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Abstract: Pediatric high-grade gliomas (pHGGs) are a deadly and heterogenous subgroup of gliomas
for which the development of innovative treatments is urgent. Advances in high-throughput molecu-
lar techniques have shed light on key epigenetic components of these diseases, such as K27M and
G34R/V mutations on histone 3. However, modification of DNA compaction is not sufficient by
itself to drive those tumors. Here, we review molecular specificities of pHGGs subcategories in the
context of epigenomic rewiring caused by H3 mutations and the subsequent oncogenic interplay
with transcriptional signaling pathways co-opted from developmental programs that ultimately
leads to gliomagenesis. Understanding how transcriptional and epigenetic alterations synergize in
each cellular context in these tumors could allow the identification of new Achilles’ heels, thereby
highlighting new levers to improve their therapeutic management.

Keywords: pediatric glioma; HGG; epigenetics; H3K27M; H3G34R; transcriptional networks;
developmental programs; cell of origin; targeted therapy; clinical management

1. Introduction

Tumors of the central nervous system (CNS) are the most common cause of cancer-
related deaths in children aged 0 to 14 years [1]. Among these, pediatric high-grade gliomas
(pHGGs) account for 15–20% of all brain tumors in children and are characterized by a poor
outcome [1,2]. No effective therapy has so far been identified, and the 2-year survival rates
thus range from 10% to 30% for supratentorial pHGGs and are less than 1% for diffuse
intrinsic pontine glioma (DIPG), a particular subgroup of diffuse midline gliomas (DMGs)
arising in the pons [2–4].

Specific studies have been conducted on these pediatric pathologies and have led to
the conclusion that gliomas in children are different from those arising in adults [5]. Indeed,
like most other childhood tumors, the mutational burden of pHGGs (comprising DMGs) is
lower than that in adult cancers [6,7]. They often display key oncogenic mutations, such
as lysine(27)-to-methionine and glycine(34)-to-arginine/valine substitutions in histone 3
(H3K27M and H3G34R/H3G34V, respectively) [8–11] or fusions in receptor tyrosine kinases
(RTKs) such as NTRK, ALK, ROS1, or MET [12–14]. A lot of key genetic drivers of pHGGs
induce major chromatin reorganization: pHGGs are then more and more appreciated as
epigenetic malignancies, with subsequent revision of their classification according to this
criterion [15].

Current treatments depend on tumor localization and on the age of the child. For
patients with pHGGs localized outside the brainstem, a complete resection of the tumor
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is performed if feasible, followed by focal radiation therapy combined most often with
temozolomide treatment according to the scheme published by Stupp et al. in adults with
high-grade gliomas [16]. pHGGs of the midline are most often not accessible to surgery.
The standard treatment is therefore based on exclusive radiotherapy, or with concomitant
temozolomide or other targeted therapies depending on clinical studies. This was, for
example, the strategy of the BIOMEDE study, which proposed a combination of radiother-
apy with erlotinib, dasatinib or everolimus, depending on the tumor profile concerning
EGFR, PDGFR and PTEN. However, the results of this study remain disappointing, since
the median overall survival (OS) is barely 1 year for patients included in the best treatment
arm [17]. For the youngest patients, and patients who are unable to receive radiation
therapy, alternative chemotherapy regimens can be proposed [18,19].

In this review, we present an inventory of key molecular events associated with
pHGGs occurrence and their importance in the stratification of the disease, focusing par-
ticularly on epigenetic components. We describe how the disruption of the epigenetic
landscape in a specific permissive transcriptional context ultimately leads to pediatric
gliomagenesis. In addition, we propose that transcriptional network alterations reflect
the co-option of developmental processes and act in an intricate interplay with epigenetic
rewiring to promote oncogenic properties. Finally, we illustrate the clinical relevance of
this epigenetic/transcriptional crosstalk (Figure 1).

Figure 1. Elaboration of new efficient therapeutic strategies for pediatric high-grade gliomas will
require the integration of the cell of origin intrinsic vulnerabilities, plasticity and heterogeneity,
epigenetic reprogramming and signaling pathways hijacking.

2. Epigenetic Remodeling at the Root of pHGGs Etiology

pHGGs are a heterogeneous group of malignancies with different molecular etiologies.
Stratification of pHGGs according to transcriptomic, genomic and epigenomic similarities
is essential for the establishment of a robust molecular classification and the design of
effective and relevant stratified treatments.
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2.1. Chromatin Reorganization Due to Genetic Events as Oncogenic Drivers in pHGGs

Unlike the multiple genomic events that accumulate to induce tumorigenesis in many
adult cancers, a special feature of childhood cancers is epigenetic disruption, causing a
massive dysregulation of gene expression [20]. Two main mutational events responsible
for this broad epigenetic reorganization in pHGGs are the p.Lys27Met and p.Gly34Arg/Val
substitutions in histone 3 (H3K27M and H3G34R/V, respectively) [8–11]. These two crucial
residues, located within the highly conserved N-terminal tail of the protein, influence the
dynamic regulation of chromatin structure and accessibility to transcriptional activator or
repressor complexes [21]. Around 80% of DIPGs harbor the H3K27M mutation, and 20% of
pHGGs located on the cerebral hemispheres harbor H3G34R/V mutations [22], making
them major oncogenic events in these diseases.

