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Abstract

Extracting population-wise information from medical images, specifically in the neu-

rological domain, is crucial to better understanding disease processes and progres-

sion. This is frequently done in a whole-brain voxel-wise manner, in which a

population of patients and healthy controls are registered to a common co-ordinate

space and a statistical test is performed on the distribution of image intensities for

each location. Although this method has yielded a number of scientific insights, it is

further from clinical applicability as the differences are often small and altogether do

not permit for a high-performing classifier. In this article, we take the opposite

approach of using a high-performing classifier, specifically a traditional convolutional

neural network, and then extracting insights from it which can be applied in a

population-wise manner, a method we call voxel-based diktiometry. We have applied

this method to diffusion tensor imaging (DTI) analysis for Parkinson's disease (PD),

using the Parkinson's Progression Markers Initiative database. By using the network

sensitivity information, we can decompose what elements of the DTI contribute the

most to the network's performance, drawing conclusions about diffusion biomarkers

for PD that are based on metrics which are not readily expressed in the voxel-wise

approach.

K E YWORD S

convolutional neural networks, diffusion tensor imaging, Parkinson's disease, whole-brain voxel-
based analysis

1 | INTRODUCTION

Deep convolutional neural networks (CNNs) have become a key ele-

ment of modern medical image analysis. Traditional versions of the

CNNs used for classification involve a series of linear convolutional

layers intermixed with nonlinear activation and pooling layers. The

convolutional layers act as simple image-processing operators, identi-

fying particular features, with the nonlinear activation and pooling
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layers providing both a source of nonlinearity at increasingly abstract

and coarsely resolved images. At the most abstract level, the features

identified may no longer be spatially localised, but encode some infor-

mation about the content of the image as a whole, which are then

used for classification. With the depth and complexity of these net-

works, it is often difficult to understand and communicate the net-

work's processing and the “black-box” nature of the network has

posed a number of issues for clinical acceptance and integration

(F. Wang et al., 2020).

On the other hand, traditional methods of population-wide

whole-brain voxel-based analysis (VBA) such as voxel-based mor-

phometry (VBM) and voxel-based relaxometry (VBR) have become

increasingly well-understood and validated in the neuroimaging

domain. Arguably, the defining feature of these voxel-based

population-wide analysis is their conceptual simplicity: a population is

imaged and those images are deformably registered together into

some common template space in which the quantitative intensity

(in the case of VBR) or a derived characteristic (such as local scaling in

the case of VBM) is used as a univariate distribution upon which one

can directly and robustness measure the difference between two sub-

populations, normally patients against healthy controls, or to correlate

with a different clinically interesting variable derived from the

patient's symptoms.

The issue with this approach also arises from its simplicity; it is

designed to measure the correlation of a singular area with the clinical

variable of interest, not measuring correlations between regions that

may be of interest. That is, it only identifies regions that simply and

strongly correlate with a clinical variable or sub-population, missing

regions in which this correlation is weaker or conditioned on some

other image feature. The second issue is that these voxel-based

methods do not immediately provide a strong prospective method

that makes use of their analysis, for example classifying new patient

into a sub-population. The individual voxels on their own tend to offer

relatively weak classifiers on their own as the statistical analysis only

suggests they are better than chance, a relatively low bar for modern

classification performance. Recently approaches have used VBA as a

method for selecting features to use in machine learning classification,

notably support vector machines (Chen et al., 2020; Prasuhn

et al., 2020), which have had variable performance across different

disease groups, but illustrate how additional, stronger classifiers would

need to be appended to VBA in order to be clinically useful.

Broadly speaking, the general method underlying VBA methods is

to use registration and statistical methods to identify potentially dis-

criminative features of a disease; the diagnostic use of these features

(including machine learning approaches) is applied afterwards.

Depending on how this analysis is performed, larger or smaller regions

of interest (ROI) can be used, but they are pre-specified, rather than

determined empirically by classification utility. One possible approach

to alleviate these issues is to invert the paradigm by starting with the

creation of strong classifiers popularised by deep learning, and use

population-wide analysis to understand how the patient images affect

the outcome of these classifiers.

