by Lemma 5.2, that with a, P as above Pa ∈ dom ∂√D1

.

Since D
−1/2
1 ∈ A oα G, it follows from Lemma 6.6, that Pa ∈ dom ∂lnD1 and [lnD1, aP ] ∈

Aoα G. The conclusion follows from Lemma 6.4.

5.3 Isomorphism Ψ∗(G, A) oR ' J(G, A)

In [12, prop. 4.2.b)], we constructed a morphism φ : Ψ∗(G) →M(J(G)) such that, for P ∈
Ψ∗(G) and f = (fu) in J(G) we have (φ(P )(f))u = P ∗fu, for u 6= 0 and (φ(P )(f))0 = σ0(P )f0

thanks to [12, prop. 4.2.b)]. Now J(G) sits in a non degenerate way in M(J(G, A)). Also,
by definition A embeds in a compatible way in M(J(G, A)).

In this way, we find a morphism φ : Ψ∗(G, A) → M(J(G, A)) such that, for P ∈ Ψ∗(G, A)
and f = (ft) in J(G, A) we have (φ(P )(f))u = P ∗ fu, for u 6= 0 and (φ(P )(f))0 = σ0(P )f0.

Furthermore, the operator D recalled in section 5.1 yields a one parameter group (Dit)t∈R in
M(J(G)); we will still denote by (Dit)t∈R its image in M(J(G, A)).

As Du and D1 are scalar multiples of each other, we find in this way a covariant representation
of the pair (Ψ∗(G), β,R) (prop. 5.3).

Associated to this covariant representation is a morphism from Ψ∗(G, A) oβ R into the mul-
tiplier algebra of J(G), but since the image of C∗(R) ⊂ Ψ∗(G) oβ R is contained in J(G), we
get a homomorphism ϕ : Ψ∗(G, A) oβ R→ J(G, A). For P ∈ Ψ∗(G, A) ⊂M(Ψ∗(G, A) oβ R)
and f ∈ C∗(R) = C0(R∗+) ⊂M(Ψ∗(G, A) oβ R), we have (ϕ(Pf)) = φ(P )f(D).

Proposition 5.4. The homomorphism ϕ is an equivariant isomorphism from (Ψ∗(G, A) oβ

R, β̂) to (J(G, A), τ).

Proof. The images of the elements of Ψ∗(G, A) are translation invariant, i.e. invariant by the
extension τu of τu to the multiplier algebra, and τu(D

it) = uitDit. This shows that ϕ is an
equivariant morphism from (Ψ∗(G, A) oβ R, β̂) to (J(G, A), τ).

Now βt restricts to an action of R on C∗(G), and according to [12, prop. 4.2.a)] it follows that
ϕ extended to the multipliers defines a morphism from C∗(G) oβ R into the ideal C0(R∗+)⊗
C∗(G) of J(G). It follows that ϕ(AoαG) is contained in the ideal AoαG⊗C0(R∗+) of J(G, A).
We thus have the diagram:

0 // (Aoα G) oβ R //

ϕ′

��

Ψ∗(G, A) oβ R //

ϕ

��

(A⊗C(M) C(S∗AG)) oβ R //

ϕ′′

��

0

0 // (Aoα G)⊗ C0(R∗+) // J(G, A) // A⊗C(M) C0(A∗G \M) // 0

As D1 is an unbounded invertible multiplier of C∗(G) and therefore of Aoα G, the action β
of R on A oα G is inner. It follows that the crossed product (A oα G) oβ R identifies with
(Aoα G)⊗ R∗+. This isomorphism is defined in the following way: the canonical multipliers
of the crossed product, i.e. the generators a ∈ Aoα G and λt for t ∈ R map to the functions
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u 7→ a and u 7→ uitDit
1 from R∗+ to M(A oα G). It follows, the image of af with a ∈ C∗(G)

and f ∈ C∗(R) = C0(R∗+) is af(D). This isomorphism identifies thus with ϕ′.

The action β is trivial on symbols; thus (A ⊗C(M) C(S∗AG)) oβ R is equal to (A ⊗C(M)

C(S∗AG))⊗C0(R∗+), and ϕ′′(σ⊗ f) = σf(q) is the isomorphism corresponding to the home-
omorphism A∗G \M ' S∗AG × R∗+ given by ξ 7→ (ξ/q(ξ), q(ξ)). The result follows.

5.4 The crossed product by the adiabatic groupoid

The algebra A sits in Ψ∗(G, A) as (the closure of) order 0 differential operators. Denote by
ϑ : A→ Ψ∗(G;A) the corresponding morphism. The element ϑ(a) as a multiplier of Aoα G,
is just the multiplication by a.

Remark 5.5. Using at the non degenerate morphism Ψ∗(G, A) → M(J(G;A)) we then
obtain a morphism ϑ̂ : A→M(Ψ∗(G, A) oR).

