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Abstract
Constraint programming provides generic techniques to efficiently solve combinatorial problems.
In this paper, we tackle the natural question of using constraint solvers to sample combinatorial
problems in a generic way. We propose an algorithm, inspired from Meel’s ApproxMC algorithm on
SAT, to add hashing constraints to a CP model in order to split the search space into small cells
of solutions. By sampling the solutions in the restricted search space, we can randomly generate
solutions without revamping the model of the problem. We ensure the randomness by introducing a
new family of hashing constraints: randomly generated tables. We implemented this solving method
using the constraint solver Choco-solver. The quality of the randomness and the running time of our
approach are experimentally compared to a random branching strategy. We show that our approach
improves the randomness while being in the same order of magnitude in terms of running time.
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1 Introduction

Using constraint satisfaction as a core technique, constraint solvers have been enriched with
different additional properties, such as optimisation (even with multiple objectives [8]), user
preferences [18], diverse solutions [10], robust solutions [9], etc. In this article, we propose
a method to sample solutions of a constraint problem, without modifying its model. This
work is motivated by many situations where a user wants randomized solutions: to ease
user feedback and decision making, to ensure equity (for instance in planning problems), to
guarantee solution coverage (for instance in test generation problems).

Currently, a straightforward way to randomly sample solutions with a CP solver is to
use RandomVarDom; that is, randomly picking a variable and a value as an enumeration
strategy. However this strategy does not return uniformly drawn solutions (uniformly within
the solution set), and also replaces the strategy that may have been chosen or built for the
problem. Our approach is inspired from UniGen [13], a near-uniform sampling algorithm
for SAT, adapted to the CP framework. The idea is to divide the search space by adding
random hashing constraints, until only a small, tractable number of solutions remain. No
replacement of the strategy is needed and the sampling can be done among these solutions.
Our algorithm also features a dichotomic variation which accelerates the whole process.

This algorithm needs to be fed with random hashing constraints. In order to maintain
the running time reasonable, we choose to randomly generate table constraints [5], which are
implemented in all constraint solvers. We rely on their extensional representation of valid
tuples to produce, at cheap cost, a multivariate uniform distribution.

© Mathieu Vavrille, Charlotte Truchet, and Charles Prud’homme;
licensed under Creative Commons License CC-BY 4.0

27th International Conference on Principles and Practice of Constraint Programming (CP 2021).
Editor: Laurent D. Michel; Article No. 56; pp. 56:1–56:17

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

mailto:mathieu.vavrille@gmail.com
mailto:charlotte.truchet@univ-nantes.fr
https://www.normalesup.org/~truchet/
mailto:charles.prudhomme@imt-atlantique.fr
https://doi.org/10.4230/LIPIcs.CP.2021.56
https://github.com/MathieuVavrille/tableSampling
https://github.com/MathieuVavrille/tableSampling
https://archive.softwareheritage.org/swh:1:dir:63a03fba176c348c1f9d698bda1b484957b6b5ce;origin=https://github.com/MathieuVavrille/tableSampling;visit=swh:1:snp:e5854514cb1898f407857ce376332b3f8bd28c39;anchor=swh:1:rev:a64a92c02e5dcb2ee727dda88e7d2afcda45546c
https://creativecommons.org/licenses/by/4.0/
https://www.dagstuhl.de/lipics/
https://www.dagstuhl.de
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We implemented our proposal on top of Choco-solver [16] and compare it to Random-
VarDom on various types of problems. We show that our approach improves, in practice,
the randomness compared to RandomVarDom. In addition, the running time increase is
limited in practice. This shows that adding a better level of randomization can be done at a
low computation cost.

1.1 Related works

As we previously said, our work is inspired from Meel’s work on UniGen [13], an algorithm
to sample SAT problems. UniGen is a two-step algorithm. The first step consists in running
ApproxMC, an algorithm for SAT model counting. XOR constraints are added to the
model until there are less than a given number of solutions. The solutions are counted within
the smaller space marked by the additional constraints, and this number, multiplied by
a ratio between the volume of the smaller space and the volume of the real search space,
gives a first value for the solution number. Applying this algorithm multiple times gives an
approximation of the number of solutions. In the second step, this approximation is used in
UniGen to sample the problem. The resulting distribution is near the uniform distribution.
The idea used in ApproxMC on SAT (divide to count) has also recently been used in a CP
context for model counting [15]. Our algorithm uses the same idea of additional constraints
to divide the search space, within the CP framework, for solution sampling.

