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Abstract. Work in the last two decades has shown that neural mass models

(NMM) can realistically reproduce and explain epileptic seizure transitions as recorded

by electrophysiological methods (EEG, SEEG). In previous work, advances were

achieved by increasing excitation and heuristically varying network inhibitory coupling

parameters in the models. Based on these early studies, we provide a laminar NMM

capable of realistically reproducing the electrical activity recorded by SEEG in the

epileptogenic zone during interictal to ictal states. With the exception of the external

noise input into the pyramidal cell population, the model dynamics are autonomous.

By setting the system at a point close to bifurcation, seizure-like transitions are

generated, including pre-ictal spikes, low voltage fast activity, and ictal rhythmic

activity. A novel element in the model is a physiologically motivated algorithm for

chloride dynamics: the gain of GABAergic post-synaptic potentials is modulated by

the pathological accumulation of chloride in pyramidal cells due to high inhibitory

input and/or dysfunctional chloride transport. In addition, in order to simulate

SEEG signals for comparison with real seizure recordings, the NMM is embedded

first in a layered model of the neocortex and then in a realistic physical model. We

compare modeling results with data from four epilepsy patient cases. By including

key pathophysiological mechanisms, the proposed framework captures succinctly the

electrophysiological phenomenology observed in ictal states, paving the way for robust

personalization methods based on NMMs.
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1. Introduction

Computational models have proven to be a powerful tool to understand the

pathophysiology underlying epileptic activity. In [1], neural mass models (NMM)

were used to represent realistic epileptic seizure transitions: changes from interictal

to ictal state were achieved by increasing the excitatory synaptic gain at the level of

glutamatergic pyramidal cells and varying the inhibitory synaptic gains of GABAergic

interneurons. This model simulated the transition through some of the phases typically

observed in epileptic seizures recorded with stereoelectroencephalography (SEEG), such

as pre-ictal spikes, low voltage fast onset activity and ictal rhythmic activity.

The NMM framework describes the dynamics of the average membrane potential

and firing rates of populations of neurons in a cortical column [2, 3, 4, 5]. A NMM

consists of second order differential equations describing the membrane perturbation of

a neuronal population at the level of each synapse due to the input currents from another

neuronal population, plus an equation converting membrane potential into firing rate

using Freeman’s sigmoid function [6]. Models of several populations can be coupled to

produce different types of activity (see [7] for a complete description of the Jansen and

Rit three population model), including epileptiform activity [1].

There is increasing evidence of the role of GABAergic transmission in seizure

initiation, propagation and termination, both in the immature and mature brain

(see [8] for an extensive review). GABAergic synaptic transmission can have seizure-

promoting effects when release of GABA neurotransmitters leads to excitation instead of

inhibition, a phenomenon known as “depolarizing GABA”. Indeed, optogenetic control

of perisomatic-targeting GABAergic interneurons such as parvalbumin-positive (PV)

cells showed that high frequency discharge of this cell types was able to trigger fast onset

activity [9, 10], and selective activation of PV cells and another sub-class of GABAergic

interneurons, somatostatin-positive (SST) cells, triggered epileptiform activity [11].

Mechanistically, the dysregulation of chloride homeostasis observed in epileptic

tissues appears to play a major role in the depolarizing effect of GABAA

neurotransmitters during epileptic seizures [12], and there is evidence for the

accumulation of chloride in pyramidal cells at seizure onset [13]. Changes in the

expression level of chloride cotransporters, such as KCC2 (K-Cl cotransporter type 2)

and NKCC1 (Na-K-2Cl cotransporter type 1) have been identified as the main causes

for pathological chloride accumulation in the epileptic tissue [8, 14, 15, 16, 17].

Recently, a computational model including activity-dependent GABA depolariza-

tion was used to reproduce epileptic discharges in Dravet syndrome patients [18]. In

the model, GABA depolarization was mediated by PV-cells and was represented by

a parameter that was gradually increased to generate transitions from background to

interictal, low voltage fast-onset seizure initiation, ictal-like activity and seizure-like

activity termination.

Building on previous work [1, 18] and on data reported in the literature [8], we have

extended the NMM formalism to include chloride dynamics. By modeling pathological

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted August 20, 2022. ; https://doi.org/10.1101/2021.12.24.474090doi: bioRxiv preprint 

https://doi.org/10.1101/2021.12.24.474090
http://creativecommons.org/licenses/by-nc-nd/4.0/


A personalizable autonomous neural mass model of epileptic seizures 3

chloride accumulation in the pyramidal cell population, we can simulate autonomous,

realistic epileptic seizures. Interestingly, the model accurately reproduces the sequence

of complex epileptiform patterns observed during the interictal to ictal transition. The

model is autonomous in the sense that it is directly driven to ictal state by random

fluctuations of external stochastic input onto the pyramidal cells (which represent

fluctuations of cortico-cortical or thalamo-cortical input, or neuromodulatory effects).

Developing personalized computational models that simulate brain activity during

epileptic seizures is of crucial importance for a better understanding and optimization

of treatments. Not only can models help identifying the pathophysiological mechanisms

involved in seizure initiation, propagation and termination, but also they can improve

the efficacy of potential treatments that range from the surgical resection of epileptogenic

tissue [19, 20, 21] to non-invasive brain stimulation. In this regard, model parameters

should be fine-tuned to fit the main patient-specific features of the SEEG recordings.

The generation of realistic SEEG data to compare with real recordings requires

combining the NMM framework with a physical head model that accounts for both

the location of the SEEG electrode contacts and the biophysical features of the volume

conductor (tissue morphology and conductivity). This combination is crucial to solve

the SEEG-forward problem and hence simulate signals analogous to real SEEG signals.

The present model includes a laminar architecture that represents the cortical layers

of the human brain, as was done in previous work [22, 23]. We can then embed the

seizure-generating NMM into a physical head model to generate SEEG-like activity

during the transition from interictal to ictal state. We provide here examples of model

personalization, where we compare the simulated SEEG signal with the recordings of

four epilepsy patients during seizures. We also present a proof of concept of stimulation

with constant weak electric fields for the reduction of seizure activity in the model.

2. Methods

2.1. Patient selection and data collection

The four patients included in this study required SEEG as part of usual clinical care.

Clinical information about the patients can be found in Table 1. In all cases, several

intracerebral electrodes were placed in different brain regions of the patient based on the

clinician’s hypotheses about the localization of the epileptogenic zone. For each patient,

several seizures were recorded by the SEEG electrodes: three seizures for Patients 1

and 2, four seizures for Patient 3 and two seizures for Patient 4. All seizure data was

included in the analysis.

2.2. SEEG recordings

SEEG recordings were obtained using intracerebral multiple contact electrodes with a

154-channel Deltamed system. Offline, SEEG data was high-pass filtered above 0.5 Hz.

Bipolar derivations were taken by neighbour contact subtraction for each electrode.
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Table 1: Clinical characteristics of the patients included in the study.

Patient ID 1 2 3 4

Gender F F F M

Age at epilepsy

onset (y)
14 9 10 11

Epilepsy

duration (y)
7 14 14 4

Epilepsy type Parietal Occipital Temporal Temporal

Surgical procedure SR SR TC, SR TC, SR

Surgical outcome

(Engel class)
I II I I

MRI R parietal DNET Normal R temporal FCD Normal

Histopathology DNET FCD1 FCD2 FCD2

Side R L R L

Abbreviations: DNET, dysembryoplastic neuroepithelial tumor; FCD, focal cortical dyplasia; L, left;

R, right; SR, surgical resection; TC, thermocoagulations.

For comparison with the simulated data, we have selected SEEG contacts presenting

the most epileptogenic activity during seizure. The metric used for the identification

of epileptogenic contacts was the Epileptogenicity Index (EI) [24]. In brief, the EI

classifies SEEG contact signals according to the tonicity of rapid discharges and the

delay with respect to seizure onset. For each patient, SEEG data from several seizure

events was available. We computed the EI for each seizure using the open-source software

AnyWave [25] and selected as most epileptogenic contact the contact with the highest

average EI over all seizures.

The location of the most epileptogenic contacts in each patient is described

hereafter:

• Patient 1 : right supramarginal gyrus, directly inside an anatomical lesion suspected

to be the epileptic focus;

• Patient 2 : left occipital pole, no anatomical lesion was known for this patient;

• Patient 3 : right posterior superior temporal sulcus, in a region of cortical dysplasia

suspected to be the epileptic focus;

• Patient 4 : left hippocampus and left posterior T2 (middle temporal gyrus), with

no specific lesion for this patient.

A 3D view of the electrode contacts position in the patients’ head model can be seen in

Figure S1.
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2.3. SEEG data analysis

Seizures were identified by a trained neurologist who set the time of seizure onset. In

order to optimize the trade-off between time and frequency resolution, we carried out

separate time-frequency representations (TFRs) of oscillatory power for slow and fast

frequencies [26]. The TFRs allowed us to easily identify canonical features of each

seizure: a fast onset characterized by low-amplitude high frequency chirp-like bursts

and a rhythmic clonic phase characterized by large amplitude sustained oscillations.

For each patient and seizure, we manually defined the onset and offset of the two events

and estimated their duration and peak frequency. The peak frequency was obtained

by spectral parametrization following the approach described in [27] (more details are

given in Appendix A).

Figure 1 shows examples of SEEG seizure recordings for each of the four patients.

For patients 1, 2 and 3, all seizures displayed a phase of low-voltage fast activity (LVFA)

at seizure onset followed by rhythmic oscillations. The frequency of the LVFA period

was much higher for patients 1 and 3 (∼100 Hz) than for patient 2 (∼40 Hz). Pre-ictal

spikes were recorded prior to the LVFA phase for patients 2 and 3. For Patient 4, a

burst of spikes in the beta range was followed by rhythmic oscillations in all the seizures

recorded. The SEEG seizure recordings for all seizures and all patients are shown in

Figure S2.

2.4. Laminar NMM with dynamic inhibitory synaptic gains

We have recently extended the NMM framework to be able to represent the physics

of synaptic electrical current flow in cortical layers [22, 23]. The model developed

here is such a laminar NMM consisting of populations of (i) pyramidal neurons (P),

(ii) other excitatory cells (E), which represent lateral excitation by spiny stellate

cells or other pyramidal neurons in layer IV, (iii) fast inhibitory interneurons (PV),

such as parvalbumin-positive cells releasing GABAA and targeting the soma and

proximal dendrites of pyramidal cells, and (iv) slow inhibitory interneurons (SST), such

as somatostatin-positive cells targeting the pyramidal cells apical dendrites releasing

GABAA.

With regard to connectivity, the pyramidal population sends excitatory input

to all other neuronal populations and receives excitatory signals from the excitatory

population and inhibitory signals from the fast and slow inhibitory interneurons. The

NMM also includes an external excitatory input to the main pyramidal population,

which represents the input from other cortical columns or subcortical structures. Based

on the extensive literature describing local connections in cortical columns, we have

also included in the model autaptic self-connections in the fast inhibitory interneuron

population, and synaptic connections from slow inhibitory interneurons to fast inhibitory

interneurons [28]. The resulting circuit architecture is a slight variation of the models

proposed in [1] and [18]. The laminar locations of each neuronal population and their

synapses are derived from the available literature [28, 29]. Figure 2 summarizes the
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(d) Patient 4

Figure 1: Examples of SEEG seizure recordings for each of the four patients. Low-

voltage fast activity (LVFA) was present at seizure onset for patients 1, 2 and 3. Pre-

ictal spikes were recorded prior to the LVFA phase for patients 2 and 3. For Patient 4,

seizure onset was characterized by a burst of spikes in the beta range.

complete architecture used in the present work.

We note that the proposed circuit is meant to be representative of the architecture

found in an average cortical area, although we acknowledge that the neuronal

populations found in some regions will differ in type, connectivity and distribution.

