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Fine-scale characterization of the geometry of the fold-
ing patterns of the brain is a key processing step in neuro-
science, with high impact applications such as for uncovering
biomarkers indicative of a neurological pathology. Sulcal
graphs constitute relevant representations of the complex and
variable geometry of the cortex of individual brains. Com-
paring sulcal graphs is challenging due to variations across
subjects in the number of nodes, graph topology and attributes
(on both nodes and edges). Graph matching experiments on
real data are limited by the absence of ground truth. In this
paper we propose to generate synthetic graphs to bench-
mark graph matching methods and assess their robustness
to noise on attributes and to the presence of un-matchable
nodes. Three multi-graph matching methods are compared to
one pairwise approach in various simulation settings, show-
ing that good matching performances can be achieved even
with highly perturbed sulcal graphs. An experiment on real
data from a population of 134 subjects further unveil large
performance differences across matching methods.

1. INTRODUCTION

Recent studies [1, 2] proposed to represent biologically rel-
evant morphological descriptors as sulcal graphs by decom-
posing the cortical surface in sulcal basins and sulcal pits.
As illustrated on Fig.1 and described in details in [1], sulcal
basins are defined as concavities in the white matter surface
which are bounded by convex ridges, and the deepest point
in each bassin defines the corresponding sulcal pit. A sul-
cal graph is constructed by considering each sulcal basin (or
corresponding pit) as a node, while the edges connect adja-
cent basins and thus represent their spatial organization, as
detailed in [2]. Various geometrical information of a sulcal
basin can then be attributed to graph nodes (such as the depth
of the pit, its 3d location...), while the spatial organization
of the basins is integrated into the edges and topology of the
graph. As illustrated on Fig.1, variations across individuals
manifest in the graphs as changes in the number of nodes,
graph topology and in the attributes attached to nodes and
edges. Formally, a sulcal graph G is a triplet of vertices, edges
and attributes, namely G = (V,E,A) with the cardinality of

the graph being the number of basins also noted |G| = n.
In this work, we consider as attributes the 3d coordinates of
the sulcal pits on the sphere for the nodes and the geodesic
distance for the edges.

Fig. 1. Left: An illustration of the major variations across
individuals in their respective sulcal graphs. Enlarged views
of the temporal lobes show the variations in the number of
nodes and graph adjacency. Right: The sulcal graph from
each individual is mapped onto a common spherical domain
which is convenient for comparing nodes coordinates.

Defining spatial correspondences across the brains of a set
of individuals is required to compute statistics at the scale of
a population. Comparing brains using sulcal graph matching
is highly relevant because all the geometrical information is
encoded in these graphs. However, matching such graphs is
challenging due to the complexity of brain geometry that is
preserved in graph representations. The specific challenges to
be addressed in this context are: 1) the presence of noise due
to imperfect sulcal basins segmentation, resulting from inac-
curate extraction of the cortical mesh; 2) the lack of ground
truth data at the scale of sulcal basins. Defining ground truth
data is already a tedious and ambiguous task at the scale of
sulci [3]. Indeed, at sub-lobar scale, the anatomical ambigu-
ity becomes a problem for any human expert, such that no
nomenclature or validated atlas exists at the scale of sulcal
basins. All this makes the problem of matching a pair of sul-
cal graphs an ill-posed problem. Indeed, the conjunction of
major variations across individuals and non-neglectable level
of noise constitute clearly unfavorable settings for the pair-
wise graph matching techniques to perform well.

In our previous work [4], we introduced a procedure to
generate a set of synthetic sulcal graphs representative of a
population, that served to benchmark state of the art pairwise
matching techniques. We also included in our benchmark



one multi-graph approach which outperformed all the pair-
wise techniques. This served as a proof of concept of the su-
perior efficiency of multi-graph matching approaches in this
context. By considering several brains together, the geomet-
rical information that is shared by the majority of individuals
helps to regularize the matching problem and allows to iden-
tify putative noisy graph nodes in a much more robust way
than in the case of a pairwise matching between two subjects.

In the present work, we benchmark a selection of recently
published multi-graph matching techniques against the best
pairwise technique from [4], and show variations in perfor-
mances that might impact significantly subsequent analyses.
We also propose several improvements to the simulation
framework that yield more realistic synthetic graphs. In a
second experiment, qualitative and quantitative evaluations
on real data from 134 subjects allow us to refine our conclu-
sions. Our results demonstrate the feasibility to compare a
large population of brains based on multi-graph matching of
sulcal graphs in fully acceptable computing time.