Among the broad literature of SAT solution sampling, we also want to mention [6], which
is close to our approach. The authors sample partial solutions, and iteratively extend them
by instantiating a fixed number of variables. This approach works well because of the binary
domains, but in CP the possible large domains would be an issue. This would force to do more
iterations, which in the worst case would lead to an algorithm close to RandomVarDom

Solution sampling in constraint programming was first studied in [4] and [7], using
bayesian networks. These approaches allow to have a uniform sampling, or to choose the
distribution of the solutions, but are exponential in the induced width of the constraint
graph. This complexity prevents the approach from being used on big instances, and forces
the use of approximations. We took the opposite view of designing a fast sampling method,
knowing that we would not be able to guarantee the uniformity of the sampling.

Other approaches improve the diversity of solutions, a different task from sampling. It
consists in finding solutions far from each other, for a given metric (edit distance for instance).
In [10] the model is re-written to search for distant solutions. In [20] solutions are returned
in an online fashion; search strategies are designed to search in spaces far from the solutions
previously found. Diversification and sampling are linked but remain two very different goals.
On one hand, sampling multiple solutions will necessarily return diverse solutions, but it is
very unlikely to be the most distant solutions. On the other hand, diversification does not
give any guarantee of randomness, as solutions close to other ones may never be returned.

1.2 Outline

Section 2 gives the notations and recalls the definitions that are needed afterwards. Sec-
tion 3 presents our approach to sample solutions, and section 4 describes our experimental
evaluation.
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2 Preliminaries

2.1 Constraint programming

In this article we are interested in constraint satisfaction problems (CSPs). A CSP P is a
triple ⟨X , C,D⟩ where
X = {X1, . . . , Xn} is a set of variables;
D is a function associating a domain to every variable;
C is a set of constraints, each constraint C ∈ C consists of:

a tuple of variables called scope of the constraint scp(C) = (Xi1 , . . . , Xir ), where r is
the arity of the constraint
a relation, i.e. a set of instantiations

rel(C) ⊆
r∏

k=1
D(Xik

)

A constraint is said to be satisfied if every variable Xik
∈ scp(C) is instantiated to a value

of its domain xik
∈ D(Xik

), and (xi1 , . . . , xir ) ∈ rel(C). The constraints can be defined in
extension (called table constraints [5]) by giving explicitly rel(C), or in intension with an
expression in a higher level language. For example, the expression X1 + X2 ≤ 1 for X1, X2
on domains {0, 1}, represents rel(C) = {(0, 0), (0, 1), (1, 0)}.

CSP solving is the search for one, some or all solutions, i.e. assignments of value to every
variable such that all the constraints are satisfied. Optimisation problems (COPs) are CSPs
where an objective function obj to minimise (or maximise) has been added.

Notations

Let a problem P = ⟨X ,D, C⟩, and C a constraint, we write P∧C for the CSP ⟨X ,D, C ∪ {C}⟩.
We note Sols(P) the set of solutions of problem P.

In the following, we only consider satisfaction problems. It is also possible to deal
with optimisation problems, up to an approximation, by turning them into a satisfaction
problem. Let a COP (P, obj) to minimise (resp. maximise), and let opt be the minimum
value (resp. maximum) of the objective obj. Let ϵ ≥ 0, we transform the problem into a
CSP P ∧ (obj ≤ opt + ϵ) (resp. P ∧ (obj ≥ opt− ϵ)). As the gap ϵ increases, the solutions
searched will be further from the optimal value.

2.2 Chi squared test

Evaluating the randomness of a system is a hard task because random systems can take
surprising values without being biased (for example, a fair coin does, occasionally, land ten
times in a row on heads). The chi squared (or χ2) test allows to compare the result of a
random experiment to an expected probability distribution. It comes from a convergence
result to the χ2 law, stated in [14] and recalled here. Let Y be a random variable on a finite
set, taking the value k with probability pk for 1 ≤ k ≤ d. Let Y1, . . . , Yn be independent
random variables of the same law as Y . Let N

(k)
n the number of variables Yi, 1 ≤ i ≤ n

equal to k.

CP 2021
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▶ Theorem 1 ([14]). When n tends to infinity, the cumulative distribution function of the
random variable

Zn =
d∑

k=1

(
N

(k)
n − n · pk

)2

n · pk

tends to the cumulative distribution function of the law of the χ2 with (d − 1) degrees of
freedom (noted χ2

d−1).

The χ2 test comes down to randomly picking values by making the assumption that they
follow the law of Y , compute the experimental value zexp

n of Zn, and compute the probability
(called p-value)

P(Zn ≥ zexp
n ) ≈ P(χ2

d−1 ≥ zexp
n )

If this probability is close to zero, then, having a more extreme result than the one obtained
is very unlikely. It means that the hypothesis under which the experimental values follow
the same law as Y can be confidently rejected.

2.3 Random search strategy

The search algorithm for a constraint problem alternates:
a depth-first search, where the search space is reduced by adding constraints (called
decisions), for example, an assignment of a variable to a value in its domain;
a phase of propagation that checks the satisfiability of the constraints of the CSP.