This might be especially true for damaged cortical structures, as is the case for some

of the patients included in the study (see Table 1). We have decided for simplicity to

use the same cortical architecture for all patients and to then include some parameter

modifications to represent the pathological character of the epileptic tissue, such as the

synaptic gain of excitatory connections or the connectivity strength of synapses (see

Section 2.6).

We present a synapse-driven formalism, where each synapse s is described by an

equation representing the conversion from an input firing rate φn from the pre-synaptic

population n into an alteration of the membrane potential us of the post-synaptic

neuron. This relation is represented by the integral operator L̂−1
s (a linear temporal

filter), the inverse of which is a differential operator L̂s,

L̂s[us(t)] = Cs φn(t) (1)
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Figure 2: Laminar neural mass model architecture, including four different neuronal

populations: pyramidal cells (P), other excitatory cells (E), dendritic projecting

interneurons with slow synaptic kinetics (SST) and somatic-projecting interneurons

with faster synaptic kinetics (PV). An external input to the pyramidal cell population

from other cortical areas and subcortical structures is included (ext). Arrows represent

excitatory synapses and dot terminals represent inhibitory synapses. Neurons (which

are now extended objects spanning several layers) and synapses are placed in specific

cortical layers, a key aspect for the computation of realistic SEEG signals. A physical

model is included to simulate the bipolar voltage measured by the SEEG electrode

contacts inside (or close to) the active patch.

where Cs is the connectivity constant between the populations and the differential

operator L̂s is defined as

L̂s[us(t)] =
1

Ws

[
τs

d2

dt2
+ 2

d

dt
+

1

τs

]
us(t) (2)

with Ws the average excitatory/inhibitory synaptic gain and τs the synaptic time

constant. In classical neural mass models, Ws is a constant parameter associated with

each synapse type [1, 30]. Here, to account for the chloride-dependent variations of

the PSP amplitude generated by GABA release, the gain Ws of some of the synapses

(SST → P and PV → P) is a dynamic variable Ws(t) governed by chloride transport

and other equations (see next section).

A neuronal population Pn state is characterized by its membrane potential vn (the

summation of all its pre-synaptic membrane perturbations us) and by its firing rate φn,

which is computed using a non-linear function of the membrane potential,

vn(t) = λn · E(t) +
∑
s→Pn

us(t) (3)

φn(t) = σn(vn(t)) =
2φ0

1 + er(v0−vn(t))
(4)
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where the sum in the first equation is over synapses reaching the population, φ0 is half

of the maximum firing rate of each neuronal population, v0 is the value of the potential

when the firing rate is φ0 and r determines the slope of the sigmoid at the central

symmetry point (v0, φ0) [6, 5, 7].

The term λn · E(t) represents the membrane perturbation induced by an external

electric field [31, 32, 33] and accounts for the effects of electrical stimulation or ephaptic

effects [34], in the case where they are to be included (see Section 3.4). The λ ·E model

assumes that the electric field effect is proportional to the projection of the electric field

on the axon direction. Since the electric field generated by tES is thought to affect

mainly elongated neurons such as pyramidal cells [31], the λn · E(t) term affects only

the membrane potential of the pyramidal population in our model.

The detailed equations for each synapse in the model and a description of the model

parameters are provided in Appendix B. An illustrative diagram of the model equations

is shown in Figure 3.

2.5. Model for chloride accumulation dynamics

To the synapse equations presented in the previous section we add supplementary ODEs

to account for the dynamics of Cl− accumulation in the pyramidal cell population and

its impact on synaptic gains. In the model, the dynamics of Cl− accumulation in the

pyramidal cell population are driven by the release of GABAergic neurotransmitters

from the fast and slow inhibitory interneurons [12]. Given that those interneurons

target two distinct cell locations (PV cells target more frequently perisomatic locations,

while SST cells usually target the apical dendrites [28]), we modeled the Cl− dynamics

separately for each synaptic type location.

As in previous work [35, 36], the concentration of Cl− in a synaptic location is

calculated according to the balance equations as a function of the combined extrusion

of chloride by KCC2 transporters and the firing-rate-dependent influx of chloride

in GABAA synapses, modulated by a surface-to-volume and charge-to-concentration

translating parameter αloc
vol that depends on the synapse location (apical dendrites or

perisomatic region),

d[Cl−]loci (t)

dt
= αloc

vol (I
loc
KCC2 + I locφ ) (5)

The parameter αloc
vol reflects, at the population level, the location-dependent modulation

of the impact of ionic currents on the change of Cl− accumulation by the local

cell compartment volume [35, 37]: the same ionic current will cause different Cl−

accumulation changes depending of the size of the reservoir, which depends on the

synapse location in the cell. Due to the volume differences of apical dendrites compared

to the soma, chloride influx or extrusion causes faster changes in the total Cl−

concentration in apical dendrites, as suggested by recent studies [12, 8]. Thus, αloc
vol

will be higher in the apical dendrites. We have assumed for simplicity that the chloride
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(13)

(9)
(10)

(10)

(5)

(5)

(8)
(6)

Figure 3: Diagram of the extended NMM equations. The grey box below represents

the equations for chloride dynamics of the PV→P synapse (chloride dynamics in the

soma, superscript s). Equation numbers corresponding to the main text are displayed

in parenthesis. The model for chloride accumulation dynamics uses as input from the

standard NMM equations the firing rate of the inhibitory interneurons (φPV in this case),

and update the synaptic gain of the connection (W4). The grey box in the middle of the

diagram, marked with [Cl−]di , represents the equations for chloride dynamics equations

of the SST→P synapse (chloride dynamics in the dendrites), which are described by the

same model as the one of the bottom grey box.
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concentration in the soma and dendrites is independent, and that there is no diffusion

of [Cl− ] between them.

The Cl− current associated with KCC2 transporters is given by

I locKCC2 = −αloc
KCC2 (E

loc
Cl−(t)− EK+) (6)

We assume here that the reversal potential of potassium EK+ remains constant. The

parameter αKCC2 reflects the rate of extrusion of Cl− through KCC2 transporters. Since

KCC2 transporter dysfunction plays a crucial role in pathological Cl− accumulation in

epilepsy [8, 12], αKCC2 is personalized to reflect patient epileptogenicity levels in different

nodes: the most epileptogenic areas will display reduced KCC2 transporter function

(low αKCC2), while healthy regions will have nominally functional KCC2 transporters

(high αKCC2). Indeed, for a given set of parameters that produces seizure-like behavior,

increasing αKCC2 is sufficient to avoid the transition to ictal state (see Figure E1).

Some studies suggest that NKCC1 dysfunction might also contribute to the pathological

accumulation of Cl− in epilepsy [38]. As opposed to KCC2 transporters, NKCC1

transports Cl− inside the cell. The model used here does not explicitly display the

contribution of NKCC1 transporters Cl− homeostasis. Given the opposite role of both

transporters, the current model can be easily generalized to account for a balance of

in/out transport of Cl− by KCC2 and NKCC1 transporters without the need to modify

substantially the current implementation.

The Cl− current through GABAA channels due to the activity of inhibitory

interneurons is given by

I locφ = −glocCl− (Eloc
Cl−(t)− Vm) (7)

where gloc
Cl−

is the chloride conductance through GABAergic channels in a given location

of the cell, Vm is the membrane potential of the neuron and Eloc
Cl−

is the reversal potential

of chloride in the cell location. For simplicity, for the purpose of calculating these

currents, we have also assumed that the membrane potential of the cell Vm is not affected

by Cl− concentration dynamics. ECl− depends on the chloride accumulation inside the

cell, and is given by Nernst-Planck equation,

ECl−(t) =
RT

F
ln
( [Cl−]i(t)

[Cl−]o

)
(8)

In the model, the influx of Cl− into the cell is due to the release of GABA by inhibitory

interneurons. Therefore, the conductance gCl− is proportional to the firing rate of the

pre-synaptic GABAergic interneurons,

glocCl− = αloc
φ ψs(t)

where ψs(t) is a filtered version of the firing rate, which describes the average net

synaptic flux for a given pre-synaptic firing rate φn. The expression of ψs(t) is based on

exponential smoothing:

ψs(t+ 1) = αCs φn(t) + (1− α)ψs(t)
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with α = 1− e∆t/τ the smoothing factor. In differential form, we have:

dψs(t)

dt
=
Cs

τ
φn(t)−

1

τ
ψs(t) (9)

To compute the total input from inhibitory interneurons, the firing rate of each neuron

is multiplied in Equation 9 by the number of connections from the pre-synaptic neuron

to the pyramidal population Cs. As before, the subscript s indexes the specific synapse

involved (SST → P for the apical dendrites or PV → P for the soma) and n indicates the

pre-synaptic population (SST or PV). The time constant of the exponential smoothing

can be adapted to reflect current kinetics, which are slightly faster than the voltage

kinetics. Here, for simplicity, we used the voltage time constants as well, i.e., we set

τ = τs. We can then express the chloride current through GABAA channels due to the

firing rate of inhibitory interneurons as

I locφ = −αloc
φ ψs(t) (E

loc
Cl−(t)− Vm) (10)

The parameter αloc
φ relates the activity of GABAergic interneurons with the Cl− currents.

This parameter can be personalized on a patient-specific basis.

The balance relation in Equation 5 is a differential equation for [Cl−] and requires

an extra condition for its solution, i.e., the baseline value of [Cl−]. This value [Cl−]0
is thus another physiologically relevant model parameter leading to different system

dynamics.

In the NMM framework, synaptic gains represent the population mean amplitude of

the PSP generated by a given synapse type. The mean amplitude of the PSP generated

by an ion species A in a synapse is proportional to the current generated by this ion

species,

Wpre→post(t) ∝ IA(t) (11)

In the case of GABAergic synapses, the current is given by

IGABA(t) = gGABA (EGABA(t)− Vm) (12)

where gGABA is the average inhibitory conductance, Vm is the membrane potential

(assumed approximately constant) and EGABA is the reversal potential of GABA (the

joint reversal potential of Cl− and HCO−
3 ), which can be calculated using the Goldman-

Hodgkin-Katz equation,

EGABA(t) =
RT

F
ln
(4[Cl−]i(t) + [HCO−]i

4[Cl−]o + [HCO−]o

)
(13)

As mentioned above, we assumed that all ionic concentrations are constant to a good

approximation except for the concentration of chloride inside the cells [Cl−]i. Following

equations 11 and 12, the synaptic gains of inhibitory cell to pyramidal connections then

are

Wpre→post(t) = w0 (EGABA(t)− Vm) +Wh (14)

where w0 is the proportionality constant that links GABAergic currents to the mean

amplitude of the PSP generated, and the termWh represents the contribution of healthy
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cells to the average PSPs associated with a given population synapse. The rationale

behind the additional term Wh is that there may be a proportion of healthy cells in the

population where Cl− will remain always within healthy levels, thus always generating

non-pathological PSPs with a constant gain; this reflects the population-average nature

of the analysis (see Appendix B.3 for more details).

The pathological chloride-dependent synaptic gains are in our model implemented

in the connections from SST and PV populations to pyramidal populations, given by

WSST→P (t) = wd
0 (Ed

GABA(t)− Vm) +W d
h , (15)

WPV→P (t) = ws
0 (Es

GABA(t)− Vm) +W s
h (16)

where the superscripts s and d indicate the synapse location (s for soma, d for dendrites).

Other synaptic gains (pyramidal population to interneurons, SST to PV, etc.) are

assumed to be constant in the model. The modeling choice of associating chloride

dynamics to the synaptic gains of these two specific connections is based on the fact

that it is sufficient to alter these two parameters to achieve realistic transitions from

interictal to ictal state, as demonstrated in [1]. Future work should study whether

including pathological chloride accumulation in other neuronal populations (PV cells

due to the autaptic PV connection, for example) leads to major improvements of the

model.