Also the algebra A is in the multiplier algebra of A⊗C0(R+) end thus we have an embedding
ϑ̃ : A→M((A⊗C0(R+))oα̃ Gad) - which is a subalgebra ofM(J(G;A)) since J(G;A) is an
essential ideal in (A⊗ C0(R+)) oα̃ Gad.

We now use the notation of paragraph 3.4. The main result of this paper is :

Theorem 5.6. The isomorphism ϕ : Ψ∗(G, A) oβ R → J(G, A) extends uniquely to an iso-
morphism of Ψ∗(Ψ∗(G, A), β,R, 0, A) with (A⊗C0(R+))oα̃Gad. This isomorphism intertwines
the actions β and τ of R.

Proof. The isomorphism ϕ : Ψ∗(G, A) oβ R → J(G, A) extends to an isomorphism Φ of the
multiplier algebras. Since the ideals Ψ∗(G, A) oβ R ⊂ Ψ∗(Ψ∗(G, A), β,R) and J(G, A) ⊂
(A ⊗ C0(R+)) oα Gad are essential, we just need to show that Φ(Ψ∗(Ψ∗(G, A), β,R, 0, A)) =
(A⊗ C0(R+)) oα̃ Gad.
It follows from proposition 3.2.a) that the morphism Φ coincides on Ψ∗(G, A) with the mor-
phism φ : Ψ∗(G, A) → M(J(G, A)) of section 5.3 and that the image of the unbounded
multiplier Qβ (see section 3.4) is D.

With the notation introduced in remark 5.5, one easily checks that Φ ◦ ϑ̂ = ϑ̃.

We deduce that Φ
(

Ψ∗(Ψ∗(G, A), β,R, 0, A)
)

is spanned by ϕ(Ψ∗(G, A) oβ R) = J(G, A) and

(1 +D)−1ϑ̃(a) where and a over A.

Since (1+D)−1 ∈ C∗(Gad) (prop. 5.1.b)), for a ∈ A we have (1+D)−1ϑ̃(a) ∈ (A⊗C0(R+))oα̃

Gad.
Finally Φ induces a homomorphism ϕ̃ : Ψ∗(Ψ∗(G, A), β,R, 0, A)→ (A⊗ C0(R+)) oα̃ Gad.
Moreover, since ev0(D) = q which vanishes at the 0 section of A∗G, we find that ε ◦ ev0((1 +
D)−1) = 1, whence ε ◦ ev0(Φ((1 + D)−1θ(a))) = a. We thus have a commutative diagram
where the sequences are exact:

0 // Ψ∗(G, A) oβ R //

ϕ

��

Ψ∗(Ψ∗(G, A), β,R, 0, A) //

Φ
��

A //

idA
��

0

0 // J(G, A) // (A⊗ C0(R+)) oα̃ Gad) // A // 0

Whence ϕ̃ is an isomorphism.

By uniqueness of the extension to multipliers, we deduce that β̂t◦ϕ̃ = ϕ̃◦τt for all t ∈ R∗+.
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Recall that the gauge adiabatic groupoid Gga is the semi-direct product Gga = Gad oτ R∗+. If
G acts on A, then Gga acts on A⊗ C0(R+).

Corollary 5.7. We have isomorphisms

(A⊗ C0(R+)) oα Gga ' Ψ∗(Ψ∗(G, A), β,R, 0, C(M)) oβ̂ R
∗
+

' Ψ∗(Ψ∗(G, A)⊗ C0(R), β ⊗ λ,R, 0, C(M)⊗ C0(R)).

Proof. We have (A⊗C0(R+))oα Gga = ((A⊗C0(R+))oα Gad)oτ R∗+. The first isomorphism
is a direct consequence of theorem 5.6; the second one comes from prop. 3.4.

Remark 5.8. Let us drop the algebra A. The exact sequence

0→ C∗(G)⊗K → C∗(Gga) oR∗+ → C0(A∗G) oR∗+ → 0

defines an “ext” element in KK1(C0(A∗G) oR∗+, C∗(G)⊗K). Using Connes’ Thom isomor-
phism (cf. [8, 14]), this group is isomorphic to KK(C0(A∗G), C∗(G)). In fact, using again the
Thom isomorphism, this element corresponds to the ext element in KK1(C0(A∗G), C∗(G)⊗
C0(R∗+)) of the exact sequence

0→ C∗(G)⊗ C0(R∗+)→ C∗(Gad)→ C0(A∗G)→ 0.

One easily sees (using e.g. [22, Theorem 2.1]) that this element is the analytic index.

Let µ : C(M)→ Ψ∗(G) be the inclusion, and let Cµ be the corresponding mapping cone. We
have an exact sequence

0→ Ψ∗(G)⊗ C0(R∗+)→ Cµ → C(M)→ 0.