The contribution of this article is to use these techniques for

voxel-based population-wide analysis to traditional CNNs for image

classification, specifically the classification between Parkinsonian

patients and healthy controls using solely diffusion tensor imaging

(DTI). We call this method voxel-based diktiometry (VBD). Our goal is

to show that traditional CNNs are sensitive to specific characteristic

features of diffusion tensors in a nonlocal manner.

2 | THEORY AND PRIOR WORK

2.1 | Diffusion tensor imaging in Parkinson's
disease

The DTI-based analysis of the brain white matter is a noninvasive

imaging approach that has been widely used to measure the diffusiv-

ity of the water in the different tissues of the brain, thus allowing the

characterisation of the integrity of the tissues associated with normal

or abnormal diffusivity and anisotropy values.

In the context of the Parkinson's disease (PD), VBM, VBR, fixel-

based analysis, and tractographic analysis (Cousineau et al., 2017;

Y. Li et al., 2020; Xiao et al., 2021) are the more common approaches.

Given the dimensionality of the data under analysis, some approaches

have opted to perform the analysis on particular ROI, to obtain spe-

cific fibre bundles, for example (Wasserthal et al., 2019) and some of

them have additionally identified the need to also perform correla-

tions between the ROIs (Schuff et al., 2015). Fixel-based analysis fol-

lows a similar approach to other VBA methods and thus only a white-

matter mask is used to limit the regions under investigation (Y. Li

et al., 2020; Xiao et al., 2021).

On the PPMI data set (Marek et al., 2018) significant alterations

between healthy controls and Parkinsonian patients located within

the SN, the striatum and the subthalamic nucleus (STN), pallidum,

putamen and thalamus have been previously reported (Cousineau

et al., 2017; Schuff et al., 2015). (Xiao et al., 2021) have also found sig-

nificant differences in the major white matter bundles specifically on

the side of PD onset.

Although the simplest interpretation of PD is that it affects the

dopaminergic components of the basal ganglia, the PD is a multisys-

tem disorder involving several other neurotransmitters and pathways

(Zhang & Burock, 2020). The distribution of abnormal changes in the

DTI values not only at the early stages of the disease but also as pos-

sible consequences of neuroplasticity suggests the need to consider a

model capable of taking advantage of the heterogeneity of the disease

and find these complex correlations on non-predefined nonlocal

regions.

2.2 | Salience in convolutional neural networks

CNNs have become a key tool in computer vision. Although originally

considered to suffer from the “black-box” problem, where the reason-

ing of the machine learning tool is difficult or impossible to explain for

any given case, CNNs have benefited from a large and early degree of

attention towards their visualisation and explanation thanks in part to

Simonyan's “saliency maps” (Simonyan et al., 2013) which led to the
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development of more advanced methods in explaining the reasoning

of CNNs, sometimes in creative ways, such as with DeepDream

(Mordvintsev et al., 2015). These methods rely on propagating the

gradient normally used to update the model weights into the input

image, either directly visualising it (Simonyan et al., 2013) or using it

to modify the underlying image (Mordvintsev et al., 2015). These have

the benefit of being simple to implement as well as having an intuitive

relationship to the notion of sensitivity analysis as the salience maps

could be interpreted as the sensitivity of the network output towards

a particular region in the image.

3 | METHODS

3.1 | Patient images

A total of 213 age-matched individuals with diffusion-weighted

images were collected from the Parkinson's Progression Markers Ini-

tiative (PPMI) database. The PPMI data set contains PD patients with

a diagnosis determined using clinical diagnostic criteria, requiring

either at least two of resting tremor, bradykinesia and rigidity, or a sin-

gle asymmetric resting tremor or asymmetric bradykinesia. Addition-

ally, subjects were PD eligible if dopamine transporter (DAT) imaging

demonstrated a dopaminergic deficit consistent with PD. Healthy

control (HC) subjects were constrained to not display any of these

symptoms or that of another clinically significant neurological disor-

der, had a Montreal Cognitive Assessment (MoCA) total score greater

than 26, and had no first-degree family member with PD. (Marek

et al., 2018) The age distribution for the two groups is shown in

Figure 1. The data acquisition was conducted during three to four

consecutive years within the majority of the PD patients whereas only

during two consecutive years for the HC. The data is comprised of

two diffusion-weighting (DWI) samples and one T1-weighted sample

per session per year. By assuming a major progression of the disease

on the PD group at the last screening, we have selected only the ses-

sion from the last year for the 139 PD and all the sessions for the

74 HC. The clinical and demographic information as well as the total

number of samples for each group is summarised in Table 1.