The equations for chloride dynamics and the parameters used are summarized

in Appendix B; their integration into the NMM equations is illustrated by Figure 3.

2.6. Personalization of the model

2.6.1. Dynamical landscape The set of NMM parameters selected corresponds to a

parameter space where different epileptic transitions can be achieved by varying the

synaptic gains of the connection between populations of inhibitory interneurons and

pyramidal populations (see Figure 4). While most parameters in the model inherit from

previous work [1], some are personalized to reproduce the main features of the patient

SEEG signal in the contact recording the most epileptogenic activity.

In general, the parameter space must include the following regions: background

activity, fast oscillatory activity (if the patient’s SEEG recordings display fast onset

activity) and slow rhythmic activity. The main frequency of each of those regions should

correspond approximately to the ones extracted from the patient’s data.

The adjustment of parameters to achieve the desired parameter space is performed

starting from the set of parameters presented in [1] and modifying as few parameters as

possible‡. Some parameters are prioritized from physiological considerations, including

the synaptic gain of excitatory connections (which reflects the excitability of the

‡ Of note, our NMM includes a synapse not present in the “Wendling-class” model presented in [1],

the autaptic connection in the PV cell populations. Our baseline parameters for this synapse are:

WPV→PV = −10 mV, CPV→PV = 300, 1/τPV→PV = 500 s−1.
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Figure 4: Dynamical landscape of the model corresponding to different inhibitory

synaptic weights. Different types of epileptic activity can be found for different values

of the pair WSST→P, WPV→P: background activity (grey), spiking in the delta (light

blue) or theta (light pink) range, rhythmic oscillatory activity in the alpha (red) or beta

(yellow) band, low voltage fast activity in the low-gamma (light green) or high-gamma

(dark green) band. The solid black line illustrates the path taken in the landscape,

determined by chloride dynamics.

epileptic tissue) and the connectivity strength of synapses (some connections might

be strengthened or weakened due to the frequent epileptic activity in the region).

The parameters that define population average PSP kinetics are instead expected

to remain within realistic ranges, which we have defined based on previous modeling

studies [1, 39, 30]. In particular, the work of [39] provides literature-based intervals for

the time constants of glutamatergic and GABAergic PSPs. The ranges of PSP rates

used in our study are 100 to 220 s−1 for P and E pre-synaptic populations, 125 to 500 s−1

for PV pre-synaptic populations, and 15 to 50 s−1 for SST pre-synaptic populations.

Figure 4 describes the resulting parameter space of all patients, and Table 2
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Table 2: NMM synaptic parameters chosen for all patients. For synaptic gains (W ) and

PSP rates (τ), subscripts indicate the type of pre-synaptic population (exc corresponds

to both P and E populations). Some parameters are taken from [1], while others have

been adjusted to obtain the patient-specific parameter space that includes the transitions

phases required to fit SEEG data. Parameters that have been modified with respect to

the values used in [1] are marked with an asterisk. In this case, the synaptic gain of

excitatory connections has been increased (reflecting an increase of excitability), along

with some synaptic connectivity values and the PSP rates of some synapses.

Parameter Patient 1 Patient 2 Patient 3 Patient 4

Wexc [mV] 20* 15* 20* 7*

WSST
a [mV] -22 -22 -22 -22

WPV
a [mV] -10 -10 -10 -10

1/τexc [s−1] 180* 100 180* 100

1/τSST [s−1] 20* 50 50 50

1/τPV [s−1] 500 500 500 500

CE→P 108 108 108 108

CSST→P 33.75 33.75 33.75 33.75

CPV→P 108 108 108 108

CExt→P 1 1 1 1

CP→E 135 135 135 135

CP→SST 33.75 33.75 33.75 33.75

CP→PV 150* 40.5 150* 40.5

CSST→PV 3* 3* 3* 3*

CPV→PV 800* 300* 450* 300*

v0 [mV] 6 6 6 6

φ0 [s−1] 2.5 2.5 2.5 2.5

r [mV−1] 0.56 0.56 0.56 0.56

pm [s−1] 90 90 90 90

pstd [s−1] 30* 30* 30* 30*

* Values modified with respect to [1]
a WSST→P and WPV→PV are [Cl− ]-dependent

provides the set of parameters chosen for the personalized model of each patient.

Different types of epileptic activity (background activity, rhythmic oscillatory activity,

low voltage fast activity) can be found for different values of the pair WSST→P , WPV→P

(see Figure 4). The parameters defining the sigmoid for the translation of membrane

potential perturbation into firing rate (φ0, r, v0) were fixed for all neuronal types to the

values presented in [30]: φ0 = 2.5 Hz, r = 0.56 mV−1, v0 = 6 mV. The external input

to the pyramidal population was for all patients Gaussian noise with a mean of 90 s−1

and a standard deviation of 30 s−1.
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2.6.2. Chloride accumulation parameters Once the parameters defining the dynamical

landscape are selected for each subject, we fit the parameters describing the chloride

accumulation dynamics. These parameters determine how the pair of parameters

(WSST→P ,WPV→P ) moves in the dynamical landscape as chloride accumulation evolves,

driving the system through different types of epileptic activity. The goal of the fit is

to approximate the transition from interictal to seizure found in the SEEG recordings

of each patient. The evolution of WSST→P and WPV→P in the personalized dynamical

landscape of all patients is shown in Figure 4.

To reduce the dimensionality of the problem, we have fixed the values of αKCC2 and

αφ to αSST→P
KCC2 = 1, αPV→P

KCC2 = 10 and αSST→P
φ = αPV→P

φ = 1. These parameter values

lead to [Cl− ] equilibrium values in inter-ictal state of around 11 mM in the dendrites

and 8.5 mM in the soma. These are above typical healthy values, and are consistent

with measured [Cl− ] in KCC2-impaired neurons of animal models [40]. As mentioned

above, we hypothesize that the concentration of chloride is larger in the dendrites due

to the lower volume of the compartment and limited diffusion capacity.

We are left with four key parameters that regulate the chloride accumulation in the

synapse locations (see Table 3). Our first step was to personalize the parameters w0 and

Wh, used to compute the dynamic synaptic gains (WSST→P , WPV→P ) from GABAergic

currents. The values of αKCC2 and αφ (in the two synaptic locations) determine the

equilibrium point of chloride accumulation for a given firing rate. Those parameters

being fixed, each activity type in the dynamical landscape will lead to an equilibrium

value of EGABA. Thus, choosing w0 and Wh to achieve the desired transitions amounts

to solving a simple system of two equations (Equations 15 and 16). A description of the

process can be found in Figure S4.

Then, we personalized the parameter αvol, which regulates the rate of chloride

accumulation in the different compartments. Following the assumption that chloride

accumulates faster in apical dendrites than in the soma, we require αd
vol > αs

vol. These

parameters are used to adjust the duration of the different phases and ensure that

transitions match those observed in the patient data. Finally, we have chosen [Cl−]0 so

that it corresponds to the equilibrium value of [Cl−] in the inter-ictal state.

As an illustrative example, Table 3 summarizes the values of chloride dynamics

parameters selected for all patients.

Regarding the rest of variables determining the dynamics of chloride accumulation,

the concentration of HCO−
3 inside and outside the cell was fixed at constant values, as

well as the concentration of chloride outside the cell: [HCO−
3 ]o = 25 mM, [HCO−

3 ]i = 15

mM, [Cl−]o = 150 mM. We also assumed the reversal potential of potassium and the

average membrane potential of the cell to be constant (needed for the calculation

of KCC2-driven chloride transport and for the calculation of GABAergic currents

respectively): EK+ = −85 mV, Vm = −65 mV.

As mentioned in the previous section, the parameter αKCC2 represents the degree of

pathology in the simulated node. Given that an increase of this parameter corresponds

to improved KCC2 transport, we tested and confirmed that increasing αKCC2 above
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Table 3: Chloride dynamics parameters. The parameters regulating the chloride

accumulation in the pyramidal population are adjusted so that the evolution of synaptic

gains in the parameter space drives the system to the different transition phases observed

in the patient’s SEEG data.

Patient Synapse
αvol αKCC2* αφ* w0 Wh [Cl−]0
[ mM/s
µA/cm2 ] [ mS

cm2 ] [ s·mS
cm2 ] a.u. [mV] [mM]

1
SST → P 0.1 1 1 7.6 -65 10.85

PV → P 0.0005 10 1 48.5 -130 8.2

2
SST → P 0.02 1 1 42 -290 10.8

PV → P 0.001 10 1 35 -160 8.5

3
SST → P 0.05 1 1 30 -218 10.85

PV → P 0.0004 10 1 16 -79 8.8

4
SST → P 0.1 1 1 11.5 -94 10.9

PV → P 0.001 10 1 36.5 -87 8.6

* Fixed values

certain values forces the system to remain in non-pathological background activity

(see Appendix E). Similarly, decreasing the average value of the external input leads to a

decrease of the excitation/inhibition ratio in the NMM. Since the transition to epileptic

seizure is driven by stochastic fluctuations of the external input to the pyramidal

population, we verified that by setting the external input to sufficiently low values,

the transition to ictal state is avoided (more details are provided in Figure E1).

2.7. Physical model for generation of SEEG data from NMM results

In order to compare experimental data with our modeling results, it is necessary to

connect the NMM formalism with a physical modeling framework. In the present study,

we built a model to estimate the bipolar voltage recorded by a pair of consecutive

contacts in an SEEG electrode from the laminar NMM source activity. A detailed

description of the model can be found in Appendix C.

In brief, we considered that the synapses targeting the pyramidal population are

the main contributors to the measured voltage, given the anatomical characteristics

and organization of pyramidal cells [41, 42]. In the model, the pyramidal population

spans from layer V to layer I, and we have assumed that the synapses targeting

this population are located in either apical (layer I) or basal (layer V) locations (see

Figure 2, and Section 2.4). For each of these two locations, we built a simplified current

source distribution model with discrete sources to approximately reproduce the current

distribution from compartmental models. These sources were embedded in a three layer

axisymmetric model of a cortical patch with a realistic representation of the SEEG

contacts. Electrical conductivity values to represent the white matter, gray matter and

cerebro-spinal fluid were assigned to these layers from the literature [43], and the electric
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potential distribution was solved using the finite elements method (FEM).

The results from the FEM model described above were used to calculate the relative

contribution of synaptic currents in each location to electrical potential as a function of

the SEEG contact depth with respect to the cortical surface. With this information, the

voltage difference over time measured by a pair of SEEG contacts can be approximated

as the weighted sum of the aggregated synaptic current in each NMM synapse Is:

V (zel, t) =
∑
s

αs(zel)Is(t) (17)

where αs(zel) has units of V/A and is the relative contribution of each synaptic current

to the total voltage (from the FEM model). The value of αs(zel) depends on the SEEG

contact depth zel as well as the location of the synapse. Note that in this study only two

possible locations were considered (apical and basal). In line with our earlier simplifying

assumptions equating synaptic current and potential time constants, we take the post

synaptic current Is(t) as proportional to the synapse membrane potential perturbation

us(t) — a direct output of the NMM. The proportionality factor depends on the post-

synaptic neuron morphology and membrane conductivity, and is represented by a factor

ηn (A/V). Finally, to match the features of real SEEG data, simulated SEEG signals

are high-pass filtered above 0.5 Hz.

3. Results

3.1. A realistic model of interictal to ictal transition

The model generates autonomous realistic transitions to ictal activity. As described

in the Methods section, this is achieved by adding dynamical equations to the

NMM to account for Cl− transport and its subsequent impact on inhibitory post-

synaptic potential (PSP) amplitude. In the model, realistic seizures are generated

when homeostatic mechanisms of pyramidal cells are dysfunctional (KCC2 transporter

dysregulation) and unable to cope with the influx of Cl− from pathological excitation

of GABAergic inhibitory cells such as SST or PV interneurons.