A natural search strategy to add randomness is the strategy RandomVarDom that
picks randomly (uniformly) a variable X among all the non instantiated variables, a value
x ∈ D(X), and applies the decision X = x. This strategy has the advantage to be easily
implemented in any constraint solver. However it prevents from using an other more efficient
exploration strategy, and besides, the distribution of the solutions may be far from uniform.
For example on the problem P = ⟨{X1, X2}, {X1 7→ {0, 1}, X2 7→ {0, 1}}, {X1 + X2 > 0}⟩,
let s the solution returned by a solver configured to use RandomVarDom, then we have,

P(s = {X1 7→ 0, X2 7→ 1}) = 3
8

P(s = {X1 7→ 1, X2 7→ 0}) = 3
8

P(s = {X1 7→ 1, X2 7→ 1}) = 1
4

The implications on the running time to find solutions and the quality of the randomness
on different problems are discussed in section 4.

3 New sampling approach

We present here a new approach to sample solutions. This approach is twofold: first we
present a way to generate random tables, and we then present an algorithm to sample
solutions using these generated constraints.
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Algorithm 1 Random table constraint generation algorithm.

1 Function RandomTable(P, v, p)
Data: A CSP P = ⟨{X1, . . . , Xn},D, C⟩, v > 0, 0 < p < 1
Result: A random table constraint

2 T ← {};
3 i1, . . . , iv ← GetIndices(P, v);
4 foreach (xi1 , . . . , xiv ) ∈

∏v
k=1D(Xik

) do
5 if Random() < p then
6 T.add((xi1 , . . . , xiv ));

7 return Table((Xi1 , . . . , Xiv
), T );

3.1 Random table constraints
The algorithm to generate random table constraints is presented in Algorithm 1. We suppose
available the functions Random() that returns a random floating point number between 0
and 1, GetIndices(P, v) that returns v indices i1, . . . iv such that |D(Xik

)| ≠ 1, 1 ≤ k ≤ v

(if there are less than v such indices, they are all returned), and Table(X ′, T ) that creates
a table constraint C such that scp(C) = X ′ and rel(C) = T . The two parameters of the
algorithm are: v the number of variables in the table, and p the probability to add a tuple
in the table. The algorithm first randomly chooses v variables among the variables whose
domains are not reduced to a singleton, and then runs through all the instantiations of these
v variables and adds each instantiation in the table with probability p.

The goal of these tables is to restrict the solution space to a smaller sub-space. The
following theorem shows that in average, the number of solutions of the problem is reduced
by a factor p.

▶ Theorem 2. Let P be a CSP, and T a table constraint randomly generated with probability
p. Then

E (|Sols(P ∧ T )|) = p|Sols(P)|

Proof. For σ ∈ Sols(P), let γσ a random variable equal to 1 if and only if σ ∈ Sols(P ∧ T ).
P(γσ) is the probability that σ satisfies T . Let Xi1 , . . . , Xir

the variables chosen in T . Each
instantiation of these variables has been added in the table with probability p, including
the instantiation (σ(Xi1), . . . , σ(Xiv )). It means that σ satisfies the table constraint T with
probability p. We then have p = P (γσ = 1) = E (γσ). It follows:

E (|Sols(P ∧ T )|) = E

 ∑
σ∈Sols(P)

γσ


=

∑
σ∈Sols(P)

E (γσ)

=
∑

σ∈Sols(P)

p

= p|Sols(P)| ◀

The purpose of Theorem 2 is the following: by adding table constraints, we decrease the
size of the solution set, and we can control how much, in average.
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Algorithm 2 Sampling algorithm by adding table constraints.

1 Function TableSampling(P, κ, v, p)
Data: A CSP P, κ ≥ 2, v > 0, 0 < p < 1
Result: A solution to the problem P

2 S ← FindSolutions(P, κ);
3 if |S| = 0 then
4 return “No solution”;
5 while |S| = 0 ∨ |S| = κ do
6 T ← RandomTable(P, v, p);
7 S ← FindSolutions(P ∧ T, κ);
8 if |S| ≠ 0 then
9 P ← P ∧ T ;

10 return RandomElement(S);

3.2 Sampling algorithm
First, the auxiliary functions used in the sampling algorithm are presented. The first
one is RandomElement(S) that returns a random element taken uniformly in S. The
second function is FindSolutions(P, s) that enumerates the solutions of P until s solutions
have been found, and returns them. Notice that, if this function returns s solutions, then
|Sols(P)| ≥ s, and if it returns less than s solutions then all the solutions have been found.
The depth first search in constraint solvers makes the implementation of such a function
easy.