2. MULTI-GRAPH MATCHING

Graph matching (GM) refers to the problem of finding corre-
spondences between the nodes of two or more graphs. GM
methods are usually divided into those that provide exact
or inexact matchings. Exact methods require that the corre-
spondences between nodes strictly preserve the adjacency of
the graphs. But such an isometry is inappropriate for sulcal
graphs exhibiting topological variations. Hence this paper fo-
cuses on inexact methods which tolerate structural variations
between graphs by allowing for some flexibility during the
matching process.

Most GM methods are limited to the pairwise setting
where two graphs are to be matched. When matching mul-
tiple graphs {G1, · · · ,GN}, the standard solution consists
in using a pairwise algorithm to find the matchings between
all pairs of graphs. However, this often yields inconsisten-
cies: combining the matchings of G1 to G2 and of G2 to G3
might not be equivalent to the direct matching of G1 to G3,
especially in the presence of noise. To overcome this issue,
mSync [5] enforces a cycle consistency constraint between
permutation matrices, which is defined as:

∀i, j, k ∈ {1, . . . , N} Xij = XikXkj (1)

where Xij is the permutation matrix from Gi to Gj . The
multi-matching solution is then obtained by solving Koopmans-
Beckmann’s quadratic assignment problem [6, 7, 8] using
bulk matrices:

max
X∈C

tr(AXAX>) (2)

where X = {Xij}1≤i,j≤N is the bulk matrix containing all
permutations matrices and identity matrices as block diago-
nal, A = {Aij}1≤i,j≤N is the bulk matrix with the adjacency
matrices and C is the set of constraints which at least include

the consistency expressed in (1) and permutations require-
ment on {Xij}1≤i,j≤N .

Solving (2) is an NP-Hard problem since C is a non-
convex set and consistency is difficult to enforce. Thus,
mSync models consistency by introducing a virtual ”uni-
verse” of nodes, which induces a specific permutation matrix
for each graph. These matrices can be combined to produce
the permutations between two graphs. This universe of node
is computed via a synchronisation mechanism. In contrast,
mALS [6] imposes a low-rank constraint on the bulk permu-
tation matrix under the assumption that only few nodes are
different between graphs.

The notion of universe of nodes is particularly interesting
in the case of noisy graphs with different number of nodes.
This way a consistent matching should satisfy Xij = UiUT

j ,
where Ui ∈ {0, 1}ni,k represents the map from Gi to the uni-
verse, where k is the number of points in the universe, ni is
the size of Gi and k ≥ ni. The dimension k is directly linked
to the rank of X, meaning that mALS implicitly relies on such
representation. On the contrary, HiPPI [7] parametrizes pair-
wise matchings in the universe of nodes instead of directly op-
timising on X with additional constraints. This method takes
into account both cycle and graph attributes consistencies by
solving (2) using a projected power method with an appropri-
ate initialization.

While both HiPPI and mALS manipulate a low-rank ver-
sion of X, there is a big difference in their universe of nodes.
Ui are permutation matrices, while a simple low-rank con-
straint is more general. mALS then allows more flexibility
in the embedding of nodes with a threshold on the values
to avoid bad matching, but it is implicit. As a consequence
HiPPI formally offers a better enforcement of the cycle con-
sistency than mALS and is therefore closer to mSync. We
did also consider greedy methods such as CAO [9] but their
higher complexity induced prohibitive computing time in our
context.

3. EXPERIMENTS AND RESULTS

We now describe our experiments that aim at benchmarking
multi-graph matching algorithms on population-wise sets of
sulcal graphs. We work both on a real dataset, but also on sets
of artificially generated sulcal graphs for which we know the
ground-truth matching, which allows studying the robustness
of these algorithms with respect to several types of variations
present in the real graphs.

3.1. Generating realistic synthetic sulcal graphs

In order to generate realistic sulcal graphs, we benefit from
the recent work [10] where an extensive description of a popu-
lation of real sulcal graphs is provided: i) the average number
of nodes across the sulcal graphs representative of a popula-
tion of healthy adults is 85 ± 4; but ii) the labelling process



introduced in that work resulted in the identification of only
72 of these nodes, the less variable ones, leaving almost 20%
of unlabelled nodes.