The cascade of events leading to the transition from interictal to ictal state

reproduced by the model is illustrated in Figure 5 and can be summarized as follows:

(i) Random fluctuations in the external excitatory input to the main pyramidal cell

population lead to an increase in excitation.

(ii) This increase in excitation produces an increase of activity of SST interneurons,

which leads to Cl− overload in the dendritic compartments of the pyramidal cell

population (P). Due to the dysfunction of the Cl− transporter system, Cl− cannot

be extruded sufficiently fast and accumulates inside the dendrites (Figure 5(f),

orange curve).

(iii) The accumulation of Cl− in dendritic compartments leads to a decrease of the

inhibitory PSP (IPSP) amplitude generated by GABA release from SST cells. In

the model, this translates into a decrease of the magnitude of the synaptic gain of
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GABAergic synapses from SST to P cells, WSST→P (Figure 5(g), orange curve), and

even its reversal (WSST→P and WPV→P are signed gains in the model, e.g., they are

negative when inhibitory).

(iv) The consequent reduction of inhibition leads to a drift of system dynamics, which

produces epileptic spikes (Figure 5(c), period marked in yellow) followed by low-

voltage fast activity (Figure 5(c), period marked in red), a typical marker of

the onset of seizure during the tonic phase [24, 44, 45]. The fast activity is

mainly generated by the fast loop circuitry associated with the PV population (see

Figure 2), constituted by the autaptic connections among parvalbumine-positive

cells (PV) [46] and the connection between PV and pyramidal neurons.

(v) The increased activity of PV cells leads to Cl− overload in the somatic compartment

of the pyramidal population, which accelerates Cl− accumulation in the soma due

to the limited extrusion capacity of KCC2 transporters (Figure 5(f), green curve).

(vi) An increase of somatic [Cl− ] in the pyramidal cell leads to a decrease of the

IPSPs generated by the GABAergic neurotransmitters released by PV cells, which

translates in the model into a weakening of the synaptic gain and even its reversal

(Figure 5(g), green curve).

(vii) The reduction of fast inhibition leads to a new drift of system dynamics, producing

the rhythmic ictal activity usually observed during the clonic phase (Figure 5(c),

period marked in dark green).

Figure 5 provides a sample model time series of the average membrane potential of the

pyramidal cell population along with the corresponding time-frequency representation

during a spontaneous seizure. The signal reproduces the temporal dynamics typically

observed in SEEG seizure recordings: pre-ictal spikes, low-voltage fast activity and

transition to rhythmic slow activity in the ictal phase. In particular, the simulated

seizure is generated by the model with the parameters adapted to Patient 2. A

key feature of the model is also to simulate the firing rate of GABAergic inhibitory

interneurons (PV and SST), the evolution of Cl− accumulation, as well as the evolution

of the synaptic gains of GABAergic synapses. Once a model is personalized, access to

these dynamical variables can provide valuable clinical insights.

3.2. Patient-specific personalized models

Model parameters can be personalized to fit the main features of a specific SEEG

recording. In particular, we focused on reproducing the frequency of the different phases

of the recording during the interictal to ictal transition. The fitting takes place in a two-

step process: first, the NMM parameters are adjusted to obtain a dynamical landscape

that includes the dominant SEEG frequencies found during the different seizure phases.

The choice of focusing on the representative frequency of each transition phase for

model fitting, instead of other SEEG features such as spike morphology, is driven

by considerations about SEEG physics that are discussed in the next section. The
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Figure 5: A realistic spontaneous seizure generated by the the model. (a) Summary of

the cascade of events leading to the transition from interictal to ictal state. (b) Real

SEEG signal recorded during a seizure of Patient 2. (c) Time series of the pyramidal cell

population average membrane potential, and (d) weighted time-frequency representation

of the signal. Different transition phases are clearly observed: interictal activity, pre-

ictal spiking, low voltage fast activity and rhythmic ictal activity. (e) Firing rate of

the GABAergic inhibitory interneuron populations (SST and PV). (f) Evolution of

Cl− accumulation in the two pyramidal cell compartments represented in the model

(dendrites and soma). The pathological accumulation of Cl− in the cells drives the

system through different phases of the seizure. (g) Evolution of the average synaptic

gain (IPSP amplitude) of the synapses from inhibitory interneuron populations (PV

and SST) to pyramidal cells. The simulation corresponds to the model with parameters

adjusted using Patient 2 data.
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landscape summarizes the dynamics associated with model parameters. Here we focus

on a two dimensional slice corresponding to the (dynamical) synaptic gains of inhibitory

interneurons, WSST→P and WPV→P, with all the other parameters fixed (see Figure 4).

In a second step, the parameters regulating the dynamics of chloride accumulation

are adjusted. These parameters determine the particular path the system takes in

the dynamical landscape of inhibitory synaptic gains, driving the system through the

different phases of the seizure. Further details about the chloride dynamics parameters

and the model fitting process are given in the Methods section. As illustrative examples,

Figure 4 displays the path traversed by the gain variables in the landscape map

corresponding to the personalized NMM model for all patients. In all cases we used

a slight variation of the parameters (other than WSST→P and WPV→P) found in [1]. The

set of NMM parameters used for all patients is provided in Table 2.

Crucially, the pipeline presented in this study allows for personalization of a wide

variety of features found in SEEG recordings during seizure: high-frequency fast onset

(Patients 1 and 3), low-frequency fast onset (Patient 2) or no fast onset (Patient 4);

rhythmic ictal activity in the delta-range (Patient 1) or theta-range (Patients 2, 3 and 4);

and presence of pre-ictal spikes (Patients 2 and 3) or not (Patients 1 and 4).

Figure 6 illustrates how these patient-specific models, obtained with modifications

of a few parameters (see Table 2), match the most representative frequencies of

each seizure transition phase found in the SEEG data. For a given patient, these

representative frequencies display a certain variability across seizures, which is more

evident in the rhythmic ictal phase (Figure 6, right panel). It is worth mentioning that

this variability could also be partially reproduced by the personalized models, notably

by altering the standard deviation of the external input noise that drives the model into

seizure. However, given the limited seizure data available (maximum four seizures per

patient in our dataset), we have not focused on reproducing this aspect of the data.

The time periods selected as representative of the low voltage fast activity (LVFA)

phase and the rhythmic phase in each patient’s seizures are shown in Figures S3 (real

data) and S4 (simulated data). Table D1 provides a detailed comparison of different

SEEG features for simulated and real data of all patients.

3.3. Simulating SEEG contact activity in the epileptogenic zone

As described in the Methods section, the laminar NMM is embedded into a physical

model in order to produce realistic SEEG data. The physical model places the

cell subpopulations and synapses (current sources) in neocortical layers using a

local representation of conductive media. The laminar architecture allows for the

representation of the activity generated in each cortical layer of the epileptogenic zone.

The physical forward model translates synaptic current source activity in each layer

into a realistic SEEG signal on the desired SEEG electrode contact by solving Poisson’s

equation.

The morphology of SEEG signals in our model is highly sensitive to the precise
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Figure 6: Real and simulated main frequencies of each seizure phase for each of the

four patients. For each patient and seizure, we have selected the periods of low voltage

fast onset and rhythmic ictal activity, and computed the representative frequency of

each of these phases (see Methods for more details) with the aim of reproducing them

in the personalized model. Three SEEG seizure recordings were available for Patients 1

and 2, four for Patient 3 and two for Patient 4. The representative frequency values

for each patient are computed as the average over the total number seizure recordings.

Grey dots represent the main frequency in the fast onset or rhythmic ictal phase for a

single seizure and black dots represent the average value over seizures. The variability

between seizures is lower in some patients (e.g., Patient 1) and seems more prominent

in the rhythmic ictal phase. Red crosses indicate the representative frequency for each

patient and seizure phase in the simulated data. The model represents accurately the

relevant frequencies of the fast onset and rhythmic ictal phases observed in the patient

data.

position of the electrode contact, specially in terms of depth inside the grey matter.

For the present study, we could not determine the electrode position inside the grey

matter with enough resolution from the computed tomography (CT) scan images. To

overcome this limitation, we have simulated SEEG signals for different possible locations

of the most epileptogenic contact. An example of simulated SEEG signals for different

electrode depths for a personalized model (Patient 3) can be found in Figure 7.

As predicted, the signals display a wide variety of spike morphologies as a function

of contact depth, some of which approximate well the real SEEG recordings. The signal

morphology changes substantially with small variations of the electrode depth (as small

as 50 µm, see right panels), which confirms that the precision of the CT scan used

to retrieve the electrode position inside the brain (of the order of 0.5 mm) was not

sufficient for the purpose of morphology modeling. Moreover, given the variability of

signal morphologies for different electrode depths, the membrane potential perturbation
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Figure 7: Different electrode depths lead to different SEEG morphology, and some

electrode positions approximate the real SEEG signal morphology. The main

frequency is preserved for different electrode positions, and for the membrane potential

perturbation of the pyramidal population. Central figure: Schematic view of the

physics axisymmetric model used to generate realistic SEEG signals (see Figure C2 for

more details). Only part of the SEEG lead has been modeled, including two contacts

for bipolar measurements (represented in dark grey). We obtain different signals for

different depths zel of the electrode (see other panels); this schema illustrates the case

zel = 0 mm, where the bottom electrode contact is exactly above the grey matter, both

electrode contacts being in the CSF region. Left panels : Morphology and amplitude

of the signal depend strongly on the electrode depth (notice the changes of scale in

the bottom panel). Some electrode depths lead to signal morphologies that resemble

the ones observed in the real SEEG data (shown in the top panel), in this case for

zel = −1.6 mm (middle left panel) a good approximation is found. Right panels : very

small variations of the electrode depth in the physical model lead to substantial changes

in signal morphology. Bottom panel : The membrane potential perturbation of the

main pyramidal population can approximate the SEEG signal morphology only for very

specific depths (in this case, for z ≈ −6.05 mm, see bottom right panel), but the main

frequency is captured. All plots correspond to the ictal period of Patient 3. zel units

are mm.
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of the main pyramidal population is not a good surrogate of the SEEG signal in terms

of morphology. In fact, it is only representative of signal morphology for very specific

depths (in this case, for z ≈ −6.05 mm, see bottom right panel).

In contrast, the representative frequency of each transition phase is preserved across

all contact positions, and is also well reproduced by the membrane potential perturbation

of the pyramidal population. These results justify our two-step modeling strategy: first,

the NMM parameters were adjusted so that the spectral features of the NMM output—

represented by the membrane potential perturbation of the pyramidal population—

matched the ones found in real SEEG recordings (see Section 3.2). In a second step, we

added a physical layer to the laminar NMM for the simulation of realistic SEEG signals

from the personalized model. In this case, we heuristically fitted the electrode depth so

that the morphology of simulated SEEG signals could match the one of real data.

Figure 8 displays the SEEG electrode signal recorded during one seizure for all

patients, compared with the respective simulated signals obtained from the laminar

NMM embedded in the physical head model. Although our main focus was to match the

main frequencies in each phase, we present some simulated SEEG signals corresponding

to an electrode location that provides a good fit in terms of signal morphology.

Figures D1 and D2 provide further examples where the morphology of the real signal

can be approximated by the simulated SEEG signal at a given electrode depth.

3.4. Stimulation of epileptogenic nodes: proof of concept

To better understand the effect of transcranial electric stimulation (tES) for the

treatment of epilepsy, we have simulated the effect of electric fields in the personalized

model of the epileptogenic node of all the patients in the study. As explained in the

Methods, the NMM synapse equations include the perturbation induced by an electric

field in the average membrane potential of a neuronal population (Equation 3). The

term λn·E(t) represents the membrane perturbation induced by an external electric field.