The sampling algorithm works in the following manner: table constraints are added to
the problem to reduce the number of solutions. When there are less solutions than a given
pivot value, a solution is randomly returned among the remaining solutions. The algorithm
is presented in details in Algorithm 2. A value κ for the pivot is chosen to bound the number
of solutions enumerated in the intermediate problems, as well as the number of variables per
table v and the probability p to add a tuple in the table.

The algorithm first enumerates κ solutions and immediately stops if there are no solutions,
or less than κ solutions. If the problem has more than κ solutions a new table constraint is
randomly generated. If the problem with this constraint still has solutions, the constraint is
definitively added to the problem. The algorithm stops when there are less than κ solutions.
Finally, a solution is randomly chosen from all the solutions remaining, and returned.

3.2.1 Proof of termination
When creating random algorithms, one has to be particularly careful about the termination.
We show here that Algorithm 2 terminates with probability 1. A discussion about the
experimental behaviour is done in section 4.3.

We fix values for κ ≥ 2, v > 0 and 0 < p < 1. The case of the initial problem not being
satisfiable is caught at the beginning of the algorithm (line 3).

The following lemmas shows that there always exists a table that reduces the number
of solutions of the problem without making it inconsistent, and this table is chosen with a
non-zero probability. Without loss of generality, we suppose that there are always v variables
in the tables. If less than v variables are not instantiated, we pick some of the already
instantiated variables and use their current values to complete the instantiations.
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▶ Lemma 3. Let P be a problem with at least two solutions. In our framework, there exists
a random table constraint T0 such that

0 < |Sols(P ∧ T0)| < |Sols(P)|

Proof. Let σ1 and σ2 two distinct solutions of the problem P. Let i1 such that σ1(Xi1) ̸=
σ2(Xi1). Let i2, . . . , iv other indices such that |D(Xik

)| ̸= 1, 2 ≤ k ≤ v. Let us define the
table

T0 = Table ((Xi1 , . . . , Xiv
), {(σ1(Xi1), . . . , σ1(Xiv

))})

Then σ1 ∈ Sols(P∧T0) so Sols(P∧T0) ̸= ∅, and σ2 ̸∈ Sols(P∧T0) so Sols(P∧T0) ̸= Sols(P).
Since we add a constraint to P to build P ∧ T0, we have Sols(P ∧ T0) ⊆ Sols(P), thus
0 < |Sols(P ∧ T0)| < |Sols(P)|. ◀

▶ Lemma 4. There exists a constant ρ > 0, depending only on the initial problem, such that,
for T a randomly chosen table constraint with v variables:

P (0 < |Sols(P ∧ T )| < |Sols(P)|) ≥ ρ

Proof. We know from Lemma 3 that there is at least one table constraint T0 such that
0 < |Sols(P ∧ T0)| < |Sols(P)|. Let d be the maximum size of the domains of the initial
problem. We bound the probability of RandomTable(v, p) to pick exactly T0 (up to ordering
of the scope of the constraints). Let T be a random table returned by RandomTable(v, p).
We want to bound

P(T = T0) = P (scp(T ) = scp(T0) ∧ rel(T ) = rel(T0))
= P (scp(T ) = scp(T0)) · P (rel(T ) = rel(T0)|scp(T ) = scp(T0))

There is
(

n
v

)
ways to choose the v variables appearing in the table (the ordering does not

matter), so P (scp(T ) = scp(T0)) = 1/
(

n
v

)
. Let k the number of tuples in T0. There are at

most dv possible tuples in total. The probability to choose every tuple in T0 and not the others
is pk(1−p)dv−k. As k ≤ dv we have the lower bound P (rel(T ) = rel(T0)|scp(T ) = scp(T0)) ≥
pk(1 − p)dv−k ≥ min(p, 1 − p)dk . By defining ρ = 1

(n
v)min(p, 1 − p)dk we have the desired

bound, and ρ > 0 because 0 < p < 1. ◀

We proved that during an iteration of the loop, there is a probability strictly greater than
0 to remove solutions without making the problem inconsistent. We can now prove that the
algorithm terminates with probability 1. The proof is similar to the one showing that tossing
a fair coin, until tails comes up, ends with probability 1.

▶ Theorem 5. Algorithm 2 terminates with probability 1.

Proof. For some k > |Sols(P)| − κ, we want to find an upper bound of the probability that
the algorithm has not stopped after k iterations. In some cases, an iteration reduces the
number of solutions to the problem without making it inconsistent. There can be at most
|Sols(P)| − κ such iterations, because the algorithm stops if there is less than κ solutions
(condition of the while line 5). For the other iterations, the condition of the while loop
ensures that: either the (most recently added) table made the problem inconsistent, or it did
not reduce the number of solutions. The probability for this to happen is less than 1− ρ,
as stated in Lemma 4. Thus, the probability that, after k iterations, the algorithm did not
stop, is less than (1− ρ)k−|Sols(P)|+κ. This probability tends to zero when k tends to infinity.
This proves that the algorithm stops with probability 1. ◀

CP 2021
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Algorithm 3 Algorithm of dichotomic addition of tables.