The quotient of Cµ by the ideal C∗(G)⊗C0(R∗+) is the cone of the inclusion C(M)→ C(S∗g),
which is naturally isomorphic to C0(A∗G). We thus find an exact sequence

0→ C∗(G)⊗ C0(R∗+)→ Cµ → C0(A∗G)→ 0.

The corresponding KK-element can be seen again to be the analytic index element in
KK(C0(A∗G), C∗(G)). Taking crossed product by the natural action of R∗+ on Cµ (just
by rescaling), we find an exact sequence

0→ K → Cµ oR∗+ → C0(T ∗M) oR∗+ → 0.

In the case of the pair groupoid, we deduce an isomorphism Cµ o R ' C∗(Gga) thanks to
Voiculescu’s theorem ([31, Theorem 1.5]).

It is a natural question to decide whether this isomorphism extends to the general case. On
the other hand, this isomorphism is not “natural”. Indeed, Cµ and C∗(Gad) are not isomorphic
in general, whence there is no isomorphism Cµ o R ' C∗(Gga)(= C∗(Gad) o R∗+) equivariant
with respect to the dual actions.
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6 Appendix: some facts on unbounded operators

In this appendix, we recall a few rather classical abstract facts about unbounded operators
that we used in the text. These facts are presented here in a form suitable for our exposition
and certainly not in their most general forms. They can be found in (or deduced directly
from) [2, 32] - see also [30].

Let E be a C∗-module (over a C∗-algebra) and L a regular (densely defined, unbounded)
self-adjoint operator on E.

Facts 6.1. Let us recall a few facts about unbounded functional calculus, f 7→ f(L) (cf.
[2, 32]).

a) Put h(t) = (i + t)−1; there exists a unique morphism πL : f 7→ f(L) from C0(R) to
L(E) such that πL(h) = (L+ i idE)−1.

b) Since h(L) has a dense range (domL), this morphism is non degenerate, it extends to
a morphism f 7→ f(L) from Cb(R) =M(C0(R)) to L(E).

c) If f ∈ C(R), define the operator f(L) whose domain is the range of g(L) where g(t) =
(|f(t)|+ 1)−1 and such that f(L)g(L) = (fg)(L).

d) If f, g ∈ C(R) are such that
f

|g|+ 1
is bounded, then dom g(L) ⊂ domf(L).

e) If (fn) is an increasing sequence of positive elements of Cb(R) converging simply (and
therefore uniformly on compact subsets of R) to a continuous function f , then the
domain of f(L) is the set of x ∈ E such that (fn(L)x) converges (in norm) and then
f(L)x is the limit of this sequence.

Indeed, as
fn + 1

f + 1
= hn converges to 1 for the topology of Cb(R) :

• if x is in the domain of f(L), it is of the form x = (f(L)+1)−1z, and x+fn(L)x =
hn(L)z converges to z, therefore fn(L)x converges to z − x;

• (f(L)+idE)−1(fn(L)x+x) = hn(L)x converges to x; assume that fn(L)x converges

to y ∈ E, then (x, x + y) is the limit of the sequence
(
hn(L)x, (fn(L)x + x)

)
of

elements of the graph of f(L) + idE; therefore y = f(L)x since the graph of f(L)
is closed.

Lemma 6.2. We have an equality

L =

∫ +∞

1

(1

s
− (eL + s)−1

)
ds−

∫ 1

0

(eL + s)−1ds

which means that domL is the set of x ∈ E such that the integrals∫ +∞

1

(1

s
− (eL + s)−1

)
x ds and

∫ 1

0

(eL + s)−1x ds

are norm convergent and Lx is then the difference of these two integrals.
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Proof. Put fn(t) =

∫ n

1

(1

s
− (et + s)−1

)
ds and f(t) = lim fn(t) = ln(et + 1); put also

gn(t) =

∫ 1

1
n

(et + s)−1ds and g(t) = lim gn(t) = ln(et + 1)− t.

Then as
ln(et + 1)

|t|+ 1
is bounded, domL = dom f(L)∩dom g(L) (by fact 6.1.d). The conclusion

follows from fact 6.1.e).

Fact 6.1.f). Assume L is positive with resolvent in K(E). Then f 7→ f(L) is a morphism
πL : C0(R∗+) → K(E). Note that, for t ∈ R∗+, we have πtL = πL ◦ λt where λt is the

automorphism of C0(R∗+) induced by the regular representation. Since t 7→ t

t2 + 1
is a

strictly positive element of C0(R∗+), it follows that πL(C0(R∗+))E is the closure of the
image of L(L2 + 1)−1.