The coupling term λn used — which represents the membrane perturbation induced by

a unitary external electric field — has been set for convenience to λn = 0.1 mm, a value

found in the experimental [47] and modeling literature [48].

Figure 9(a) displays the simulated SEEG signal for different values of the electric

field applied to the personalized model of Patient 2. It can be seen that for an inhibitory

electric field of amplitude 0.2 mV/mm the seizure completely disappears, while for 0.1

mV/mm its appearance is delayed. The inhibitory electric field of 0.2 mV/mm represents

the average electric field (normal component) stimulation on a small cortical patch

containing the epileptogenic node with cathodal transcranial direct current stimulation

(tDCS) of amplitude 1 mA [31].

We have also studied the reduction of seizure probability for all the personalized

models as a function of the electric field applied. To homogenize the results across

patients, the effect of the electric field is normalized by the standard deviation of the

pyramidal population membrane potential perturbation in interictal state. Specifically,
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Figure 8: Generation of realistic SEEG signals with personalized models. Panels on the

left display SEEG recordings in the most epileptogenic contact, and panels on the right

display the simulated SEEG from the personalized model. The red and green traces

in the SEEG time series indicate the periods selected for power spectral density (PSD)

analysis of the LVFA and rhythmic phases respectively, shown below. For Patient 4

no LFVA phase was detected, but a frequency higher than in ictal phase (beta range)

was observed at seizure onset. We have also computed the PSD for this phase, marked

with an orange trace. For Patients 1 and 3, a logarithmic scale has been used in

the fast onset PSD representation to capture the 100 Hz peak frequency at seizure

onset. Below the PSD plots, a weighted time-frequency representation of the signal

is shown, which captures the high-frequency traces at seizure onset and the transition

to rhythmic activity (see Methods). The bottom panels provide a zoomed view of the

signal during the ictal phase. The simulated SEEG signals have been produced by

embedding the patient-specific laminar NMM in a physical cortical model. Given that

different electrode depths lead to very different signal morphology (see Figure 7), our

main focus has been to fit the main frequency in each phase of the transition from

inter-ictal to seizure. The signals displayed in the bottom panels correspond to the

particular locations of the SEEG electrode in the physical model that provide a good

representation of the signal morphological features.

Ẽ = 1 a.u. corresponds to an electric field that changes the pyramidal population

the equivalent of 1 std of the baseline membrane potential. The seizure probability

represents the probability of finding a seizure within a 100 seconds time window for 500

different realizations of the external input (Gaussian white noise)—we recall that the

model is driven into seizure by the stochastic fluctuations of the external input to the

pyramidal population. The standard deviation of the external input was increased to

40 s−1 in all the models to adjust the seizure probability without stimulation to 1. We

selected a 100 seconds window so that the model would display seizures consistently in

the no-stimulation case, while keeping the computational cost low.

Figure 9(b) shows the probability curves as a function of the normalized electric

field amplitude for the four patient models. It can be seen that there is a minimum

amplitude of the electric field needed for any seizure reduction, which is evidenced by the

initial flat segment on the probability curve. For instance, for Patient 4, the probability

starts decreasing around Ẽ ≈ 0.2 (a.u.). After this initial part, the seizure probability

reduction is gradual, and follows a sigmoid-like decrease. Interestingly, the response to

electrical stimulation is different for each model, which underlines the relevance of using

personalized models to guide the design of tES protocols.
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Figure 9: Simulation of tDCS effects in epileptogenic nodes. (a) Example with the

personalized model of Patient 2. The top panel displays the simulated SEEG signal

(zel = −1.55 mm) for three different cathodal stimulation scenarios, shown in the

bottom panels: no stimulation (black), 0.1 V/m (blue), and 0.2 V/m (red). The

latter is sufficient to avoid the seizure event. (b) Reduction of seizure probability in

the personalized models as a function of the electric field applied. The electric field

perturbation has been normalized to homogenize the results across patients (see main

text). The seizure probability is computed as the probability to detect a seizure in a

time window of 100 seconds over 500 simulations. Each personalized model responds

differently to the electrical stimulation, and some models (e.g., for Patient 4) require a

lower intensity of the electric field to achieve complete seizure suppression.

4. Discussion

4.1. The role of chloride dynamics in ictal transitions

The present model sheds light on the potential role of pathological chloride accumulation

and GABA depolarization in the generation of ictal activity in epilepsy. The addition

of intracellular chloride dynamics to the NMM equations allows for the representation

of spontaneous transitions from interictal to ictal state in an autonomous and realistic

manner. This suggests that such transitions can be accounted for by the pathological

accumulation of chloride inside pyramidal cells, as suggested by previous in vivo and in

vitro studies [12, 49].

In the model, this pathological accumulation is generated by a dysfunction in the

KCC2 co-transporter system, which has been extensively reported in epilepsy [12].

One of the model parameters, αKCC2, represents the degree of KCC2 transporter

function in the simulated neuronal population, with higher values corresponding to

a more functional transporter system. Increasing αKCC2 above a critical healthy

threshold maintains the system in non-pathological background activity (see Appendix

E) by avoiding the pathological Cl− accumulation that leads to ictal activity. This
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points out to a crucial role of Cl− transport pathology in the generation of seizures.

Moreover, since extrasynaptic NMDA receptor activation induced by glutamate spillover

is susceptible to activate the calcium-sensitive calpain that leads to KCC2 cleavage

and downregulation [50], every seizure is susceptible to aggravate chloride homeostasis

through the alteration of KCC2 expression in the membrane. Severe dowregulation of

chloride transporter may lead to constant constitutive depolarizing GABA [16] whereas

mild dowregulation could be associated with activity dependent overload of chloride in

case of intense activity of GABAergic interneurons [8]. Both of these can be represented

by the model through the αKCC2 parameter.

It is worth stating that the pathological expression of NKCC1 transporters in

epileptic tissue, which has been also found in many cases [38, 51], could also exacerbate

the high levels of chloride concentration in the pyramidal cells of the epileptogenic

area. This mechanism has not been included in the model but is thought to have a

complementary effect to the one of KCC2 transporters. In a future step, NKCC1-related

mechanisms could be accounted for in the model equations.

A significant novelty of this model is the link between chloride accumulation in

different locations of the pyramidal population and the amplitude of the PSPs generated

upon GABA release. Previous models had exploited separately either the decrease of

the amplitude of synaptic inhibitory gains [1] or the fact that GABA release may have

a depolarizing effect in epileptic tissue [18]. In particular, the depolarizing effect of

GABA release has been observed in the clinic and in animal models in numerous studies,

many of which have pointed out to the potential implication of pathological chloride

accumulation in this abnormal effect of GABAergic neurotransmitters [12, 8]. In our

model, by simulating the pathological accumulation of Cl− in the cell, we link the level of

chloride concentration to the magnitude of GABAergic currents, and therefore with the

amplitude of synaptic inhibitory gains, and from this we are able to simulate autonomous

transitions from interictal to ictal activity — a novel advance in the field. This feature

of the model captures the relationship between chloride transport dysfunction, GABA

depolarization and epileptic seizures, and allows for the simulation of events in a seizure

with other minimal assumptions, such as the presence of PV and SST interneuron

populations.

We have proposed that the depolarizing effect of GABA in the seizure onset zone

may be responsible for the initiation of seizures. At first sight, this seems to be in

contradiction with the fact that some drugs such as Benzodiazepine (BZD), which are

positive allosteric modulators of GABAA receptors, are usually effective to prevent

or to stop ongoing seizures in most patients suffering focal epilepsies [52]. Clinical

cases for which BZD aggravate seizures exist, but remain uncommon [53]. However, it

should be noted that BZD increases channel opening times and decreases the membrane

resistance, prolonging shunting inhibition, and by this mechanism, retains its inhibitory

effect, independently of the depolarizing or hyperpolarizing effect of GABA [54]. The

mechanism of shunting inhibition has not been implemented in the current model, but

see [18] for an example of shunting inhibition in a similar computational model.
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4.2. Representation of depolarizing GABA physiology in the model can shed light on

phenomenology of transitions

Several mechanisms have been proposed to explain the initiation of epileptic

seizures, such as network excitation/inhibition imbalance [55], extracellular potassium

concentration [56], or various channelopathies [57, 58]. Ours is an attempt to

provide a succint, model-based insight into the potential pathophysiological mechanisms

leading to seizure initiation. We have used as a starting point the discovery that

excitation/inhibition imbalance in a simple NMM can reproduce the phenomenology

observed in EEG and SEEG recordings during epileptic seizures [1], and we have

proposed that this imbalance might be linked to the phenomenon of depolarizing

GABA [8] by including pathological Cl− dynamics in the model.

Indeed, the phenomenology of transitions in epilepsy is varied across patients, and

even across seizures. The proposed model is able to capture some of the main features

of these transitions, such as pre-ictal spikes, fast onset low voltage activity, or rhythmic

activity. The parameter modifications required to represent some of these characteristics

can be informative about the pathophysiological mechanisms responsible for epileptic

seizures, as we now discuss.

Low voltage fast activity (LVFA) is usually found as a marker of seizure onset in

epilepsy patients [59, 24, 44, 45]. This type of activity is generated in the model by

a transition into a region of the parameter space where PV cells are active at very

high frequencies. The transition to this region is due to decrease of IPSPs coming from

SST cells, itself due to the pathological accumulation of chloride in the pyramidal cell

dendrites. One should notice that the decrease of SST inhibition might also be due

to the cell vulnerability or even cell death observed in several histological studies [60].

The model predicts that, next, the increased activity of somatic-targeting PV cells

leads to the accumulation of chloride in the pyramidal cell soma. This in turn causes

a decrease of GABAergic PSPs from PV interneurons, changing the system dynamics

again, now from LVFA to rhythmic activity. Crucially, this evolution corresponds to

the one presented in [1], where the transition to seizure was explained by a decrease

in inhibition from dendritic-targeting slow interneurons first, then from perisomatic-

targeting fast interneurons. Here we present a physiologically realistic explanation of

this evolution, based on pathological chloride accumulation during seizure: first the

dendritic compartments are more affected, then the somatic ones (see Figure 5).

Indeed, due to their low capacity, dendritic compartments are more susceptible

to changes in chloride accumulation [12], and several studies have reported excitatory

effects in dendritic GABAA receptors when intensely activated [40, 61, 62]. Some

studies have shown that optogenetic activation of PV or SST cells is equally effective in

generating seizure-like activity [11], but others have reported that selective activation of

perisomatic-targeting PV cells might be sufficient to trigger seizure-like activity [10, 9].

Although it is unclear whether the seizure is triggered in the first place by the

depolarizing effect of GABA transmission from dendritic-targeting interneurons (as
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predicted by the model) or from somatic-targeting cells, in our model depolarizing

GABA effects on both types of cells are needed to reproduce the whole interictal to ictal

transition. Moreover, the mechanistic evolution presented might explain the patterns

observed in epileptic seizure transitions, notably the presence of LVFA at seizure onset

prior to clonic rhythmic activity.

Pre-ictal spikes appear in the model as a transition through a phase of spiking

activity as dynamics evolve from background activity to fast onset activity. Chloride

accumulation in the pyramidal cell population forces this change in the dynamics, which

do not stabilize in the spiking phase region because the increased activity during this

phase leads to more chloride accumulation in the pyramidal cells and thus, to a decrease

of the GABAergic PSPs until the system enters a region of LVFA. This scenario is found

in Patient 2 (see Figures 8(b) and 4(b)). Thus, if the transition from background to

fast onset activity takes place in a more rapid manner, for example due to a very fast

accumulation of chloride in the cell, pre-ictal spikes would be unlikely to appear, as

the system would not spend enough time in the spiking activity region. This is the

case for Patient 1 (see Figures 8(a) and 4(a)). Therefore, our results suggest that pre-

ictal spikes reflect a relatively slow transition through a region of spiking activity in

parameter space, which exacerbates chloride accumulation and leads to the transition

to either rhythmic activity or LVFA.