The image acquisition protocol included a 3D magnetization pre-

pared rapid gradient echo (MPRAGE) sequence for mapping anatomi-

cal details (repetition time [TR]/echo time [TE]/inversion time

[TI] = 2300/3/900 ms; 1 mm isotropic resolution; twofold accelera-

tion; sagittal-oblique angulation) and a cardiac-gated 2D single-shot

echo-planar DTI sequence (TE = 88 ms, 2 mm isotropic resolution;

72 contiguous slices each 2 mm thick, twofold acceleration, axial-

oblique aligned along the anterior–posterior commissure) with DWI

gradients along 64 sensitization directions and a b-value of 1000 s/

mm2. TR was in the order of 8400–8800 ms, depending on the sub-

ject's heart rate (Marek et al., 2018; Schuff et al., 2015). MRI data

were downloaded from the PPMI site https://ida.loni.usc.edu/ in

DICOM format and converted to NIfTI format using the dcm2niix tool

(X. Li et al., 2016).

3.2 | Preprocessing

The ROBEX (Iglesias et al., 2011) brain extraction tool was used to

extract the brain mask before any other preprocessing step for the

T1-weighted (T1w) images. The mask was subsequently used during

the co-registration step. Noise removal from the T1w image was per-

formed using the nonlocal means algorithm from the Dipy package

(Descoteaux et al., 2008) followed by a bias field correction using the

F IGURE 1 Age frequency distributions of the last screening
session for the Parkinson's disease (PD) and the two sessions for the
healthy control (HC)

TABLE 1 Demographic and clinical information about the
cohorts used

PD (N = 139) HC (N = 74)

DTI samples 269 291

Sex N (%)

F 49 (35.25%) 26 (35.14%)

M 90 (64.75%) 48 (64.86%)

Age

Mean 64.20 60.31

(min, max) (40, 86) (31, 83)

MDS-UPDRS total (part III)

Mean 25.10 0.63

(min, max) (1, 80) (0, 8)

Hoehn and Yahr N (%)

Stage 0 1 (0.72%) 73 (98.65%)

Stage 1 30 (21.58%) 0

Stage 2 101 (72.66%) 1 (1.35%)

Stage 3–5 7 (5.03%) 0

MoCA total score

Mean 27.22 28.28

(min, max) (14, 30) (26, 30)

Abbreviations: DTI, diffusion tensor imaging; HC, healthy controls; MoCA,

Montreal Cognitive Assessment; PD, Parkinson's disease.

ESTUDILLO-ROMERO ET AL. 4837
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N4BiasFieldCorrection algorithm from the Advanced Normalisation

Tools (ANTs) (Tustison et al., 2010). Noise and Gibbs ringing artefacts

were removed from the DWI series using dwidenoise and mrdegibbs,

respectively. Both tools can be found in the MRtrix3 suite (Tournier

et al., 2019). The eddy_openmp algorithm from FSL (Andersson &

Sotiropoulos, 2016) was used to correct for eddy currents and subject

movement. The DWI image intensities were then fit to a tensor using

the weighted least squares (WLS) method included in SlicerDMRI

(Norton et al., 2017).

A deformable registration of the b0 non-DWI with the T1w struc-

tural image was calculated using the BRAINSFit tool from 3D Slicer

(Johnson et al., 2007) for each subject. The DTI was resampled in 3D

Slicer, preserving the principal direction, through the previously calcu-

lated transformation and is then co-registered with the T1w in 3D

Slicer (Kikinis et al., 2014).

All the images were normalised to have dimension

96 � 112 � 96 (on the sagittal, coronal and axial planes, respectively)

before entering the CNN by adding empty slices or by removing them

when needed at each extreme of the volume. Therefore, most of the

meaningful information in the centre of the image was retained to

serve as the CNN input in a standardised size.

Finally, the images in the patient database were flipped in order

to ensure consistent lateralisation of PD to the right side, similar to

Xiao et al. (2021). Images from the healthy controls were not flipped

(except as a form of data augmentation). This simplifies the network

as it only needs to detect PD on the one side, rather than discriminate

between the two lateralities of the disease and healthy controls.