1 Function DichotomicTableAddition(P, nbTables, κ, v, p)
Data: A CSP P = ⟨X ,D, C⟩ , nbTables > 0, κ ≥ 2, v > 0, 0 < p < 1
Result: P with the new table constraints, and the number of added tables

2 T ← array of size nbTables;
3 for i = 0 to nbTables− 1 do
4 T [i]← RandomTable(P, v, p);
5 S ← FindSolutions(P ∧

∧
t∈T t, κ);

6 while |S| = 0 ∧ |T | > 0 do
7 T ← T [0 : |T |/2[;
8 S ← FindSolutions(P ∧

∧
t∈T t, κ);

9 return P ∧
∧

t∈T t, |T |;

This proof is built with an upper bound, and considers the worst case (when solutions
are eliminated slowly), but in practice there is more than one table satisfying Lemma 3. The
solving time will be studied in practice in Section 4.5.

3.3 Dichotomic table addition
It is possible to improve the efficiency of the algorithm by increasing the number of tables
added at each step. At the beginning of the search, a table has a small probability to make
the problem inconsistent, so it is wiser to add more constraints to reduce the number of
calls to the solver. This algorithm is inspired from the unbounded dichotomic search: first,
find i such that the value we want to guess is between 2i and 2i+1, and then, run a usual
dichotomic search between 2i and 2i+1.

The algorithm of dichotomic table addition is presented in Algorithm 3, and should
replace lines 6 to 9 of Algorithm 2. Let τ be the number of tables added at the previous
step, we choose nbTables = 1 if τ = 0 or nbTables = 2τ otherwise, and nbTables tables
are generated and stored in an array T . The algorithm then enumerates κ solutions to the
problem where the tables in T have been added. If there is no solutions, it deletes half of
the constraints in T . The procedure stops when the problem is satisfiable or |T | = 0.

Theorem 5 can be extended to the case of the dichotomic table addition, because line 6
in Algorithm 3 ensures that the problem does not become inconsistent.

3.4 Discussion
In this section, we discuss the algorithmic choices we have made in Algorithm 2.

3.4.1 Quality of the division by the tables
In the proof of Theorem 2 the random variables (γσ)σ∈Sols(P) are not independent. For
example, let σ1 and σ2 two solutions to the problem that only differ on one variable X, then

P(γσ2 = 1|γσ1 = 1) = P(X ∈ scp(T )) · p + P(X /∈ scp(T )) (1)

Indeed, if the variable X appears in T , then σ2 will be kept with probability p, but if X is
out of the scope of T , then σ2 will always be kept. If the table does not have all the variables
in its scope, then it may not split the clusters of solutions which take the same values on
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multiple variables. This notion of independence is central in the approaches of Kuldeep
Meel [13] to show the uniformity of the sampling. Contrarily to this approach, our sampling
is not uniform. We choose to have tables of a controlled size for sake of efficiency.

Formula 1 showing the non independence also shows that increasing the number of
variables in the table makes the random variables γσ more independent, hence the whole
sampling process closer to uniformity. Tables containing all the variables of the problem
would make the random variables γσ fully independent, since in this case P(X /∈ scp(T )) = 0.
This would give a theoretical guarantee on the sampling, but is impossible to generate in
practice.

3.4.2 Influence of the parameters

Three parameters have to be chosen to run the algorithm. We can already estimate the
impact of the parameters on the running time and on the quality of the randomness.

As seen in the previous subsection, increasing the number of variables in the tables should
improve the randomness, but will also exponentially increase the number of tuples in the
table, with a negative impact on the running time.
Reducing the probability of adding a tuple in a table should improve the running time
because the tables will be smaller, so the propagation will be faster, and the number of
added tables will be lower because the problem will be more quickly reduced.
The impact of the pivot on the running time is unclear. Having a higher pivot means that
more solutions have to be enumerated at each step, but it also means that the algorithm
will stop after adding fewer constraints.

These hypotheses will be experimentally verified in section 4.

4 Experiments

This section presents the experiments done to test our approach. First, we evaluate the
behaviour in term of randomness. Then, we compare the running time of our approach to
the strategy RandomVarDom. The code is available online 1, along with all the scripts to
generate the figures presented in this article.