4.3. Modeling can characterize epileptogenic nodes in a patient-specific manner

We have provided a first methodology for the personalization of a node NMM from

patient data. The model is capable of reproducing patient-specific, autonomous

transitions to seizure-like activity that mimic some of the main features of the SEEG

recordings in the most epileptogenic contact. This is a promising approach for

future developments in computational modeling of epilepsy, since, to our knowledge,

this is the first mesoscale modeling approach that by explicitly representing chloride

regulation dynamics successfully reproduces transitions to ictal activity without the

online manipulation of model parameters.

Previous attempts have relied on the heuristic tuning of one or several parameters

for the same purpose [1, 18], providing a proof-of-concept of the relevance of an approach

based on altered synaptic function. Building on this, in our model the initiation of the

transition to seizure activity is triggered by a stochastic increase in the excitatory input

received by pyramidal cells and changes in chloride dynamics. With respect to other,

more abstract models that have also reproduced realistic seizures based on increases

of excitation to the neural populations [1, 63], our model has the advantage that the

additional equations that allow us reproducing such transitions represent physiological

mechanisms—namely the chloride accumulation dynamics in pyramidal cells and the

depolarizing GABA phenomenon in epilepsy.

A crucial result from the current study is the fact that the model has proven to

be flexible enough to fit the wide variety of frequencies displayed in each phase of the
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transition from interictal to ictal activity in several patients. We have successfully fitted

the model parameters for four different patients, each with different frequencies and

features in each transition phase. This demonstrates the robustness of the model and of

the personalization strategy presented, paving the way for the development of patient-

specific computational models to guide invasive or non-invasive personalized treatments

in epilepsy such as tDCS [64]. As an example, several studies have used neural masses

or macroscale models embedded in a brain network to predict the outcome of surgery

in epileptic patients [21, 20, 19, 65]. In these studies, the models of nodes placed in the

epileptogenic zone are usually modified with respect to the rest of the network nodes

with an increase of excitability, but they are rarely personalized based on the patient’s

quantitative physiological data. The current model could be used in such network

studies for a more realistic, personalized approach, where nodes in the epileptogenic zone

display the phenomenology observed in physiological recordings. A network approach

based on the current model is a natural next step, since our model is not only capable

of reproducing seizure-like transitions, but also typical background or interictal activity

(e.g., with healthy KCC2 transporters — high αKCC2 —, or with low excitatory input,

see Appendix E).

Moreover, the personalized model is informative about several aspects of the

patient’s pathology. The adjusted parameters, which are chosen to fit some specific

features of SEEG recordings, represent realistic physiological variables, and, thus,

reveal different characteristics of pathophysiology. Some examples include: the level

of excitability of the epileptic tissue, represented by the value of Wexc, the proportion

of healthy cells in terms of baseline chloride accumulation (sometimes referred to as

“static depolarizing GABA” [8], see Appendix B.3), given by the parameter Wh, or the

level of impairment of chloride transport, given by αKCC2. We leave for further work the

analysis of these modeling aspects in larger, multi-patient datasets.

4.4. Physical modeling is needed to connect NMM dynamics with electrophysiology

The physics of SEEG measurements has a strong impact on the signals recorded. In

particular, the morphology of SEEG signals is highly sensitive to the electrode location

(see Figure 7). Previous attempts to generate realistic SEEG data with NMMs have used

the average membrane potential perturbation in pyramidal cells as a surrogate for the

electrophysiological signals generated by the neuronal population [1, 66, 18]. We have

previously argued that this approximation might be inaccurate for the representation of

realistic electrophysiological signals [22, 23]. Indeed, in the present work we have shown

that the membrane potential signal is representative of the SEEG signal morphology at

a very narrow range electrode depths, and, thus, cannot provide a full representation of

the features of SEEG recordings. However, aspects of the signal such as the dominant

frequencies in the different phases of the seizure are less influenced by the electrode

position and can be captured by the average membrane potential perturbation in

pyramidal cells. The spectrum of the SEEG signal is distorted across depths, but
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features such as frequency peaks are in general well preserved.

In view of this, and because in the clinical setting the imaging techniques used to

retrieve the electrode position inside the brain are not precise enough for the purpose

of SEEG morphology analysis (e.g., the resolution of computed tomography (CT) is

around 0.5 mm), our personalization strategy is based on the spectral features of the

signal, rather than in the morphology of the recordings (Figure 4). For the purpose of

model personalization, we therefore use the average membrane potential perturbation

in pyramidal cells, as was done in previous work.

Once the model has been personalized, however, a physical layer can be added to the

NMM framework in order to achieve a more accurate representation of SEEG recordings.

In recent work [67], we have provided methods to connect microscale neuron models

with the neural mass formalism and with physical models of SEEG measurements,

improving the accuracy of simulated electrophysiological signals. In the present study,

we have used a simplified version of such framework (see Section 2.7), which includes

a laminar version of the NMM embedded in a physical model. The electrode depth

has been adjusted heuristically, based on the best fit with the real SEEG data. Future

work could profit from more precise imaging techniques to retrieve the SEEG electrode

position accurately, which would allow for the personalization of the combined NMM

and physical model based on the recorded SEEG data.

4.5. The model can be used to represent the effects of brain stimulation in epileptic

tissue

The aim of the computational model presented here is not only to provide a better

understanding of the pathophysiology behind epileptic activity, but also to help

designing personalized medical treatments for the disease. One promising direction

for therapeutic interventions in epilepsy is transcranial electrical stimulation (tES),

especially in cases where drugs and/or surgical intervention are not effective. The design

of personalized stimulation protocols can be guided by computational models, which

provide a unique tool to predict the outcome of electrical stimulation on the epileptic

tissue. As a first step, by simulating the effect of electric fields in a personalized model

that mimics the activity in the epileptogenic tissue of a given patient, it is possible to

study in silico if the epileptic activity can be reduced, or suppressed, by tES targeting

the epileptogenic zone.

The study presented in Section 3.4 constitutes an in silico proof of concept of the

effects of tDCS in epileptogenic nodes, and shows how inhibition with external electric

fields can reduce or even suppress the epileptiform activity in simulated nodes. Future

work includes the analysis of the effects of weak electric fields at the network level and

a more precise derivation of the coupling term λn, which requires a translation of the

effects of uniform weak electric fields from the microscale to the mesoscale. Work along

these lines has been carried out in [68, 48], where the effects of electric fields are analyzed

at the single neuron level. The emergence of exact mean field theories deriving neural
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mass models from microscale ones, the construction of detailed population models, as

well as experimental work can all help shed some light on the proper rescaling of the

coupling parameter in our models [69].

5. Conclusion

It has become apparent during the last decades that computational models of epilepsy

can provide key insights for treatment of neurological diseases like epilepsy. In this work

we have provided a neural mass model combining physiology and biophysics to simulate

electrophysiological signals from SEEG recordings in patients. By including a dynamical

mechanism for GABA depolarization, we have developed an autonomous model of

realistic interictal to ictal transitions. The model can be personalized at the single

epileptic node level from SEEG recordings by including also physical aspects associated

with the measurement process in SEEG: to better represent electrophysiological

measurements, the model captures the laminar architecture of the neocortex and can

be embedded in a realistic physical head model. The development of this model

paves the way for robust personalization methods in epilepsy. We have demonstrated

personalization in this modeling framework analyzing SEEG data from four epilepsy

patients.
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Appendix A. SEEG data analysis

Appendix A.1. Peak frequency estimation

Separate time-frequency representations (TFR) of oscillatory power were carried out for

slow and fast frequencies [26]. For slow frequencies (0.5–30 Hz) the frequency axis was

estimated at 30 logarithmically spaced frequencies using a fixed sliding time window

of 2 seconds duration. Prior to the FFT, each time-window was multiplied by a single

Slepian taper resulting in a frequency smoothing of 1 Hz. For high frequencies (30–200

Hz), the frequency axis was estimated at 60 logarithmically spaced frequencies using

the same sliding window duration as for the slow frequencies. Prior to the FFT, time

windows were multiplied by three Slepian tapers resulting in a 3 Hz frequency smoothing.

The power of each TFR was normalized to decibels (dB) relative to the maximum value

within the entire time and frequency matrix.

The TFR for high and low frequencies allowed us to easily identify the fast onset

and the rhythmic clonic phases, respectively. For each patient and seizure, we manually

defined the onset and offset of the two events and we automatically estimated their

duration and peak frequency. The peak frequency of the SEEG signal recorded in

the most epileptogenic node was obtained by spectral parametrization following the

approach described in [27]. This method assumes that the power spectrum density

PSD can be reconstructed by the sum of N Gaussian functions Gn plus a Lorentzian

function L:

PSD = L+
N∑

n=0

Gn (A.1)

Briefly, the algorithm flattens the PSD by subtracting a Lorentzian fit. Then, an

iterative process identifies peaks in the flattened PSD by fitting Gaussian functions.

These Gaussians are subtracted from the original PSD to fit again a Lorentzian to

improve its estimate. Finally, the goodness of fit is computed by adding the L and Gn

and comparing it to the raw PSD (see [27] for more details). The Gaussian function is

defined by

Gn = a · exp(−(f − µ)2

2σ2
) (A.2)

where a is the power of the peak (decibels), µ is the center frequency (Hz), σ is the

standard deviation of the Gaussian (Hz) and f is the vector of input frequencies (Hz).

The Lorentzian function is defined as

L = b− log(k + fχ) (A.3)

where b is the broadband offset, χ is the exponent and k is the parameter that controls

the bend of the aperiodic component [70, 71]. To parametrize the fast onset, we set

k=0 [71] and we fit up to three Gaussians to capture its prototypical chirp dynamics [44].

We calculated the average µ taken over the three Gaussians (µc), and then we computed

the average over seizures for each patient; this average fast onset frequency was used for
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the creation of the personalized model. For slow frequencies, the same procedure was

used, with the only exception that we fitted the rhythmic tonic dynamics with k ̸= 0 to

account for the fact that the PSD knee [27] for slow frequencies appeared around 10 Hz.

Appendix A.2. Time-frequency representation computation

In order to capture the high frequency traces of the low-voltage fast activity (LVFA) and

the rhythmic activity of the ictal phase in the same picture, we have computed weighted

time-frequency representations of the SEEG signals (see Figures 5 and 8). The frequency

axis was estimated at 2 Hz linearly spaced frequencies using a fixed sliding time window

of 0.5 seconds. For each time window the frequency values are normalized, so that a

maximum power value per time point is shown in the time-frequency representation.
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Appendix B. Summary of the extended neural mass model

Our extended NMM is characterized by state variables describing the firing rate of each

neuronal population, the average membrane perturbations induced by each synapse,

and the average chloride concentration in each pathological population synapse. The

activity of the NMM is then mapped into physical measurement space (see next section).

We provide the detailed NMM equations below.

Appendix B.1. Firing rate and synaptic equations

The population state Pn is first characterized by the average membrane potential vn
of the cells in the population — itself the summation of all the average pre-synaptic

membrane perturbations us — and by its average firing rate φn, which is computed

using a non-linear function of the membrane potential,

vn(t) = λn · E(t) +
∑
s→Pn

us(t) (B.1)

φn(t) = σn(vn(t)) =
2φ0

1 + er(v0−vn(t))
(B.2)

where the sum in the first equation is over synapses reaching the population, φ0 is half

of the maximum firing rate of each neuronal population, v0 is the value of the potential

when the firing rate is φ0 and r determines the slope of the sigmoid function associated

to the neuronal population, σn, at the central symmetry point (v0, φ0) [6, 5, 7].