3.3 | Convolutional neural network

Since the aim of the proposal is to explore the regions in the image

where a CNN focuses its attention, we decided to start this explor-

atory task by implementing a simple CNN architecture (Figure 2a).

The CNN was trained to classify a DTI into either HC or PD using a

supervised approach. The same architecture was used for both the

F IGURE 2 The proposed convolutional neural network (CNN) architecture with eight convolution and two fully connected layers,
respectively (a) and, the overall method (b) used to train the CNN and compute the sensitivity images, which are used as the basis for voxel-based
analysis

4838 ESTUDILLO-ROMERO ET AL.
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pre-registration and post-registration approaches (see Figure 3a,b) in

order to keep the model complexity between the two approaches the

same. The architecture was chosen to be a standard CNN with two

convolution operators per resolution level, although the ones had to

be removed in order to conserve GPU memory. The width of the

layers was determined heuristically to use all available GPU memory

given a batch size of 12.

We can consider our network to be some function, N �ð Þ, that
takes an individual DTI, D pð Þ, as input and outputs the log-likelihood

that the image is of a Parkinsonian patient, that is

P phasPDð Þ≈ eN D pð Þð Þ

1þeN D pð Þð Þ , ð1Þ

where D is the DTI image. Note that increased values of N �ð Þ reflects
that the network believes the individual is more likely to be Parkinso-

nian and lower values imply the opposite.

In order to visualise the network's thought-process, we use a heuris-

tic technique similar to Simonyan et al. (2013) in which the error gradients

are propagated through the network also for testing images, not for mod-

ifying the network parameters, but for learning how sensitive the neural

network is to particular characteristics in particular regions of the image.

The overall training and application procedure is given in Figure 2b.

In order to ensure that the statistical power of later analyses are

the same for the diktiometric and the traditional methods, we trained

these networks in a 10-fold cross-validation manner which was

repeated 10 times. Thus, the sensitivity maps for each individual can

be interpreted as arising from an ensemble of 10 networks and each

population-wide analysis (described in Section 3.5) is an aggregation

of 10 networks. The training and testing patients for each fold were

randomly selected from the 213 individuals in each repetition. We

ensured that all the DTIs from the same individual were either entirely

in the training or entirely in the testing subset.

The CNN was implemented in PyTorch and optimised using Adam

optimiser with 0.01 L2 regularisation. The learning rate was set to

0.00001 and decreased it every 50 epochs by 4%. We also set a drop-

out rate of 10% between the convolutional and fully connected layers

as shown in Figure 2a. We trained each CNN for a fixed 160 epochs.

Random left–right flipping on the HC class was performed during

training for both the pre-registered and post-registered versions. For

the post-registered version, we also added random in-plane rotations

up to ±17� and random in-plane translations up to �10 voxels for

both classes.

3.4 | Tensor shape characteristics

In terms of the tensor shape characteristics, we used the mean diffu-

sivity (μ), anisotropy (σ) and pseudo-planarity (θ):

μ¼ 1=3 λ1þλ2þλ3ð Þ
σ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
λ1�μð Þ2þ λ2�μð Þ2þ λ3�μð Þ2

q
θ¼ arctan λ1�μ,

ffiffiffiffiffiffi
1=3

p
λ2�λ3ð Þ

� � , ð2Þ

which have the property of having orthogonal sensitivities (See

Appendix A). The anisotropy in particular is highly related to another,

more common metric, the fractional anisotropy:

F IGURE 3 The two approaches to compute the sensitivity images

(a) from registered nonaugmented diffusion tensor imaging (DTIs) and
(b) from raw DTIs. The sensitivity images were computed only after
the convolutional neural network (CNN) has been trained. The red
arrow indicates the backward pass for the gradient computation.
Voxel-based analysis (VBA) is performed over the registered
sensitivity images to compute the final voxel-based diktiometry
(VBD) maps.