On one hand, the H3K27M mutation is more frequently found in the H3-3A (H3F3A)
gene, encoding histone variant H3.3, or in the related H3C2 (HIST1H3B)—and to a lesser
extent H3C3 (HIST1H3C)—genes, encoding histone variant H3.1 [8–11,22]. Surprisingly,
these mutations are only present on a minority of the total tumor histones pool, with only
5 to 10% of histones affected. This proportion is nonetheless sufficient to cause a global
depletion of the repressive H3 lysine 27 trimethylation (H3K27me3) mark [23–25]. This
has been attributed to H3K27M, which acts as a dominant negative mutation, due to its
strong inhibitory affinity for the methyltransferase enzymatic subunit of the polycomb
repressive complex 2 (PRC2) EZH2, consequently abrogating the ability of PRC2 to establish
H3K27me3 repressive chromatin domains [23–25]. This H3K27me3 loss is concomitant to
the increase in H3 lysine 27 acetylation (H3K27Ac) [23,26], a marker of active chromatin
and transcription throughout the genome [23,24,26,27]. However, this global effect hides a
more complex mechanism by which EZH2 remains active at very specific loci and causes
a punctual increase of H3K27me3 [24–27], sparing the strongest PRC2 targets [28,29].
Last, inhibition of H3K27 trimethylation occurs only when H3K27M mutated histones are
deposited in chromatin, suggesting that EZH2 is inhibited only when chromatin patterns
are being duplicated in proliferating cells [30]. These studies highlight a new avenue of
research into H3K27M biology, considering the importance of quiescent cells in promoting
oncogenic properties and treatment resistance in gliomas [31–33].

On the other hand, H3G34R and H3G34V mutations, exclusively found in the H3-3A
(H3F3A) gene, were reported to alter the active H3 lysine 36 trimethylation (H3K36me3)
mark [23,34]. Unlike H3K27M, only H3G34R/V mutated histones show an alteration of
H3K36me3. It was first proposed that this key mark decreased due to H3G34R/V methyl-
transferase SETD2 inhibition [23]. However, in specific genomic regions, it was shown
that expression of H3.3G34R at endogenous levels in mouse embryonic stem cells results
in augmentation of H3K36me3 and H3K9me3 through the inhibition of KDM4A/B/C,
resulting from its higher affinity for these three dual H3K9/H3K36 demethylases [34].
Moreover, G34 mutations promote PRC2 activity, thereby increasing H3K27me2/3, by
blocking SETD2-mediated H3K36 methylation at active enhancers [35]. Interestingly, the
correction of the mutated H3G34R allele in patient-derived tumor cells indicates that
the mutation incorporates at already highly expressed genes. This suggests a fine reg-
ulation mechanism rather than genome-wide chromatin alterations seen in its K27M
counterpart [36,37]. Given the opposing effects of H3K9me3, H3K27me3 and H3K36me3
in transcription regulation [38–44], and since H3K36me3 alteration is a major feature of
certain cancers [45–47], further studies are required to fully elucidate the mechanism by
which H3G34R/V mutations rewire some key sites of the epigenome.

2.2. Establishment of a New pHGGs Classification: Epigenetic as a New Guide

In the fifth edition of the WHO classification of tumors of the CNS, published in
2021, the value of molecular diagnostics in pHGGs tumor classification has been put
forward [15]. This new classification distinguishes “Pediatric-type diffuse high-grade
gliomas”, which is subdivided into 4 subgroups with distinct molecular and biological
features, and additional distinctions in anatomical location, age at diagnosis and overall
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survival, namely: diffuse midline glioma, H3K27-altered; diffuse hemispheric glioma,
H3G34-mutant; diffuse pediatric-type high-grade glioma, H3-wildtype and IDH-wildtype;
and infant-type hemispheric glioma. Of note, the H3K27-altered subgroup also comprises
the newly defined EZHIP-overexpressing DMGs subgroup, mimicking H3K27me3 loss
observed in H3K27M tumors [48].

H3K27-altered tumors are specific to midline structures, divided between the pons
and non-brainstem midline regions. They display a significantly shorter time to death
from disease, with a median OS of 11 months. Conversely, H3G34R/V tumors are almost
entirely restricted to the cerebral hemispheres and have a longer median OS of 18 months.
Of note, the age of patients is significantly different depending on the underlying mutation,
varying from a median of 5 years for H3.1K27M tumors to 7 years for H3.3K27M and
15 years for H3.3G34R/V tumors [22]. This sequential occurrence of H3-mutated tumors
likely pinpoints the importance of the ontogenic context in the expression of the oncogenic
potential of each mutation, a point that will be detailed later in this review.