The term λE · E(t) represents the average membrane perturbation induced by an

external electric field [31, 32] on the population and accounts for the effects of electrical

stimulation or ephaptic effects [34], in the case where they are to be included (see 3.4).

Each synapse s is described by an equation representing the conversion from an

input firing rate φn from the pre-synaptic population n into an alteration of the

membrane potential us of the post-synaptic neuron. This relation is represented by

the integral operator L̂−1
s (a linear temporal filter), the inverse of which is a differential

operator L̂s,

us(t) = L̂−1
s [Cs φn(t)] (B.3)

L̂s[us(t)] = Cs φn(t) (B.4)

where Cs is the connectivity constant between the populations. The differential operator

L̂s is defined as

L̂s[us(t)] =
1

Ws

[
τs

d2

dt2
+ 2

d

dt
+

1

τs

]
us(t) (B.5)

where Ws is the average excitatory/inhibitory synaptic gain and τs the synaptic time

constant. This time constant is a lumped parameter representing the population

averaged effective delay and filtering time associated with the time from reception of

input in the cell to soma potential perturbation (it is not, e.g., the time constant of the

ion channel or even the local synaptic time constant at the dendrite).
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To motivate these equations, we note that to find the solution to Equation B.4, one

can first solve

L̂s[hs(t− t′)] = δ(t− t′) (B.6)

with the boundary conditions a) hs(t
′) = 0 for t ≤ 0, and b) requiring a finite

discontinuity of the first derivative at t = t′. The solution is then obtained from the

properties of the Dirac delta function (
∫
dt′ f(t′)δ(t′ − t) = f(t)),

us(t) =

∫ ∞

−∞
dt′ hs(t− t′)Cs φn(t

′) (B.7)

The function hs(t− t′) is known in mathematics as the Green’s function of the operator,

and as the PSP (post-synaptic potential) in the neural mass modeling community (see,

e.g., [7]). It is is given by

hs(t− t′) = H(t− t′)
W

τs
te−(t−t′)/τs (B.8)

with H(t − t′) the Heaviside function (equal to 0 for t < t′, 1 otherwise). We note in

passing that the integral of hs(t− t′) is given by
∫∞
−∞ dt hs(t− t′) = W τs.

The detailed equations for each synapse that follow in the model described in

the main text are (for the case where no external electric field or ephaptic effects are

considered):

L̂1(u1(t)) = C1φext

L̂2(u2(t)) = C2φE = C2σE(vE)

L̂3(u3(t)) = C3φSST = C3σSST (vSST )

L̂4(u4(t)) = C4φPV = C4σPV (vPV )

L̂5(u5(t)) = C5φP = C5σP (vP )

L̂6(u6(t)) = C6φP = C6σP (vP )

L̂7(u7(t)) = C7φP = C7σP (vP )

L̂8(u8(t)) = C8φSST = C8σSST (vSST )

L̂9(u9(t)) = C9φPV = C9σPV (vPV )

(B.9)

with neuron membrane potentials given by

vP = u1(t) + u2(t) + u3(t) + u4(t)

vE = u5(t)

vSST = u6(t)

vPV = u7(t) + u8(t) + u9(t)

(B.10)

The pre- and post-synaptic populations corresponding to each synapse index are:
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1: Ext→P

2: E→P

3: SST→P

4: PV→P

5: P→E

6: P→SST

7: P→PV

8: SST→PV

9: PV→PV

A description of the neural mass model parameters is given in Table B1, and a

schematic summary of the model equations (including the chloride dynamics model

described in the next section) is provided in Figure 3.

Table B1: Description of the neuron and synapse parameters. Note that the first three

parameters (Ws, 1/τs, Cs) are synapse-specific, the sigmoid parameters (v0, φ0, r) are

common to all neuronal populations

Parameter Description

Ws Average excitatory and inhibitory synaptic gain

1/τs Time rate constant of average excitatory and inhibitory post synaptic potentials

Cs Average number of synaptic contacts between population types

v0 Potential when 50% of the firing rate is achieved

φ0 Half of the maximum firing rate

r Slope of the sigmoid function at v0

pm, pstd Mean and standard deviation of the external input to the pyramidal population

Appendix B.2. Chloride dynamics equations

The concentration of Cl− in a synaptic location is calculated according to the balance

equations as a function of the combined extrusion of chloride by KCC2 transporters

and the firing-rate-dependent influx of chloride in GABAA synapses, modulated by

a surface-to-volume translating parameter αloc
vol that depends on the synapse location

(apical dendrites or perisomatic region),

d[Cl−]loci (t)

dt
= αloc

vol (I
loc
KCC2 + I locφ ) (B.11)

The Cl− flux associated with KCC2 transporters is given by

I locKCC2 = −αloc
KCC2 (EK+ − Eloc

Cl−(t)) (B.12)

with

ECl−(t) =
RT

F
ln
( [Cl−]i(t)

[Cl−]o

)
(B.13)
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We assume here that the reversal potential of potassium EK+ remains constant, as

does the membrane potential Vm. The parameter αKCC2 reflects the rate of extrusion

of Cl− through KCC2 transporters. The Cl− current through GABAA channels due to

the activity of inhibitory interneurons is given by

I locφ = −αloc
φ ψs(t) (Vm − Eloc

Cl−(t)) (B.14)

with

dψs(t)

dt
=
Cs

τs
φn(t)−

1

τs
ψs(t) (B.15)

The parameter αloc
φ relates the activity of GABAergic interneurons with the Cl− currents.

This parameter can be personalized on a patient-specific basis.

The pathological chloride-dependent synaptic gains are in our model implemented

in the connections from SST and PV populations to pyramidal populations, given by

WSST→P (t) = wd
0 (Ed

GABA(t)− Vm) +W d
h , (B.16)

WPV→P (t) = ws
0 (Es

GABA(t)− Vm) +W s
h . (B.17)

with

EGABA(t) =
RT

F
ln
(4[Cl−]i(t) + [HCO−]i

4[Cl−]o + [HCO−]o

)
(B.18)

Other synaptic gains (pyramidal population to interneurons, SST to PV, etc.) are

assumed to be constant in the model. We assumed as well that all ionic concentrations

are constant to a good approximation except for the concentration of chloride inside the

cells [Cl−]i.

A description of the chloride dynamics parameters used in the model is provided

in Table B2, and an illustrative diagram of the model equations is shown in Figure 3.

Appendix B.3. Chloride-dependent synaptic gain dynamics. Contribution from

sub-populations with static gains

In the NMM framework, synaptic gains (W ) represent the mean amplitude of the PSP

generated by a given synapse type in a cell population. Synaptic gains of GABAergic

synapses are proportional to the current generated in those synapses,

Wpre→post(t) = w IGABA(t) (B.19)

where w is the proportionality factor linking PSP amplitude to synaptic current, and

IGABA is the GABAergic synaptic current, given by

IGABA(t) = gGABA (EGABA(t)− Vm) (B.20)

where gGABA is the average inhibitory conductance, Vm is the membrane potential

(assumed approximately constant) and EGABA is the reversal potential of GABA. Thus,

we can write

Wpre→post(t) = w̃ (EGABA(t)− Vm) (B.21)
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Table B2: Parameters, description and values of the Cl− dynamics parameters.

Parameter Description Units

w0
Scaling factor from GABAergic

current to mean PSP amplitude
a.u.

Wh
Contribution of healthy cells

to the average PSP amplitude
mV

αvol
Surface-to-volume and

charge-to-concentration factor
[ mM/s
µA/cm2 ]

[Cl−]di,base Baseline Cl accumulation mM

Constant parameter Description Value

αφ
Scaling factor from GABAergic

firing rate to Cl− currents
1 s·mS

cm2

αKCC2
Chloride extrusion rate SST → P : 1 mS

cm2

by KCC2 transporters PV → P : 10 mS
cm2

Vm Average membrane potential -65 mV

EK+ K+ reversal potential -85 mV

[Cl−]o Cl− concentration outside the cell 150 mM

[HCO−
3 ]o HCO−

3 concentration outside the cell 25 mM

[HCO−
3 ]i HCO−

3 concentration inside the cell 15 mM

with w̃ = w gGABA.

We slightly extend the above to assume that in the pyramidal cell population

represented by the NMM there are sub-populations with different properties. For

example, consider the case where there is a proportion αh of healthy neurons where

the transport of chloride is not dysfunctional. In those neurons, the concentration of

chloride inside the cell is kept constant by the Cl− transport system, and, thus, the

reversal potential of GABA is static. Let EGABA,h be the reversal potential of GABA

for the healthy population. Then, the average gain representing two sup-populations of

healthy and pathological cells can be written as

Wpre→post(t) = (1− αh) w̃(EGABA(t)− Vm) + αh w̃(EGABA,h − Vm) (B.22)

where the first term represents the chloride-dependent pathological variation of synaptic

gains, and the second a static contribution from healthy cells to the average PSP.

We then define Wh = αh w̃(EGABA,h − Vm) and w0 = (1 − αh) w̃ to bring us to

the formulation used in the main text,

Wpre→post(t) = w0 (EGABA(t)− Vm) +Wh. (B.23)

For the specific synapses of the model with pathological chloride accumulation, this

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted August 20, 2022. ; https://doi.org/10.1101/2021.12.24.474090doi: bioRxiv preprint 

https://doi.org/10.1101/2021.12.24.474090
http://creativecommons.org/licenses/by-nc-nd/4.0/


A personalizable autonomous neural mass model of epileptic seizures 41

leads to Equations 13 and 14 in the main body,

WSST→P (t) = wd
0(E

d
GABA(t)− Vm) +W d

h ,

WPV→P (t) = ws
0(E

s
GABA(t)− Vm) +W s

h

Similarly, consider the case where there is another sub-population of cells where

the KCC2 transport system is weakened to the point where the chloride concentration

is the same inside and outside the cell. Because the GABA reversal potential is affected

by the concentration of chloride and HCO−
3 , in this situation EGABA is again a static

quantity, but it can lead to a static positive value of W . To see this, recall that EGABA

is the reversal potential of GABA (the joint reversal potential of Cl− and HCO−
3 ) and

can be calculated using the Goldman-Hodgkin-Katz (GHK) equation,

EGABA =
RT

F
ln
( 4[Cl−]i + [HCO−

3 ]i
4[Cl−]o + [HCO−

3 ]o

)
Consider as healthy values [Cl−]i = 6 mM, [Cl−]o = 150 mM, and [HCO−

3 ]i = 15mM

[HCO−
3 ]o = 25 mM. With RT/F = 25.693 mV, we find EGABA = −71.3 mV. If instead

we take the extreme case where the concentration of chloride is the same inside and

outside the cell, [Cl−]i = 150 mM, we find EGABA = −0.4 mV, leading to a depolarizing

effect of the synapse (recall that the resting potential Vm is about −65 mV). Thus, in

this case the static gain contribution can represent pathological sub-populations where

the GABA reversal potential is static but in an unhealthy regime (static depolarizing

GABA [8]).

In summary, the static component Wh represents the aggregate effects of static

intracellular chloride ionic concentration on GABA gain from existing sub-populations

(healthy or unhealthy).
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Appendix C. Physical model for generation of SEEG recordings

Appendix C.1. NMM-derived voltage

There is a wide agreement that the extracellular voltage recordings in the low frequency

range are to a large extent generated by membrane currents that appear due to synaptic

inputs in pyramidal cells. This is due to the coherence in space and time [72] of these

currents that allows them to contribute in an additive manner into the extracellular

voltage.

When neurotransmitters act on synaptic receptors a membrane current appears.