ESTUDILLO-ROMERO ET AL. 4839
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FA¼
ffiffiffi
3
2

r ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiP
i

λi�μð Þ2
P
i
λi
2

vuuuut ¼
ffiffiffiffiffi
3=2

p
σffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

3μ2þσ2
p , ð3Þ

but without the normalisation term in the denominator. This means

that the anisotropy's bounds are 0,1½ �, but instead 0,
ffiffiffi
6

p
μ

h i
. Because

of this coupling with both μ and σ, the fractional anisotropy is not

orthogonal and thus its sensitivity is coupled to that of the other two

metrics:

δN
δFA

¼3μ2þσ2

3FA
σ
δN
δσ

�1
μ

δN
δμ

� �
: ð4Þ

After the image has been processed by the CNN, we performed

an eigendecomposition of each voxel in the image to calculate μ, σ

and FA to create patient-specific diffusion maps. In addition, we com-

puted the sensitivity of the neural network with respect to μ, σ and

FA (δN=δμ, δN=δσ and δN=δFA respectively).

3.5 | Population-wise registration

Unlike in traditional voxel-based analysis where a correspondence

between voxels in different patients has to be found prior to the con-

struction of the model, there is more flexibility with a CNN-based

approach. Registration to find this correspondence can be done either

prior to the training of the neural network, providing it with images

with a standardised co-ordinate space, or afterwards solely for the

population-wise aggregation of the results. The advantage of the first

is that the network can learn particular spatially localised features

more readily without having first to detect and localise them. How-

ever, this also removes the network's capability of using morphologi-

cal information, that is, the sizes and shapes of the relevant anatomy

have been standardised and their variability is no longer visible. The

latter still has access to this morphological information and would be

faster for prospective use, as registration would only be necessary for

the analysis of a population rather than the individual patient. In addi-

tion, it can take advantage of more expressive data augmentation that

affects this underlying co-ordinate system (e.g. random shifts and

rotations) although it is more difficult to localise particular anatomical

features.

The images were all deformably registered to the PD-specific

template, ParkMedAtlis (Haegelen et al., 2013), and the Montreal

Neurological Institute (MNI) template (Fonov et al., 2009; Fonov

et al., 2011) using the BRAINSFit tool (Johnson et al., 2007).

3.6 | Voxel-based analysis statistical tests and
filtering

The registered parameter or parameter-sensitivity maps can then be

used for VBA in the common co-ordinate system. The values for each

parameter map at corresponding locations through the patient and

control database can then be rigorously compared. These maps were

compared using SPM12 (rev. 7771) (Frackowiak et al., 1997) on

MATLAB R2014a which assumes a linear relationship between the

individual's status (i.e. PD vs. HC) and the value of the metrics, subject

to Gaussian noise. We applied Gaussian smoothing (std. 8 mm isotro-

pic) followed by spatial statistical correction with a family-wise error

(FWE) rate of 1% and a minimum cluster size of 256 mm3.

In order to determine the quality of our approach, we compared it

to voxel-based diffusion analysis using the same patient database and

registration procedures described in Sections 3.1 and 3.5 respectively.

4 | RESULTS

4.1 | Classification accuracy

In order to conclude that the underlying network correctly reflects

PD, we first measured the performance of the network and ensured

that it is well above that of random chance. Table 2 shows the classifi-

cation results on the training and testing subsets, respectively. The

overall accuracy was on the order of 70% for both the pre- and post-

registration approaches. This greatly exceeds the accuracies on the

order of 48%–58% found by Prasuhn et al. (2020) on the same data

set using traditional VBA to perform feature extraction for a collection

of different SVMs.

TABLE 2 Classification results for the training and testing subsets
evaluated on the CNN ensemble

Training Testing

Ground truth Ground truth

PD HC PD HC

Post-registration

Prediction

PD 241 28 204 65

HC 33 258 102 189

Sensitivity 89.59% 75.84%

Specificity 88.66% 64.95%

Accuracy 89.11% 70.18%

AUC 95.92% 76.88%

Pre-registration

Prediction

PD 257 12 198 71

HC 2 289 102 189

Sensitivity 95.54% 73.61%

Specificity 99.31% 64.95%

Accuracy 97.50% 69.11%

AUC 99.69% 75.25%

Abbreviations: AUC, Area under the curve; HC, healthy controls; PD,

Parkinson's disease; AU.
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Regarding the two approaches, we observed marginally better

classification performance by training the CNN directly on the nonre-

gistered DTI images (i.e. the post-registration approach) than by regis-

tering them in advance (i.e. the pre-registration approach). This

difference however is not significant, indicating that the two methods

perform equivalently despite having different access to features such

as spatial data augmentation, morphological information or a consis-

tent co-ordinate space.