Regarding infant-type hemispheric gliomas, they have paradoxical clinical behavior
whether found in children or adults. Indeed, low-grade tumors have a higher mortality
rate, while high-grade tumors have a better outcome (5-year OS of 54.5%), complicating the
association of histology and outcome in infants [12,13]. Their overall survival is relatively
good compared with that of older children with pHGGs. This clinical observation may be
linked to a more differentiated state of high-grade tumors after chemotherapy [12] and
highlights the fact that the strong plastic potential of pediatric tumors can be exploited
by treatments. Moreover, major genetic fusion events present in this subgroup, involv-
ing receptor tyrosine kinases ALK, ROS1, NTRK1/2/3 and MET genes [12–14], are found
almost exclusively in the high-grade group of infant-type glioma. The mechanism at play
that leads to excessive proliferation arises from a classical constitutive activation of the
Ras/Raf/MEK/ERK pathway, notably by aberrant ERK1/2 phosphorylation [12–14]. Of
note, ALK fusion is sufficient to drive the infant form of HGGs with 100% penetrance when
electroporated in utero at E14.5 in a mouse model, while tumor formation is rare when
the fusion gene is expressed postnatally [13]. This advocates for a prenatal origin of this
subtype and highlights the importance of the epigenetic context in tumorigenesis. The
definition of this full-fledged entity constitutes a breakthrough for the clinical management
of this molecularly unique subgroup.

Mutations in IDH1, which are frequent in adult gliomas, are only found in a very
small proportion of pHGGs [22]. The BRAF V600E mutation is observed in around 6% of
both midline and hemispheric pHGGs and is associated with a better prognosis [22,49,50].
These two events are not currently associated with a particular pHGGs subgroup.

Finally, the histone H3-wildtype and IDH-wildtype entity has heterogeneous char-
acteristics. Improvement of its clustering was achieved via inclusion of DNA methyla-
tion patterns, which allowed the identification of 3 subgroups, with the worst prognosis
attributed to the MYCN subgroup (median OS 14 months), followed by the RTK1 sub-
group (median OS 21 months), and a better survival for the RTK2 subgroup (median
OS 44 months) [51]. Aside from presenting different methylation profiles, each subgroup
displays enrichment of different gene amplifications, namely PDGFRA amplification in
the RTK1 subgroup and EGFR amplification in the RTK2 subgroup, to which homozygous
deletions of CDKN2A/B and losses involving Chr10q can be added [51]. Interestingly,
it was reported that H3.3G34R/V also upregulates MYCN through H3K36me3 binding,
illustrating potent non-exclusive oncogenic mechanisms between pHGGs subgroups [37].
The molecular and clinical characteristics of each subgroup are detailed in Table 1.

The development of ultra-high throughput and scalable tools to analyze chromatin,
as well as investigations into DNA methylation and modifications in histone profiles, will
undoubtedly constitute routine decision-making tools to guide optimal management of
patients with pHGGs.
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Table 1. Molecular and clinical characteristics of pediatric type diffuse high-grade gliomas.

Name of the Tumor Entity Major Event Associated Events Age at Diagnosis
[Years]

Median OS
[Months]

Diffuse midline glioma, H3K27-altered
H3.3K27M TP53, PDGFRA 7 11
H3.1K27M ACVR1, PIK3CA 5 15

EZHIP overexpression ACVR1, PIK3CA 10 16

Diffuse hemispheric glioma, H3G34-
mutant

H3.3G34R
TP53, ATRX, PDGFRA 15 18H3.3G34V

Diffuse pediatric-type high-grade
glioma, H3-wildtype and IDH-wildtype

MYCN 14
ø PDGFRA 10 21

EGFR, CDKN2A/B 44

Infant-type hemispheric glioma
ALK, ROS1,
NTRK1/2/3 ø 0.23 23

or MET fusions

3. Synergy between Transcriptional and Epigenetic Rewiring in pHGGs: A Matter of
Oncogenic Window
3.1. Oncogenic Contribution of Non-Genetic Ontogenic Factors in Gliomagenesis

pHGGs exhibit a clear spatio-temporal and -molecular pattern of incidence. As men-
tioned above, H3K27M and H3G34R mutations are mutually exclusive and have a distinct
anatomical distribution within the CNS. Tumors of the thalamus, brainstem and spinal
cord frequently exhibit the K27M mutation and occur in younger children, whereas the
G34R mutation is found exclusively in tumors of the cerebral lobes and occurs mainly in
adolescents and young adults [11,22].