4.1 Implementation

The implementation has been done in Java 11 using the constraint solver choco-solver
version 4.10.6 [16]. It is possible to create a model directly in Java using the choco-solver
library, or by giving a file in the FlatZinc format (generated from the MiniZinc format).
Unless the FlatZinc file defines a strategy, the solver default strategy is used (dom/Wdeg [3]
and lastConflict [12]).

A technical improvement has been done, by adding a propagation step before the
generation of a table (before line 6 of algorithm 2). This avoids enumerating some tuples
that would be immediately deleted by propagation.

In the following, the algorithm used is TableSampling with DichotomicTableAddi-
tion.

1 https://github.com/MathieuVavrille/tableSampling

CP 2021
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Management of randomness

The random number generator used is the default one in Java : java.util.Random. This
generator uses a formula of linear congruence to modify a seed on 48 bits given as input. The
Java documentations points to [11], see section 3.2.1 for more information. This randomness
generator has flaws (notably a period of 248), but is sufficient to our needs (as shown in [2]).

The implementation uses a single instance of the random number generator, passed as
argument to every function needing it. This avoids a non independence behaviour due to a
bad generation of random seeds.

4.2 Problems
The approach is independent from the constraints of the problem, so we were able to apply
it on four different problems, including three real life problems. We present here the models
and their characteristics.

N -queens

The first problem is the N -queens problem, which consists of placing N queens on an N ×N

chessboard such that no queen attacks an other one (queens attack in every 8 directions, as
far as possible). We implemented it with the usual model with N variables with domain
[1, N ], an all_different constraint and inequality binary constraints (for diagonal attacks).

Renault Mégane Configuration

This is the problem of configurations of the Renault Mégane introduced in [1] and already used
in [10] for the search of diverse solutions. There are 101 variables with domains containing
up to 43 values, and the 113 constraints are modeled by table constraints, the majority of
them are non binary. This problem is loosely constrained, hence having more than 1.4 · 1012

solutions.

On Call Rostering

This problem models the system of duty, notably used by healthcare workers. This problem is
available in the MiniZinc benchmarks 2 and contains different constraint types, such as linear
constraints, global constraints count, absolute values, implications and table constraints.
Many datasets are available but only the smallest (4s-10d.dzn) has been used here. It is an
optimisation problem (minimization), so it was necessary to transform this problem into a
satisfaction problem by bounding the objective function. The optimal value is 1:

There are 136 solutions with obj ≤ 1
There are 2,099 solutions with obj ≤ 2
There are more than 10,000 solutions with obj ≤ 3

By randomly sampling the solutions, the solver can be used as a tool to help people creating
plannings to decide on (giving them multiple plannings to compare), and brings a form of
equity between the workers. Indeed, oriented search methods could favor some workers at
the expenses of others.

2 https://github.com/MiniZinc/minizinc-benchmarks/tree/master/on-call-rostering

https://github.com/MiniZinc/minizinc-benchmarks/tree/master/on-call-rostering
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Feature Models

These are problems of software management, helping to decide on the order of implementation
of software features. The problem is specified in the MiniZinc format in [17] using the data
in [19]. Again, it is an optimisation problem (maximization), the optimal value is 20,222.
We add the constraint obj ≥ 17, 738 to make it a satisfaction problem with 95 solutions.

4.3 Experimental behaviour

We discuss here the experimental behaviour of TableSampling. In practice, we see that
most of the computations are done at the beginning of the algorithm. At the beginning,
most of the tables added do not make the problem inconsistent. We really benefit from the
dichotomic addition of tables. Most of the time is spent finding κ solutions, because as only
few tables are added to the problem, the search space is not reduced much, so searching for
solutions is not sped up.

At the end of the algorithm, when there are only few solutions remaining (but still more
than κ), there is a higher probability to make the problem inconsistent by adding a table.
Actually, this is not an issue, because it becomes really fast to find the solutions (or to prove
that the problem is inconsistent). This is due to the fact that all the tables added previously
really restrict the search space and are quickly propagated.

4.4 Quality of the randomness

The first goal of the experiments is to evaluate the quality of the randomness, i.e. knowing if
the solutions are sampled randomly and uniformly. The following results show that even
if the solutions are not sampled uniformly, the approach using table constraints is more
uniform than the strategy RandomVarDom.

4.4.1 Evaluation of the uniformity

To have a numerical measure of the uniformity of the sampling, we used the χ2 test. Knowing
the number nbSols of solutions of a problem (and numbering these solutions), nbSamples

samples are drawn and the number of occurences nbOcci of each solution i ∈ {1, . . . , nbSols}
is counted. We compute the value of the variable

zexp =
nbSols∑

k=1

(nbOcck − nbSamples/nbSols)2

nSamples/nbSols

and then the p-value of the test3 (i.e. the probability that the χ2 law takes a more extreme
value than zexp). This p-value gives a numerical value of the quality of the randomness.
More specifically, a large number of samples are drawn (more than the number of solutions)
and the evolution of the p-value depending on the number of samples is plotted. In our
case, as the sampling is not uniform, the p-value will tend to 0 when the number of samples
increases, but we remark that the sampling using tables has a p-value which tends slower to
0 than the default sampling using RandomVarDom.