4.2 | Voxel-based diktiometry maps

Figures 4–7 show the qualitative results for our voxel-based diktiogra-

phy approach and the comparative voxel-based diffusion approach

using SPM and linear statistical analysis and a significance threshold

of p<0:01 FWE for the MD, A and FA metrics respectively. The

majority of the results appear in the MD and A metrics for the CNN-

based methods, and in the MD and FA methods for the traditional

approach.

For the MD shown in Figure 4, both CNN-based approaches

identified a decrease (blue to cyan) in diffusivity generally in the cere-

bellar white matter and the lenticular nucleus (composed of putamen

and pallidum) (lateral to symptom onset). We can also observe an

increase (yellow to red) in the diffusivity in the fourth ventricle (not

lateralised) and the lateral fissure (lateral to symptom onset) which are

likely to result from morphological changes. In the pre-registration

version, several structures appeared on both sides of the brain,

although with different signs, indicating an asymmetry. One of these

structures appears to be the cortico-spinal tract, indicating a laterised

effect that is easiest for the network to detect via an asymmetry

check. In addition to these asymmetries, the pre-registration approach

also found a decrease in diffusivity in the white matter of the

temporal lobe.

In the traditional approach, an even slighter decrease is seen in

the lenticular nucleus. This then extends in the superior direction until

the white matter of the cortico-spinal tract. The traditional approach

also shows numerous small clusters in cortical regions, especially grey

matter regions on the boundary of the external CSF. Due to their

small size and distribution, these are likely to be statistical artefacts

arising from large patient variability in these regions. Thus, the

methods largely agree in the cerebral regions, although the proposed

method generally for cerebellar structures to be more indica-

tive of PD.

For the anisotropy, Figure 5, many of the same regions are identi-

fied, although with different signs. For the cerebellum, there is a posi-

tive sensitivity to the anisotropy in the caudal region, whereas there is

a negative sensitivity in the rostral region closer to the cerebellar grey

matter. (This is lateralised for the post-registration approach, but bilat-

eral for the pre-registration approach.) There is also a positive sensi-

tivity to anisotropy in the area surrounding the putamen. In the pre-

registration approach, there is a bilateral sensitivity in the cortico-

spinal tract adjacent to the thalamus, but again with different signs on

the two sides, indicating an asymmetry. One interesting finding is a

negative sensitivity in the contralateral ventricle which is present in

both CNN types. For the traditional approach, the results using the

anisotropy appeared to be similar to those for the fractional anisot-

ropy and will be discussed in the following paragraph.

For the fractional anisotropy, Figure 6, the traditional VBA

approach showed an increase in FA in the cortico-spinal tract (lateral

to symptom onset) and a decrease in FA in the putamen. There also

appears to be a decrease in the FA in the area of the optical radia-

tions, although that is more difficult to interpret in the context of PD

and thus may be artefactual. Interpreting the maps for the CNNs is

somewhat more difficult as the sensitivity with respect to FA is

derived from those of MD and A as shown in Equation (4). In the

post-registration image, only the fourth ventricle and lateral fissure

were identified, suggesting a morphological change. In the pre-

registration image, the lateral fissure showed an asymmetry and the

contralateral ventricle was also identified, suggesting again a morpho-

logical origin.

The pseudo-planarity, Figure 7, did not yield any major results,

possibly due to being the smallest source of variation in the diffusion

tensor and only well-defined when the other metrics take on high

values.

4.3 | Classification accuracy

Despite the numerous studies regarding the effects of PD on white

matter and diffusion characteristics in the brain, Prasuhn et al. (2020)

expressed doubt that DTI could be used for PD classification given

the failure of their registration + SVM approach for particular sub-

cortical structures, this approach having achieved some success in

classifying other neurological disorders such as epilepsy (Chen

et al., 2020). The successful classification between PD patients and

HC by traditional CNNs indicates that the nonlocality and nonlinear-

ity yielded by neural networks are important to PD classification and,

relatedly, that descriptive diffusion characteristics of PD are not

localised to a single voxel or even a local region. Nonlinear methods

such as a combination of multi-modal MRI features (Talai

et al., 2021) have yielded similar accuracies as our CNN approaches,

although the approach (Talai et al., 2021) used for selecting the

“optimal” method involved a degree of data leakage and thus they

potentially overestimated their performance on their much smaller

data set.