Based on these information, we first generate the nodes of
a reference sulcal graph by randomly sampling 72 points on
a sphere to match the number of the most reproducible nodes
in the real data. Next, we simulate the variations across in-
dividuals in the location of the nodes and in the structure of
the sulcal graphs using the four-steps process described be-
low, which we repeat l times to generate the sulcal graphs of
a population of l individuals: 1) We start by perturbing the co-
ordinates of each reference node. Being on the sphere, we use
the Von-Mises Fisher distribution fv(µ, κ) to model the noise
on the coordinates of the nodes. µ denotes the mean direc-
tion and κ is the concentration parameter (µ and 1/κ can be
seen as homologous to µ and σ2 for the Normal distribution);
note that the amount of noise increases when κ decreases. 2)
We draw O additional random points on the sphere, in order
to simulate the unlabelled ”outlier” nodes of the real sulcal
graphs. 3) We compute the 3d convex hull of these 72+O
points, which provides the edges of the graph and correspond-
ing adjacency matrix in similar way as in the real graph since
the edges between the nodes represent the neighbourhood re-
lationship between sulcal basin (see [2] for precision). 4) Fi-
nally, we randomly drop 10% of these edges in order to best
match the node degree distribution of real sulcal graphs.

Note that the computation of the convex hull for obtain-
ing the edges comes after the spatial perturbation of reference
nodes but also after the inclusion of outlier nodes. This in-
duces important variations in the topology of the graphs in
addition to the random drop of edges, as illustrated on Fig.2.
Using this procedure, the amount of noise in our collection of
l artificial sulcal graphs (i.e in our population of l subjects) is
controlled by two parameters, κ and O.

Fig. 2. Left: sulcal graphs mapped onto an average brain
surface, showing variations in the number of nodes and the
graph topology; top: real data from three individuals; bottom:
three synthetic graphs. Right: visualization of the spatial dis-
persion of the nodes across a simulated population of l = 5
graphs with κ = 200 and O = 8. The ground truth matching
is indicated by the color of the nodes, and outlier nodes are
shown in black.

3.2. Results on synthetic sulcal graphs

We generate 10 populations of l = 134 synthetic graphs
for each set of parameters. We explored the following sets
of simulation parameters κ ∈ [200, 800, 1400] and number
of outlier nodes O ∈ [0, 6, 12, 18]. In the graph match-
ing literature, most methods make use of an affinity matrix
K ∈ Rn1n2×n1n2 that holds the node-to-node and edge-to-
edge similarity values between any two graphs G1 and G2,
where n1 and n2 are the number of nodes in each graph. The
diagonal of K represents node-to-node similarities whereas
the off-diagonal holds edge-to-edge similarities. In this pa-
per, we compute the values in K using the Gaussian kernel on
the squared norm of two vectors of node and edge attributes,
as described in [2]. We then use K as weighted adjacency
matrix for multi-graph methods described in section 2. We
initialize each multi-graph method with the result of the pair-
wise matching obtained from KerGM. We run and evaluate
the algorithms for each of the 10 populations independently,
allowing to compute the average and standard deviation of
our evaluation criterion, the standard F1-score ∈ [0,1], which
is a function of the precision and recall:

F1 = 2 ∗ (precision ∗ recall)/precision+ recall (3)

where, precision = number of correct matches by the algorithm
Total number of ground-truth matches

recall = number of correct matches by the algorithm
Total number of matches by the algorithm

Indeed, for our sulcal graph matching task, the F1-score is
relevant to detect incorrect matching alongside matches with
outliers. A F1 score of 1 reflects the ability of the algorithm to
obtain a perfect matching of inlier nodes and accurate identifi-
cation of outlier nodes. Fig.3 shows the F1-score obtained for
different values of κ, fixing the number of outliers O = 18.

Fig. 3. Mean and standard deviation of F1-score for each
method, with κ ∈ [1400, 800, 200] and the number of outliers
O=18.