3 We use the library “Apache Commons Mathematics Library” (https://commons.apache.org/proper/
commons-math/) for the probability computations
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(a) Feature Models problem with κ = 2 and p = 1/2. (b) On Call Rostering problem with the constraint
obj ≤ 1, v = 4 and p = 1/8.

(c) On Call Rostering problem with the constraint
obj ≤ 2, κ = 16 and v = 5.

(d) 9-queens problem with κ = 8, with different
values for v and p.

Figure 1 Evolution of the p-value on different problems, with different parameters. Plotting of
graphs using the table sampling and RandomVarDom.

To do this test we need to know the number of solutions nbSols and to sample multiple
times nbSols solutions, so the evaluation of the randomness can only be done on small
instances. These instances are the 9-queens (352 solutions), the Feature Models with the
constraint obj ≥ 17, 738 (95 solutions) and the On Call Rostering problem with the constraints
obj ≤ 1 and obj ≤ 2 (136 and 2,099 solutions).

We want to evaluate the impact of the evolution of a parameter (number of variables,
pivot, or probability) on the randomness of the algorithm of sampling by tables. To do so, in
the figures that follow, we plot the evolution of the p-value for the strategy RandomVarDom,
as well as for different values of parameters for the sampling by tables, by changing one
parameter at a time. The legend gives the parameters associated to each execution (v for
the number of variables, κ for the pivot and p for the probability).

▶ Remark 6. The figures show the p-value in a logarithmic scale, because it tends to 0.
Moreover, as the computations are done using floating point representation, a p-value smaller
than 10−16 will be considered to be equal to 0.
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4.4.2 Impact of the number of variables

We first vary the number of variables used in the generated tables. Fig. 1a shows the
evolution of the p-value on the Feature Models problem with parameters κ = 2 and p = 1/2.
We remark that increasing the number of variables in the table makes the p-value tend to
zero slower, meaning that the sampling is closer to uniformity. As we remarked earlier, this
is due to a better independence in the probability that two solutions will satisfy the table
constraints (see section 3.4.1).

4.4.3 Impact of the pivot

On Fig. 1b, we vary the pivot on the problem On Call Rostering, with the constraint obj ≤ 1
and parameters v = 4 and p = 1/8. Here we observe that increasing the pivot improves the
randomness. Indeed, when the pivot is high, at each step a lot of solutions are enumerated,
and in the end a random solution will be picked among a lot of other solutions, leading to a
better randomness. The extreme case is the perfect (but costly) sampling process, when the
pivot is higher than the number of solutions: the algorithm is then simply an enumeration of
all the solutions and returns a random solution.

4.4.4 Impact of the probability

Fig. 1c shows the p-value for different values of the table probability p, on the On Call
Rostering problem, with the constraint obj ≤ 2 and the parameters κ = 16 and v = 5.
There is no clear influence of the probability to add tuples in the tables to the quality of the
randomness. This allows, when choosing the probability, to focus on the running time (as we
will see in section 4.5.1).

4.4.5 Quality of the randomness

The last test was done on the 9-queens problem. Fig. 1d shows the evolution of the p-value
with κ = 8 and different values for v and p. On this particular problem (and on the N -queens
problem for any N), the sampling using the table constrains is actually uniform in practice
(the p-value tends to 1). As we already said, we have no theoretical guarantee with our
approach, but it seems that, on some problems, we may achieve uniformity in practice. We
believe that it is due to the structure of the solution space, because the N -queens problem is
a very structured problem with many symmetries. Thus, it is likely that the solutions are
properly spread on the search space.

4.4.6 Comparison with RandomVarDom

On every graph, we also plotted the evolution of the p-value for the sampling using the
search strategy RandomVarDom. We see on the three first graphs that our approach tends
to zero after significantly more samples than RandomVarDom. Using TableSampling
makes the sampling more uniform. For example, after sampling 50 solutions, the p-value
of RandomVarDom is 0.004, but the p-value of TableSampling (with parameters κ =
2, v = 2, p = 1/2) is 0.1. On the N -queens problem, RandomVarDom is not uniform but
our approach is, meaning that it really improved the quality of the randomness.

CP 2021
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Figure 2 Heat maps of the time to sample one solution, by fixing different parameters, on the
On Call Rostering problem with the constraint obj ≤ 3.