However, the purpose of the classifier in this article is indirect, as

it is only meant to provide a basis for network sensitivity analysis and

visualisation. Thus, we have chosen the simplest architecture in order

to display the power of the diktiometric approach at extracting nonlo-

cal biomarkers even from relatively simple strong classifiers. Even if

the classification performance is not as high as that based on other

images or diagnostic criteria, if it is significantly better than random

chance, analysing this classifier can provide insight into how PD

affects diffusion in the brain.
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4.4 | Comparison to traditional VBA approaches

In order to confirm that the registration and statistical analysis

aspects of our method are robust, we used the same pipelines to per-

form traditional VBA. This has displayed results highly consistent

with those of Xiao et al. (2021), despite differences in registration

and statistical processing, confirming the robustness of the VBA

method.

The goal of this article is to show an alternative to traditional

VBA approaches that are extensively used throughout the literature

F IGURE 4 Voxel-based diktiometry (post-registration (a) and pre-registration (b)) sensitivity results and traditional voxel-based diffusion
analysis results (c) from z¼�36 to z¼þ34 in MNI space for the mean diffusivity (MD). Left-dominant Parkinson's disease (PD) subjects have
been laterally flipped. (Note that patient-right is shown on image-right, i.e. neurological convention.)
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for imaging biomarker discovery and for better understanding the

pathophysiology of neurological disorders (Atkinson-Clement

et al., 2017). Due to the necessarily uncertain nature of biomarker dis-

covery (and therefore no ground truth biomarkers), there is no directly

quantitative way to compare methods. Nevertheless, some interesting

qualitative and theoretical comparisons can be made.

One interesting theoretical difference between the proposed dik-

tiometric method and the traditional voxel-based approach is that the

F IGURE 5 Voxel-based diktiometry (post-registration (a) and pre-registration (b)) sensitivity results and traditional voxel-based diffusion
analysis results (c) from z¼�36 to z¼þ34 in MNI space for the anisotropy (A). Left-dominant Parkinson's disease (PD) subjects have been
laterally flipped. (Note that patient-right is shown on image-right, i.e. neurological convention.)
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former is sensitive to nonlocal patterns in the underlying voxel values

rather than the values themselves. This is crucial in that it allows for

the identification of discriminative features conditioned on the entire

image even if the marginal distribution of said feature at said voxel is

not highly discriminative in itself.

4.4.1 | Interpreting diktiographic sensitivity maps

One negative aspect of our approach compared to traditional VBA is

the complexity in which the visual results must be interpreted. Due to

the complex nonlinear and nonlocal nature of the CNN and sensitivity

F IGURE 6 Voxel-based diktiometry (post-registration (a) and pre-registration (b)) sensitivity results and traditional voxel-based diffusion
analysis results (c) (third column) from z¼�36 to z¼þ34 in MNI space for the fractional anisotropy (FA). Left-dominant Parkinson's disease
(PD) subjects have been laterally flipped. (Note that patient-right is shown on image-right, i.e. neurological convention.)
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analysis used, the analysis of any particular region of the image may

not be done in isolation and regions should be considered as poten-

tially related to each other.

For example, comparing across the pre- and post-registration

approaches provides information about the importance of morpholog-

ical information and anatomically constant co-ordinate systems. As

F IGURE 7 Voxel-based diktiometry (post-registration (a) and pre-registration (b)) sensitivity results and traditional voxel-based diffusion
analysis results (c) (third column) from z¼�36 to z¼þ34 in MNI space for the pseudo-planarity (PsPl). Left-dominant Parkinson's disease
(PD) subjects have been laterally flipped. (Note that patient-right is shown on image-right, i.e. neurological convention.)
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deformable registration minimises morphological differences by defi-

nition, any signal arising from the post-registration approach that does

not appear in the pre-registration approach is likely due to morpholog-

ical changes rather than changes in diffusion characteristics. Signals

arising from the pre-registration approach that are not in the post-

registration approach are likely due to the network requiring a consis-

tent spatial co-ordinate space to form longer-distance connections,

such as between equivalent anatomy on opposite hemispheres or

between distant anatomical regions in the same hemisphere.