An excitatory synapse produces an inward current that is seen as a negative current

source (i.e. a sink) from the extracellular medium. Conversely, an inhibitory synapse

causes an outward current that is seen as a positive current source (i.e. a source) from

the outside. Within the timescale of SEEG recordings, these current sinks or sources are

always balanced by a passive return current to achieve electroneutrality. The synaptic

currents and their associated return currents can give raise to sizable dipoles (or higher

order n-poles) and if many of these appear synchronized in time, a measurable voltage

perturbation is produced.

According to compartmental models of neurons, the distribution of sources and

sinks that appears due to a synaptic input depends on the location of the synapse [73].

For example, a synapse on the apical dendrites in the layer 1 of a pyramidal cell generates

a return current that is mostly clustered around the soma. Interestingly, a synapse on

the basal dendrites generates a return current that is mostly localized around the soma

as well [74]. Thus, return currents can be either localized near the synapse injection site

or they can appear in remote locations.

In this study, we built a simplistic model to simulate the voltage recorded by SEEG

contacts and connect the NMM framework with real physical measurements. To do so,

we simulated the voltage generated by layer 5 pyramidal cells only and we considered

two possible synaptic locations: layer 1 and layer 5. A simplistic model, consisting in

discrete sources, was used to approximate the depth profile of the current source density

produced by a synaptic input in those two cases (see Figure C1). For simplicity, these

discrete sources were located at depths corresponding to approximately the cortical layer

depths. Namely, an excitatory synaptic input in layer 1 was modeled with a discrete

current source of strength −I located there and two other sources of strength +1
2
I (the

return current) located at layers 4 and 5. An excitatory synaptic input in layer 5 was

modeled with a discrete source of strength −I located there and a return current −I
located in layer 4. Inhibitory inputs were modeled with the exact same distribution but

with opposite signs.

Appendix C.2. Physical model

The current source model described above was used to generate a model of a pair of

consecutive contacts in an SEEG lead embedded in a cortical patch. The model consisted
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Figure C1: Current distributions used to model a synapse at layer 1 (left) and a synapse

at layer 5 (right) in a layer 5 pyramidal cell.

of 3 tissue layers to represent the white matter (WM), the gray matter (GM) and the

cerebrospinal fluid (CSF). The dimensions of the model and the conductivity assigned

to each layer can be found in Figure C2(a). We assumed an SEEG lead completely

perpendicular to the cortical surface which allowed building an axisymmetric model.

SEEG contacts were modeled as 0.8 mm diameter and 2 mm length cylinders separated

by an insulating part with 1.5 mm of length. A conductivity of 1000 S/m was set to

the contacts and of 10−5 S/m to the insulating part between them. The current sources

were modeled as arrays of discrete point sources (i.e. line current sources given that

the model is axisymmetric) evenly distributed every 100 µm (see Figure C2(a)). These

arrays were placed at three different depths from the cortical surface (0.25, 1.45 and 1.85

mm) corresponding to the cortical layers 1, 4 and 5 and they extended up to a radial

distance of 2 cm from the electrode. A radial distance of 100 µm was left between the

SEEG contacts and the nearest source to account for tissue damage due to electrode

insertion.

The electric potential distribution was calculated by solving Laplace equation:

∇⃗ · (σ∇⃗Φ) = 0 (C.1)

With the additional boundary conditions of the current sources and a floating potential

with zero current assigned to the contact surfaces.

The problem described above was solved using COMSOL Multiphysics 5.3

(Stockholm, Sweden) for different depths of the SEEG electrode and for the two possible

synaptic locations (with their associated current distribution models). These solutions

were then used to generate SEEG recordings from NMM results.

For a given depth of the SEEG contacts, zel the voltage difference over time between

them can be calculated as a weighted sum of the aggregated post-synaptic current of
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(a) (b)

Figure C2: a) Schematic of the 3 layer FEM axisymmetric model used to simulate the

voltage difference between a pair of SEEG contacts. b) Illustrative 3D view of the

physical model. Conductivity values are taken from [43].

each synapse Is:

V (zel, t) =
∑
s

αs(zel)Is(t) (C.2)

where αs (in V/A) represents the contribution of each synaptic current to the measured

voltage and depends on the electrode depth. In this study we only considered two types

of post-synaptic currents (layer 1 and layer 5). The contribution of each of them was

extracted from the solutions of the FEM described above. Namely, each coefficient αs

was calculated as the voltage difference generated by a synaptic unit current I in every

point of the array with the corresponding depth distribution.

The post synaptic currents over time, Is(t), are computed from the output of the

NMM as

Is = ηnus

ηn is a conversion factor that relates the average potential perturbation to a physical

synaptic current in the receiving population. Each synapse perturbation at the single

neuron level will produce a local flow of ions across the membrane and, therefore,

a local micro-scale synaptic current. Therefore, we assume that the population

membrane perturbation us is related to the aggregated synaptic current Is through the

proportionality gain factor ηn, which depends on the neuron population characteristics,

such as cell density and cell morphology. To generate SEEG signals with realistic

magnitudes, we have chosen ηn = 10−8 A/mV.
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Appendix D. Comparison of real and simulated SEEG signals

Table D1: Main features of the SEEG signal recorded at the contact positioned in the

most epileptogenic area of each patient (average over all seizures) and comparison with

the simulated SEEG signal. The duration of the rhythmic phase in simulated data

is not shown because no seizure termination mechanisms are included in the model

(see Methods). The time intervals selected for the computation of the representative

frequencies are shown in Figure 8.

Seizure phase Feature Measured Simulated

Patient 1

Pre-ictal Spikes No No

Fast onset

Frequency (Hz) 110.3 96.1

Bandwidth (Hz) 34.1 12.0

Duration (s) 3.3 1.4

Rhythmic

Frequency (Hz) 2.1 2.2

Bandwidth (Hz) 1.4 0.6

Duration (s) 18.1 -

Patient 2

Pre-ictal Spikes Yes Yes

Fast onset

Frequency (Hz) 39.5 39.6

Bandwidth (Hz) 3.6 4.7

Duration (s) 2.7 4.9

Rhythmic

Frequency (Hz) 7.6 6.3

Bandwidth (Hz) 0.7 3.4

Duration (s) 21.2 -

Patient 3

Pre-ictal Spikes Yes Yes

Fast onset

Frequency (Hz) 93.3 97.5

Bandwidth (Hz) 3.5 35.4

Duration (s) 3.5 1.7

Rhythmic

Frequency (Hz) 6.6 6.7

Bandwidth (Hz) 0.8 0.5

Duration (s) 5.7 -

Patient 4

Pre-ictal Spikes No No

Fast onset Fast activity No No

Rhythmic

Frequency (Hz) 6.1 5.3

Bandwidth (Hz) 1.8 0.5

Duration (s) 15.6 -
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(b) Patient 2

0 5 10
Frequency (Hz)

0

10000

20000

Po
we

r

Rhythmic ictal

0.0 0.2 0.4 0.6 0.8
time (s)

1000

0

1000

SE
EG

 (
V)

Rhythmic ictal (zoom)

0 5 10
Frequency (Hz)

0

20000

40000

Po
we

r

Rhythmic ictal

0.0 0.2 0.4 0.6 0.8
time (s)

1000

0

1000

SE
EG

 (
V)

Rhythmic ictal (zoom)

(c) Patient 3
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(d) Patient 4

Figure D1: Detailed morphology of the rhythmic ictal phase signal for real (maroon)

and simulated (purple) SEEG data. For each patient, the panels in the left represent the

real and simulated SEEG data, and the right panels show the PSD of the signal. The

simulated SEEG signal corresponds to a particular location of the SEEG electrode in

the physical model, determined by its depth inside the grey matter zel, which provides

a reasonable fit of the signal morphological features. Patient 1: zel = −1.6 mm; Patient

2: zel = −1.55 mm ; Patient 3: zel = −1.6 mm; Patient 4: zel = −6.05 mm.
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Figure D2: Detailed morphology of the pre-ictal phase signal for real (maroon) and

simulated (purple) SEEG data. For each patient, the panels in the left represent the

real and simulated SEEG data, and the right panels show a zoomed view of the signal

(the time period selected is marked with a black trace in the left panel). The simulated

SEEG signal corresponds to a particular location of the SEEG electrode in the physical

model, determined by its depth inside the grey matter zel, which provides a reasonable fit

of the signal morphological features. Patient 2: zel = −6.0 mm; Patient 3: zel = −6.05

mm.
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Appendix E. Non-pathological models

We have compared the personalized model for Patient 2 with two non-pathological

versions of the model. In the first non-pathological version of the model, we have doubled

the value of the parameter αKCC2 (in the soma and in the dendrites, see Table 2 of the

main text for the original values). This corresponds to a situation where more KCC2

transporters are functional (twice as much). As predicted, the chloride accumulation

reaches lower values than in the pathological model both in the dendrites and the soma,

and the system does not enter into seizure (see Figure E1).

In the second version, we decreased the average value of the external input from

90 s−1 to 45 s−1. This variation corresponds to a decrease of the excitation to the NMM.

It can be seen that the transition to ictal state is avoided, and the values of chloride

accumulation stabilize at lower values than in the pathological model.
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Figure E1: Comparison between the personalized model for Patient 2 (grey traces)

with two non-pathological versions of the model (red and blue traces). The top panel

displays the simulated SEEG signal (for an electrode depth zel = −1.55 mm); the middle

and bottom panels represent the chloride accumulation in the dendrites and the soma,

respectively. Red traces correspond to increased function of KCC2 transporters and

blue traces to decreased external input to pyramidal cells. In both cases the transition

to ictal state is avoided.
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(a) Patient 1: the pair of contacts LesB2-LesB3 was placed in the right supramarginal gyrus, directly inside an anatomical lesion suspected
to be the epileptic focus.

(b) Patient 2: the pair of contacts GL’5-GL’6 was placed in the left occipital pole, and no anatomical lesion was known for this patient.

Fig. S1. 3D schematic view of the location of the most epileptogenic SEEG contacts for each patient (one pair in each case, since SEEG signals were obtained from bipolar
derivations).
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(a) Patient 3: the pair of contacts DYS1-DYS2 was located in the right posterior superior temporal sulcus, in a region of cortical dysplasia
suspected to be the epileptic focus.

(b) Patient 4: the pair of contacts C’1-C’2 was placed in the left hippocampus and left posterior T2 (middle temporal gyrus), and no specific
lesion was known for this patient.

Fig. S1 (Cont.). 3D schematic view of the location of the most epileptogenic SEEG contacts for each patient (one pair in each case, since SEEG signals were obtained from
bipolar derivations).
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(a) Patient 1 (b) Patient 2

(c) Patient 3 (d) Patient 4

Fig. S2. SEEG recordings during seizure events for all the patients included in the study (three seizures for Patient 1 and 2, four seizures for Patient 3 and two seizures for
Patient 4) . For each seizure, the periods selected for the calculation of the average representative frequency of the LFVA and clonic phases are shown in yellow and green
respectively.
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(a) Patient 1

(b) Patient 2

(c) Patient 3

(d) Patient 4

Fig. S3. Simulated seizures for the four patients. Top panels display the simulated SEEG signals. The periods selected to compute the main frequency of each phase, reported
in Table E1 are marked in yellow (fast onset) and green (rhythmic ictal period). The high- and low-frequency spectrogram and normalized spectrogram (see Appendix A2), as
well as the power spectral density (PSD) as also shown.
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Fig. S4. Flowchart summarizing the process for personalization of chloride dynamics parameters (see Table 2 in the main text) based on patient’s SEEG data. Starting from the
personalized parameter space for the patient (Figure 2 in the main text), we must find the set of chloride accumulation parameters that will drive the system through the desired
transition phases from interictal to seizure, reproducing the transition observed in the patient’s SEEG data.
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