Pediatric tumors develop in the context of actively growing tissues. Thus, this peculiar
ontogenic environment may be subverted to promote malignancy, resulting in a unique
spectrum of tumors that differ greatly from those of adults [52]. However, in the case of
pHGGs, there seems to be a delay between the postnatal developmental window during
which brain structures reach their maturity and the peak of pHGGs occurrence. For
example, pons development is achieved within the first five years of life and hardly
evolves afterwards, and Ki67-positive (a marker of proliferation) cells become rare and
barely change from 1.5 years of age in this structure [53]. The pons-proliferative phase
thus differs from the peak of incidence of H3K27-altered tumors, which occurs around
6–7 years [22]. Similarly, the brain hemispheres have almost reached their adult size at the
age of 10 years [54], while the incidence of H3G34R/V tumors peaks at 15 years of age [22].

However, the precise pattern of gliomagenesis may match developmental waves of
myelination in the human CNS [20,55,56]. In particular, glioma cells likely take advantage
of the secretion of trophic factors, such as brain-derived neurotrophic factor (BDNF) and
neuroligin-3 (NLGN3), which are regulated by neuronal activity. Hence, ontogenic events
necessary to structure the neural network could also support pHGGs occurrence [57–59].
Along the same lines, it is tempting to speculate that spatio-temporal patterns of occurrence
of pHGGs may result from hijacking of developmental pathways such as FGF, WNT, Notch
and BMP signaling [60,61], the activation of which oscillate during pre- and postnatal
development in a tightly regulated spatio-temporal equilibrium.

Thus, taking the ontogenic context in which pHGGs appear into consideration is
undoubtedly a key factor in understanding the contribution of non-genetic mechanisms to
the striking pattern of occurrence of these tumors.

3.2. Importance of the Cell-of-Origin in the Activation of Oncogenic Transcriptional Networks

In addition to the impact of the environment, the state of the cell in which oncogenic
mutations occur plays a key role in tumorigenesis. Beyond improving our knowledge of
pHGGs biology, defining the identity of the lineage or cell(s) at the origin of the different
subgroups is a key clinical issue. Indeed, if the epigenetic context clearly participates in
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defining the transformation capacity of a cell, it also constitutes an important determinant
of resistance and treatment response [62–64].

Through scRNA-seq technology, developmental cell states and their cooperation have
been decrypted in both H3K27M and H3G34R/V tumors. Fresh tissues from diagnostic
biopsies of H3K27M tumors allowed the identification of four different trajectories, one
related to cell cycle, and the other three to differentiation states, namely astrocyte-like,
oligodendrocyte-like, and oligodendrocyte precursor cell-like (OPC-like). This highlights a
putative developmental hierarchy in which proliferated OPC-like cells are the main popu-
lation, which both self-renew and give rise to the AC-like and OC-like cells (Figure 2) [65].
These data suggest, in line with anterior studies reporting the identification of this unique
population of immunophenotypic neural precursor cells of the brainstem [66,67], that
H3K27M-tumors may originate from a precursor of the OPC lineage.

Figure 2. Schematic representation of H3-altered pediatric high-grade gliomas genesis and tumor
hierarchy. H3 K27M tumors may arise from embryonic neural stem cells (NSCs) of the hindbrain.
They have a cycling oligodendrocyte precursor cell (OPC)-like transcriptomic signature, with smaller
subpopulations resembling differentiated oligodendrocytes and astrocytes. H3 G34R/V tumors may
also arise from embryonic NSCs but of the forebrain, with a proliferative population of interneuron
progenitors that would form both neurons and astrocytes. These two tumor subtypes recreate a
putative developmental hierarchy that mirrors both glial (K27M) and neuronal (G34R/V) lineages.

This view has been challenged using several models based on the induction of
H3K27M expression in different neural progenitors. Expression of H3.3K27M together with
TP53 inactivation and PDGFRA amplification results in glioma-like tumors when targeted
to mouse postnatal neural progenitor cells (NPCs) [68,69] or xenografted human embryonic
stem cell (hESC)-derived NPCs [70]. Similarly, conditional expression of H3.3K27M in
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nestin-positive cells, in a TP53 KO and PDGFRA-constitutively active context leads to
brainstem gliomas from neural stem and progenitor cells [71]. Whereas expression of
H3.3K27M postnatally fails to trigger tumor development, its electroporation in NPCs
at embryonic day E12.5–E13.5 induces diffuse tumors when H3.3K27M, combined with
Trp53 loss, is expressed permanently [23,72]. Recently, Haag and colleagues developed a
human-induced pluripotent stem cell (iPSC) model carrying an inducible H3.3K27M allele
in the endogenous locus to study the impact of the mutation on several precursors of the
oligodendrocytic lineage, from iPSCs to NSCs and OPCs [73]. Interestingly, only NSCs
gave rise to tumors upon induction of H3.3K27M and TP53 inactivation in an orthotopic
xenograft model, arguing in favor of the crucial role of cell state in the expression of the
oncogenic potential of pHGGs’ mutations. Moreover, H3.3K27M induction in NSCs was
shown to lead to sustained expression of stemness and proliferative genes and a premature
activation of OPC programs that may synergistically cause tumor initiation [73], reconciling
this finding with the OPC-like signature found in patient samples [65]. Lastly, these NSCs
resemble embryonic neuroepithelial-like NSCs [74] rather than later NPC developed in
previous models [68–70], which is consistent with previous results suggesting a prenatal
appearance of the mutation (Figure 2).