4.5 Running time

The evaluation of the running time is done in two parts. The parameters may have an
important impact on the running time: we experimentally investigate in Section 4.5.1 which
parameters have a positive impact. Then, we compare the running time of our method and
that of using RandomVarDom as a randomization strategy.

In the section, we use problems with more than 10,000 solutions. This eliminates the
Feature Models problem, which has too few solutions to provide a meaningful statistical test.
For each method, 50 samples are done, in order to to average the running time.

4.5.1 Impact of the parameters

To show the impact of the parameters on the time to sample one solution, we fix one
parameter, and vary the two other parameters, to plot a heat map of the time, in function
of the two parameters. Fig. 2 shows the three heat maps obtained by fixing the number of
variables, the pivot or the probability. The hypotheses done in section 3.4.2 are verified here
experimentally:

decreasing the number of variables in the tables, decreases the running time;

decreasing the probability of adding a tuple in the table decreases the running time.
As we previously saw, increasing the number of variables improves the randomness. There is
a compromise to do between the running time (having few variables in the tables) and the
quality of the randomness (having many variables in the tables).

We also saw that the probability to add a tuple in the tables does not have a clear
impact on the quality of the randomness, so it is best to choose small probabilities to have
smaller tables, hence giving a faster propagation, as well as fewer tables added during the
computations.

The number of variables in the tables should be chosen as a trade-off between the desired
quality of randomness and the running time. It will depend on the application: instances
with big domains may require smaller v not to have too big tables (for example, v = 4 for
domains of size 100 would have to enumerate 108 tuples). From our experiments, we suggest
as a baseline to use the parameters κ = 16 and p = 1/32.



M. Vavrille, C. Truchet, and C. Prud’homme 56:15

Table 1 Comparison of the time to sample a solution between RandomVarDom and table
sampling.

Problem Random- Table sampling Ratio
VarDom v κ p Time

32 ms

2
16 1/16 55 ms 1.7

1/32 59 ms 1.8

32 1/16 89 ms 2.8
Renault Mégane 1/32 86 ms 2.7

Configuration

3
16 1/16 74 ms 2.3

1/32 67 ms 2.1

32 1/16 83 ms 2.6
1/32 65 ms 2.0

38 ms

2
16 1/16 14 ms 0.36

1/32 14 ms 0.38

32 1/16 15 ms 0.4
On Call 1/32 18 ms 0.46

Rostering

3
16 1/16 18 ms 0.47

1/32 15 ms 0.4

32 1/16 19 ms 0.5
1/32 17 ms 0.44

12-queens 2 ms

2
16 1/16 4 ms 2.4

1/32 4 ms 2.3

32 1/16 7 ms 4.1
1/32 7 ms 3.9

3
16 1/16 10 ms 5.6

1/32 8 ms 4.3

32 1/16 12 ms 6.9
1/32 11 ms 6.0

4.5.2 Comparison to RandomVarDom
In this Section, we compare the running time to RandomVarDom. Table 1 shows the
running time to sample one solution for 8 different sets of parameters of table sampling. To
take into account the variability of the solving time, we measure it on 50 samplings, and
report the average time to get one sample. The ratio between the time of TableSampling
and the time of RandomVarDom is also given.

We showed that the quality of the randomness of TableSampling is better than the
one of RandomVarDom, and we would expect to pay a price in running time in return.
But, in practice, the running times are still within the same order of magnitude. On the
On Call Rostering problem, it is even two to three time faster to use TableSampling
instead of RandomVarDom On the other two problems, RandomVarDom is faster. This
behaviour can be explained quite easily: the On Call Rostering problem is very sparse, and
there are many values in the domains of the variables that do not lead to solutions. Thus,
the RandomVarDom strategy provokes a lot of fails during the search, because it often
picks values that do not appear in solutions. In comparison, on the problems of Renault
Mégane Configuration and N -queens, a lot of values in the domains of the variables may
lead to solutions, so the probability of failing because of a bad choice is low. Our approach
also allows to use a different and more powerful strategy, since it can be combined with any
search strategy. We can thus take advantage of all the progress made in the design of search
strategies.
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5 Conclusion

We presented an algorithm using table constraints to randomly sample solutions of a problem.
We improved this algorithm by increasing the number of tables added at each step. We
experimented our approach on four different problems, involving different types of constraints
and different domains of variables. We showed that the sampling is closer to uniformity
than a sampling using the search strategy RandomVarDom. Even with this improved
randomness, the running time remains comparable to RandomVarDom. Our approach uses
the solver as a black box, hence can be applied to a wide range of problems.

In the future, we plan to study structured problems, and investigate how to improve
the sampling using the structure of the problem. Optimisations problems are also an other
research direction. Instead of artificially turning them into satisfaction problems, we plan to
use the samples previously found to directly search for close to optimal solutions.
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