From this figure and the other parameter settings not
shown, we observe that all the multi-graph matching methods
(mALS, mSync and Hippi) outperform the pairwise match-
ing method KerGM which was the best among all pairwise
methods in [4]. This confirms that pairwise matching is not



competitive in our application where matching information
is spread across multiple graphs. The performances of all
the algorithms deteriorate as kappa decreases (higher per-
turbation). Although the three multi-graph methods seems to
perform well when perturbations are strong, mALS is slightly
better than mSync and Hippi. However the computation time
of mALS is much higher than for the other methods (see
Table.1). When varying the number of outlier nodes (not
shown), we observe also that Hippi and mSync are slightly
more prone to incorrect matching compared to mALS, that is
less strict in enforcing the consistency constraint.

3.3. Application to real data

For the evaluation on real data, we work with the sulcal graphs
from 134 young healthy adults taken from the open OASIS
database [11]. The cortical meshes and sulcal graphs were ob-
tained following the procedure described in [1, 2]. In absence
of ground truth matching, we cannot compute the F1-score.
Instead, we compute the matching consistency of each node
of each graph as proposed in e.g. [9, 4], and report the average
across all graphs and nodes. The matching consistency mea-
sures the uniqueness of the pairwise matchings by different
composition orders and varies between 0 and 1. A value of 1
corresponds to the ideal case where each graph only contain
nodes that are matchable.

Then, we examine the characteristics of node clusters,
where a cluster is defined as the set of nodes that share the
same label across all graphs, taking the largest graph as a ref-
erence. For this, we compute the silhouette coefficient of each
cluster, which is a good indicator of both the concentration of
nodes within a cluster and the separation between clusters. It
is the average within a cluster of the silhouette coefficients of
all its nodes, which is given by the ratio between the average
Euclidean distance to the other nodes in the cluster and its
distance to other nearby clusters [12].

Fig. 4. For each method, the silhouette coefficient of each
cluster is indicated by the color of the circle. The location of
each circle corresponds to the coordinates of the centroid of
each cluster.

On Fig.4, the silhouette coefficient of each cluster is in-
dicated by the color of the circle, and the location of each
circle corresponds to the coordinates of the centroid of each
cluster, allowing to compare spatial patterns across methods.
Together with Table 1, this figure illustrates the high spa-
tial dispersion of nodes corresponding to each cluster with
KerGM, associated to very low silhouette coefficients. The
method mSync results in higher silhouette coefficients for
some nodes, but lower value for others, indicating that the
matching was enforced also for ambiguous nodes located in
highly variable regions. This is expected since the solution of
mSync is a matching that is consistent across all graphs by
construction, every nodes being matched across all graphs.
For mALS, the silhouette coefficients are very high but the
number of unmatched nodes also, indicating that this method
was much more restrictive in the matching, leaving more than
27% of the nodes unmatched. The results of Hippi are bal-
anced, resulting in high silhouette coefficients in less variable
regions where mSync and mALS did also perform well, and
lower coefficients in regions known to be variable, still en-
forcing the matching for almost 98% of the nodes. Across
all methods, the clusters with a high silhouette coefficient
are consistently located in regions such as the central and
pre-central sulci and the superior temporal region, which are
known to be less variable across individuals than e.g. infe-
rior temporal regions. This pattern supports the biological
relevance of the correspondences across individual graphs re-
sulting from multi-graph matching techniques.

Table 1. Quantitative comparison on real data.

Method Num. silhouette Perc. consistency cpu time
labels unmatched (min)

mALS 82 0.54± 0.23 27.7 0.91± 0.08 783.81
Hippi 92 0.20± 0.42 2.1 0.95± 0.04 54.23
mSync 101 0.05± 0.52 0 1.0± 0.0 25.54
KerGM 101 −0.05± 0.31 0 0.30± 0.17 1362.72

4. CONCLUSION

In this paper, we apply mutli-graph matching to define
population-wise correspondences across individual cortical
geometries. Our experiments on both synthetic and real data
demonstrate the benefits of multi-graph matching techniques
compared to pairwise approaches. Furthermore, clear differ-
ences emerge between the different state-of-the-art multi-
graph matching algorithms that we benchmarked. Only
mALS and HiPPI provide matchings that are biologically
plausible, whereas in this context mSync is hampered by
algorithmic constraints. Finally, the superior scalability of-
fered by HiPPI makes it the best candidate method for future
large-scale studies of brain anatomy based on sulcal graphs.
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