Patients’ tumors bearing H3G34R/V harbor a forebrain cortical interneuron lineage
transcriptomic signature, including radial glia, neuronal progenitor, and prenatal interneu-
ron gene programs [75,76]. Interestingly, introduction of the H3.3G34R mutation in neural
progenitor cells of the developing ventral forebrain derived from hESCs is sufficient to
form tumors that recapitulate key features of H3G34R/V patient tumors when combined
to the double loss of TP53 and ATRX [22,75]. Moreover, scRNA-seq analysis revealed a
dual neuronal and astroglial identity, strikingly devoid of oligodendroglial programs [76],
highlighting a major difference between H3K27M and H3G34R/V tumors. Even if the
proportion of each cellular subtype varies greatly from one patient to another, these re-
sults show another unique developmental hierarchy, involving interneuron progenitors
that differentiate into both astrocytes and neurons within H3G34R/V tumors. As corti-
cal interneurons are generated during embryonic development in transient progenitor
domains of the ventral telencephalon [77,78], this strongly suggests a prenatal origin of
H3G34-mutated pHGGs (Figure 2). Despite these advances, no models of tumor initiation
are currently available. Their development would therefore be of major interest to decipher
biological mechanisms at the roots of H3G34-mutant pHGGs.

The importance of the cellular state in which the mutation occurs may go beyond cell
type. Indeed, recent work indicates that refinement can go as far as to induce a difference
in behavior depending on the spatial identity of a given progenitor. Bressan and colleagues
showed that the phenotypic impacts of H3K27M and H3G34R are different in engineered
human fetal NSC cultures arising from distinct brain regions [36]. On the one hand,
H3K27M only exerts oncogenic activity in hindbrain NSCs by increasing both proliferation
and clonogenicity. On the other hand, H3G34R has no oncogenic activity on either of
the two spatially distinguished fore- and hindbrain NSCs. However, it triggers a strong
cytostatic effect on the latter, suggesting a tolerability and ability to further evolve towards
a potent oncogenic transformation in forebrain NSCs; accordingly, increased proliferation
and clonogenicity was observed in these cells when H3G34R was combined with PDGFRA
overexpression and TP53 knock-out [36].

These recent insights suggest that expression of H3K27M and H3G34R/V mutations
requires a precise permissive transcriptional context enabled by both a specific cell dif-
ferentiation state and regional identity. Whereas G34-mutated gliomas may be neuronal
malignancies of forebrain interneuron progenitors stalled in differentiation, K27-altered
gliomas may arise from hindbrain NSCs, where stemness programs are maintained con-
comitantly with a premature activation of OPC programs. In both cases, and despite the
obvious differences in age of incidence between these two subgroups, growing evidence
suggests a prenatal origin of epigenetically disrupted pHGGs, where histone 3 mutations
remain indolent until further oncogenic signals intervene [36].
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3.3. Hijacking of Transcriptional Developmental Pathways and Maintenance in an Immature
Epigenetic State as the Core of pHGGs

As mentioned above, H3G34-mutated tumors are more likely to reinforce or stabi-
lize a specific forebrain regulatory circuit already present in the cell of origin. Using a
cell line model corrected for the H3G34R mutation, significant downregulation of many
genes associated with forebrain development and neuroprogenitor proliferation were ob-
served [36], including CDK6, SOX1/2, POU3F2/3, ARX, and DMRTA2 [79–84]. Moreover,
engineered fetal forebrain NSCs leading to glioma-like cells (gathering H3.3G34R, TP53
KO, and PDGFRA overexpression) were shown to upregulate key transcription factors
involved in neuroprogenitor self-renewal and proliferation, such as OLIG2 and SOX3, and
in forebrain-specific markers, including DMRTA2, EMX2, NR2F1 and HIVEP2 [82,85–88].
An essential transcription factor for neuronal differentiation, ASCL1 [89], is downregulated
by the combination of H3G34R, TP53 and ATRX mutations in a forebrain-specified ESC
model [75]. Meanwhile, genes associated with stem cell maintenance are also upregulated,
including NOTCH1, NOTCH2 and NOTCH2NL ligands, as well as key target genes of the
same pathway, HES1 and HEYL [75,90–94].