Facts 6.3 (about derivations). We will consider the (unbounded, skew adjoint) derivation
∂L associated with L: its domain is the ∗-subalgebra of the elements a ∈ L(E), such that
there exists ∂L(a) ∈ L(E) with aL ⊂ La+ ∂L(a) (in other words a domL ⊂ domL and [a, L]
defined on domL extends to an operator ∂L(a) ∈ L(E)).

Put ut = exp(itL) and define for a ∈ L(E), βt(a) = utau
∗
t .

a) For a ∈ L(E), the map t 7→ βt is of class C1 (for the norm topology) if and only if
a ∈ dom ∂L and, in that case d/dt(βt(a)) = i∂L(βt(a)) = iβt(∂L(a)).

b) The closure dom ∂L of dom ∂L is a C∗-subalgebra of L(E) and t 7→ βt(a) is a continuous
action of R on it.

Lemma 6.4. Let Q be the norm closure of {a ∈ dom ∂L; ∂La ∈ K(E)}. It is a C∗-subalgebra
of dom ∂L invariant under the action β of R. The quotient action of R on Q/K(E) is trivial.
In particular, every C∗-subalgebra of Q containing K(E) is invariant by β.

Proof. Denote by q : L(E) → L(E)/K(E) the quotient map. If a ∈ dom ∂L satisfies ∂La ∈
K(E), then t 7→ βt(a) is C1, and the derivative of t 7→ q(βt(a)) is zero. All other statements
are clear.

Lemma 6.5. Let a ∈ dom ∂eL ∩ ∂e−L. Then a ∈ dom ∂L. If the resolvent of L is in K(E),
then ∂L(a) ∈ K(E).

Proof. The integral

∫ +∞

1

[1

s
− (eL + s)−1, a

]
ds =

∫ +∞

1

(eL + s)−1[eL, a](eL + s)−1 ds is norm

convergent (since ‖(eL + s)−1‖ ≤ s−1), as well as

−
∫ 1

0

[
(eL + s)−1, a

]
ds =

∫ 1

0

(eL + s)−1
[
eL, a

]
(eL + s)−1 ds

= −
∫ 1

0

eL(eL + s)−1
[
e−L, a

]
eL(eL + s)−1 ds.

(since ‖eL(eL + s)−1‖ ≤ 1).
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It follows, with the notation of Lemma 6.2 that [(fn − gn)(L), a] converges to an element

b =

∫ +∞

0

(eL + s)−1[eL, a](eL + s)−1 ds. If x ∈ domL, then (fn − gn)(L)ax converges to

aLx+ bx; therefore ax ∈ domL and ∂L(a) = b.

Assume L has compact resolvent (i.e. in K(E)). Put qs = (eL + s)−1[eL, a](eL + s)−1. Note

that eLqs is bounded and, since qs = −(eL+s)−1eL
[
e−L, a

]
eL(eL+s)−1, e−Lqs is also bounded.

If L has compact resolvant, then (eL + e−L)−1 ∈ K(E), whence qs ∈ K(E).

Lemma 6.6. Assume L is positive. Let a ∈ L(E) such that a dom eL ⊂ dom eL and
e−L/2[eL, a] defined on dom eL extends to an element of L(E). Then a ∈ dom ∂L. If moreover
the resolvant of L is in K(E), then ∂L(a) ∈ K(E).

Proof. The integral

∫ +∞

1

[1

s
− (eL + s)−1, a

]
ds =

∫ +∞

1

(eL + s)−1[eL, a](eL + s)−1 ds is norm

convergent, since

‖(eL + s)−1[eL, a](eL + s)−1‖ ≤ ‖eL/2(eL + s)−1‖‖e−L/2[eL, a]‖‖(eL + s)−1‖ ≤ s−1/2Cs−1

for C = ‖e−L/2[eL, a]‖.

Of course the integral −
∫ 1

0

[
(eL + s)−1, a

]
ds is also norm convergent.

It follows, with the notation of Lemma 6.2 that [(fn − gn)(L), a] converges to an element

b =

∫ +∞

0

(eL + s)−1[eL, a](eL + s)−1 ds. If x ∈ domL, then (fn − gn)(L)ax converges to

aLx+ bx; therefore ax ∈ domL and ∂L(a) = b.

Assume L has compact resolvant. Then, since L is positive, (eL + s)−1 ∈ K(E), whence
(eL + s)−1[eL, a](eL + s)−1 ∈ K(E).
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L’Enseignement Mathématique, Geneva, 2000, With a foreword by Georges Skandalis
and Appendix B by E. Germain. MR 1799683 (2001m:22005)

[2] Saad Baaj, Multiplicateurs non bornés, PhD thesis, Université Pierre et Marie Curie,
Paris, 1980.

[3] , Calcul pseudo-différentiel et produits croisés de C∗-algèbres. I, C. R. Acad. Sci.
Paris Sér. I Math. 307 (1988), no. 11, 581–586. MR 967366 (90a:46171)
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