Interestingly, Notch pathway activation has also been observed in H3K27-altered
pHGGs. Indeed, induction of both H3G34R and H3K27M mutations in healthy astrocytes
and H3 wild-type pediatric glioma cells activates Notch signaling, in particular through
an increase in the expression of NOTCH1, HES5 and ASCL1 genes [95]. Of note, in these
models, ASCL1 expression is paradoxically reported as being up or downregulated by
H3 mutations, suggesting that this is rather its expression alteration that destabilizes the
differentiation process [75,95]. Increased transcription of these genes is in part due to the
recruitment of both H3K36me3 and H3K27ac at the corresponding promoters. Moreover,
restoration of the H3 wild-type form in H3.3K27M DIPG cell lines by gene editing results
in downregulation of these genes through an increase in the H3K27me3 mark of their corre-
sponding promoters [95]. Co-option of the Notch developmental pathway then seems to be
a key oncogenic mechanism in pHGGs through the maintenance of early neural precursor
stem and proliferative properties. This aberrant activation of such developmental pathways
strongly relies on the peculiar epigenetic context triggered by H3K27M or H3G34R.

Indeed, it has been demonstrated that H3.3K27M preserves H3.3 genome-wide distri-
bution when introduced in fetal hindbrain NSCs, leading to a similar phenotype as H3G34R
tumors, namely H3.3K27M drives tumorigenesis by locking tumor-initiating cells in their
pre-existing epigenomic state [96]. The majority of H3.3K27M localizes at active enhancer
and promoter regions. Surprisingly, even if the mutation causes a global demethylation
and increased acetylation, as previously described, H3.3K27M leads to focal H3K27ac
loss, decreased chromatin accessibility and reduced transcriptional expression at active en-
hancers of genes involved in neural differentiation, such as SOX9 [82], and genes involved
in neurodevelopmental diseases, such as CHN1, CTNND2 and NGFR [97–99]. However,
to a lesser extent H3.3K27M also binds to PRC2-bound regions and notably decreases key
neural markers, including DLX1, DLX2, DLX3 and NEUROG2/NGN2 [100–102].

Differences in activation of transcriptional programs have been described between
the two main H3K27M isoforms, H3.1K27M and H3.3K27M, which could be related to
epigenetic modifications driven by each histone. Indeed, gene enrichment profiling shows
a strong enrichment for the oligodendrocytic or proneural-glioblastoma multiforme (GBM)
signatures in H3.3K27M tumors, whereas H3.1K27M tumors are enriched in astroglial
or mesenchymal GBM signatures [103]. However, scRNA-seq shows no differences in
astrocytic-specific genes between H3.1 and H3.3K27M cells, which suggests that this sig-
nature may be linked to microenvironmental cells [104]. Indeed, H3.1K27M is distributed
across the genome, whereas H3.3 is enriched at active regulatory elements, leading to
different chromatin accessibility and transcription factor (TF) binding profiles between
H3.3K27M and H3.1K27M tumors [104]. H3.3K27M tumors are enriched in TFs involved in
early neural development, included several genes of the RFX family [105], or POU5F1, en-
coding the well-known OCT4 TF involved in cell pluripotency [106]. Moreover, a subgroup
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of H3.3K27M tumors preferentially activates enhancers associated with noncanonical WNT
signaling as well as increased expression of WNT planar cell polarity (WNT/PCP) pathway
members [104]. When exposed to WNT5A, H3.3K27M, but not H3.1K27M cells, were shown
to undergo a rapid extension of cytoskeleton-containing neurite-like processes, promoting
oncogenic properties through increased cell viability and the formation of gap junction-
coupled tumor microtubes [104], likely reinforcing their resistance to therapies [107,108].
Accordingly, mutations of WNT pathway members have been observed in rare cases of
pHGGs—such as AMER1 and APC mutations—, and this particular group seems to be
associated with a poorer survival [22]. Hijacking of WNT signaling, a key actor of early de-
velopment [109–112], could thus specifically support the acquisition of oncogenic properties
in H3.3K27M tumors.

Differentially accessible enhancer elements in H3.1K27M tumors are enriched in NF-
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way, 85% of H3.1K27M tumors are also mutated on the ACVR1 gene, encoding the BMP
receptor ALK2 [22,113–116]. These mutations, also present in a rare genetic disorder char-
acterized by progressive heterotopic ossification—fibrodysplasia ossificans progressiva
(FOP) [117]—trigger both enhanced responsiveness to BMP signals and autophosphoryla-
tion of the receptor independently of its ligand binding. This results in higher SMAD1/5/8
phosphorylation [61,118–121], the main effectors of the canonical BMP pathway, and in-
creased expression of key target genes of the ID family [61,120,121]. Dissection of the
synergy between H3.1 and ACVR1 mutations was investigated in different models. Mice
expressing the recombinant ACVR1 G328V allele in Olig2-positive cells developed neu-
rological anomalies, due to the arrest of oligodendroglial lineage cell differentiation, as
evidenced by the decreased expression of oligodendrocyte maturation markers [121]. When
combined with H3.1K27M and PIK3CA H1074R, an additional lesion found in ACVR1-
mutated tumors [122,123], high-grade diffuse gliomas occurred. Moreover, when ACVR1
R206H was induced in nestin-positive-TP53 KO pontic neurospheres, it cooperated with
H3.1K27M in promoting DIPG pathogenesis via activation of Stat3 signaling and upregula-
tion of mesenchymal markers such as CD44 or TNC [120], thus reinforcing results obtained
by Castel and colleagues [103]. However, it was only in the presence of the PDGFA ligand
that tumor incidence increased and median survival decreased in a orthotopic xenograft
mouse model [120]. This is all the more surprising, since PDGFRA amplification is a
common feature of H3.3K27M but not H3.1K27M tumors [8,11,22,124]. However, in the
previously described ACVR1-floxG328V/+; Olig2Cre/+ model, PDGFRA was significantly
upregulated following ACVR1-mutant expression, suggesting an alternative mechanism
to the one found in H3.3K27M tumors [121]. Aberrant PDGF activation also holds true
for H3G34R/V tumors, since PDGFRA mutations are found in 50% of tumors, where
its aberrant expression is further amplified by the recruitment of H3K27Ac and GSX2-
associated cis-regulatory elements on its promoter [76]. Concomitantly and similarly to
ACVR1-mutated cells, increased ID1 levels have also been observed in forebrain-specified
H3G34R ESCs [75]. Considering the role of ID1 and PDGFRA in NSC maintenance and
OPC identity [125–130], similar core transcriptional network alterations can be proposed,
as they constitute a potential common oncogenic mechanism in pHGGs. Moreover, the
presence of other alterations of the BMP pathway—such as BMP2K, BMP3 mutations or ID2,
ID3 amplifications—[22], in addition to the above-described ACVR1 mutation, highlight
the importance of the hijacking of the BMP signaling pathway in these tumors.

Altogether, the concept of an oncogenic cooperation is undoubtable in the context
of pHGGs. There is a clear combination between epigenomic disruption and alterations
of developmental pathways, mirroring specific developmental windows [131]. This is
illustrated by several combinations of epigenetic, transcriptomic and genetic events, which
involve different mutations on histone 3, the maintenance of key developmental networks
hindering NSC differentiation and activation of key signaling pathways—namely Notch,
WNT, BMP and PDGFR—whose co-option, in the context of pHGGs, promote oncogenic
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properties. This oncogenic state could be maintained by a crosstalk between the permissive-
ness of the epigenetic state, allowing the expression of transcriptional signaling pathways,
and the concomitant regulation of this epigenetic state by some of these developmental
pathways [132–136]. These biological insights must be considered before designing new
targeted and efficient treatments (Figure 1).

4. Targeting the Synergistic Epigenetic/Transcriptional Oncogenic Node: A Path
towards New Therapies

The therapeutic management of pHGGs faces two challenges: the intrinsic complexity
of these tumors, also resulting from their location, and the impossibility of transposing the
results obtained in adults, given their specificities in children. As an example, the alkylating
agent temozolomide has demonstrated a significant anti-tumor effect in adult patients with
HGGs and is now used as a standard-of-care with radiation therapy [16]. Conversely, it
exhibits no clinical benefit for pediatric DMGs [137–139]. As previously suggested by Filbin
and Monje [20], the unique features of pHGGs cells could be particularly permissive to
certain treatments, which are under exploration (for detailed review on current clinical trials
involving the use of targeted therapies for pHGGs, see Findlay et al. [140]). A first promising
way towards innovative therapies is the use of histone deacetylase (HDAC) inhibitors such
as panobinostat, showing preclinical activity against DMG H3K27-altered cells in vitro
and in vivo on patient-derived xenograft models [141–143]. As the HDACi-induced partial
rescue of cell phenotype could only be transitory [144], a combinatorial and synergistic
approach of therapeutics should be anticipated, notably to target the oncogenic cooperation
between epigenetic alterations and hijacked transcriptional developmental pathways.

In this respect, the impact of oncohistones on transcriptional networks reveals sensi-
tivities to compounds that target oncogenic mechanisms rather than the mutation itself.
The use of isogenic models is crucial to ensure treatment specificity to oncogenic targets
activated by the mutation. In such models, expression of H3.3K27M was shown to modify
sensitivity to therapeutic compounds, depending on the cell context in which it is induced.
For example, while the H3.3K27M-induced Res259 pediatric low-grade glioma cell line is
more sensitive than the parental isogenic cell line to eleven drugs—including the multi-
tyrosine kinase inhibitors dasatinib and midostaurin, the MEK inhibitor trametinib or the
bromodomain inhibitor OTX015—the sensitivity of two other pHGGs cell lines to these
drugs remains unchanged upon H3K27M expression [145]. These results seem to corrobo-
rate previous studies in the field [146–148], and such isogenic models will thus be of interest
to evaluate the pan-tumors/more restricted potential of new drug combinations. Along
these lines, a cross-comparison of isogenic pediatric glioma cell lines, in which H3K27M or
H3G34R was corrected/introduced, revealed the potential of targeting the Notch pathway
in H3-altered pHGGs. Indeed, when using the γ-secretase inhibitor DAPT, which blocks
NOTCH1 cleavage, all DIPG cell lines corrected for H3.3 exhibited increased IC50 com-
pared to their mutated counterparts, alone or in addition with irradiation treatment [95].
H3.3K27M induction shows a drastic decrease in the IC50 of DAPT only in astrocytes,
whereas a similar effect was observed after H3.3G34R induction in a pediatric glioma
cell line [95]. Of interest, the combination of the MRK003 Notch inhibitor with the BET
bromodomain inhibitor JQ1 shows a synergistic efficacy and increased apoptosis compared
to monotherapies in DIPG cells [149]. This illustrates the interest of targeting an oncogenic
cooperation between Notch signaling and epigenetic mechanisms.

Similar approaches were conducted in a non-tumoral background that more accurately
mimicked the milieu in which mutations occurred. Primary human NSCs in which the
K27M mutated or the wild-type forms of histone 3 were induced showed no difference
when treated with molecules targeting transcriptional activators such as bromodomain
and extraterminal domain (BET) family members, cyclin-dependent kinase 7 (CDK7) and
CBP/p300, which could have been promising strategies considering transcriptional depen-
dencies in the disease [141].
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Consistently, and with the aim of targeting an oncogenic cooperation, the new genera-
tion of HDACi with dual properties could address the transient effect and lack of efficacy of
HDACi monotherapy and has generated interest in recent years in cancer treatments [150].
A CRISPR screen revealed that knockout of KDM1A, encoding lysine-specific demethy-
lase 1 (LSD1), sensitizes DIPG cells to HDACi [151]. Treatment of these cells using the
bifunctional molecule Corin, a dual HDAC and LSD1 inhibitor, alters the global patterns
of histone modifications of DIPG cells, resulting in cell cycle arrest, increased toxicity
in vitro, and decreased tumor size in an orthotopic mouse xenograft model [151]. More-
over, Corin treatment induces differentiation through upregulation of genes involved in
neurogenesis and by decreasing progenitor markers in vitro and in vivo. The panel of dual
HDACi thus offers new opportunities in H3-altered pHGGs therapy, potentially combined
to cyclin-dependent kinases (CDKs) [152], PI3K [153] or receptor tyrosine kinases (RTK)
inhibitors [154–156], which are signaling pathways of interest in these tumors (reviewed by
Duchatel et al. [157]).

Further strategies are currently being tested and are particularly promising, including
selective dopamine receptor D2 (DRD2) antagonists ONC201 and ONC206 [158], which
are also potent agonists of the mitochondrial caseinolytic protease P (ClpP) [159,160]. They
show a strong anti-tumoral activity in vitro and in vivo through both TRAIL induction and
AKT/ERK inhibition [161,162]. Moreover, following activation by ONC201, ClpP drives
degradation of mitochondrial respiratory chain enzymes, engaging a p53-independent
apoptosis [163]. Of interest, and considering glioma cells’ plasticity, this treatment also
triggers a lineage shift from a proliferative, oligodendrocyte precursor-like state to a mature,
astrocyte-like state [164]. ONC201 treatment is currently in clinical trials and seems to be an
effective therapeutic approach [165–168], and its combination with other targeted therapies
may be of particular interest.

5. Conclusions and Future Perspectives

Although pHGGs undoubtedly remain a major therapeutic challenge in pediatric
oncology, major advances have been made in recent years in understanding their molecular
etiology. The importance of both the epigenetic component and the crosstalk between
chromatin rewiring and the hijacking of developmental transcriptional pathways have
been highlighted by several innovative works. These discoveries offer three major perspec-
tives for improving the care of children and young people harboring these diseases: in the
short term, inclusion of the methylome analysis to the wide spectrum of omics analyses
performed at diagnosis has demonstrated its robust potential to define homogeneous molec-
ular groups of pHGGs. In the medium term, characterization of oncogenic mechanisms,
particularly epigenetic ones, has revealed new therapeutic possibilities, which are currently
in pre-clinical or clinical phases of development, as part of precision medicine approaches.
In the longer term, a key challenge will likely be to imagine new therapeutic levers precisely
targeting the synergistic signaling nodes between epigenetic and transcriptional alterations,
in particular by transposing their oncogenic potential from the processes at play during
embryonic development.

To be considered by the field, and as immunotherapies might be a new treatment
option for several pediatric malignancies [169–173] and adult gliomas [174–176], it has
recently been shown that H3K27M-cells show a high expression of the disialoganglioside
GD2, whereas H3-wildtype pHGGs cells expression of GD2 was far lower. The development
of anti-GD2 CAR T cells demonstrated a robust anti-tumoral effect of H3K27M pHGGs cells
in vitro and in vivo on patient-derived orthotopic xenograft models [177]. The response of
the first four patients appears very promising [178]. One of the challenges in the coming
years will be to explore the impact of the singular epigenetic context of H3-altered pHGGs,
and its dialogue with transcriptional signals, on the response to immunotherapies.
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