4.4.2 | Coupling and suppression of distinct
biomarkers

Fundamentally, our analysis couples together nonlocal biomarkers

that may actually be independent. To see that, consider that there are

two ways that a collection of biomarkers may be dependent on each

other: they may be correlated in the input data distribution and/or

they may be nonlinearly coupled together by the classifier. To give an

example of the latter, if the sensitivity maps highlight two regions,

there is a possibility that they are coupled together, forming two com-

plementary facets of a singular, more nonlocal biomarker (e.g. an

asymmetry biomarker). For traditional VBA, this is not possible as the

classifiers themselves are computed independently of each other and

thus ensure that the identified features are also treated indepen-

dently; any coupling between features must be a product of the input

data distribution, not the classifier. This “biomarker classification cou-

pling” problem can become even more problematic as we consider

multiple nonlocal biomarkers that might interact with each other. We

have some evidence that this may be the case, for example in

Figure 4a,b, we see a lateralised biomarker in the basal ganglia (slides

�10 to �4) in the post-registration approach, which is bilateral in the

pre-registration approach, indicating that the post-registration method

is looking solely at the disease onset side whereas the pre-registration

approach is looking at the asymmetry between the two sides. This

could indicate two separate biomarkers or two different methods for

extracting a singular biomarker. In addition, many areas that were

highlighted using a single metric (e.g. MD) were also highlighted in

others (e.g. A and FA) which again could lead to the interpretation of

distinct biomarkers or different facets of a singular biomarker.

We took a heuristic approach, assuming that the distant

highlighted regions should be interpreted as independent unless they

correspond to the same anatomy (e.g. when the same region is

highlighted on both sides of the brain with opposite sensitivity signs,

we interpreted it as a single asymmetry biomarker). We also made the

assumption that the diffusion metrics were independent of each other.

In addition, our methodology may also suppress some nonlocal

biomarkers even if they are accessible to the current CNN architec-

ture. This is because the results visualised are from an ensemble of

different CNNs rather than any singular one. There is a distinct possi-

bility that these networks detect and are sensitive to a different set of

biomarkers. Thus, the sensitivity maps only indicate features that are

commonly and robustly selected by the majority of trained CNNs,

with other biomarkers remaining invisible.

One area of future work that would address both these issues is

to investigate methods for decoupling the sensitivity maps into inde-

pendent components.

This is not an issue in traditional VBA approaches due to their

simplicity and the more limited scope of (strictly local) biomarkers they

can detect. This is both an advantage and a disadvantage as nonrobust

local biomarkers can still be detected with the traditional VBA

approach even if they have only a marginal correlation to the underly-

ing disease.

4.4.3 | CNN sensitivity at specific regions

Cognisant of the previous two sections, one can now begin to inter-

pret and compare biomarkers across our proposed approach and

traditional VBA.

Using the traditional method, we have largely reproduced the

results generated by the VBA performed by Xiao et al. (2021), specifi-

cally in terms of the white matter bundle extending from the cortex to

the brain stem on the collateral to symptom onset. This validates that

the statistical mapping method used for all three approaches is coher-

ent with the literature. (Note that Xiao et al. (2021) used a white-

matter mask in their approach whereas we did not, leading to a num-

ber of grey-matter and sulcal regions also to be identified.) This also

validates that simple CNNs trained on a PD diagnosis task do look at

relevant regions of the brain.

Notably, our approach appears to generate a number of additional

results in comparison to the traditional method. This may confirm Pra-

suhn et al.'s (2020) observation that linear classification methods are

insufficient. The fact that the traditional method and the pre-

registration method rarely overlap also confirms this, suggesting that

the regions identified by traditional VBA are not salient enough for

extraction as meaningful features. One clear example of this is the

reliance of the neural networks on a mix of cerebellar and cerebral

structures, unlike the traditional approach which never found any

local biomarkers in the cerebellum, which is in agreement with other

recent VBD investigations (Atkinson-Clement et al., 2017). This is of

particular interest as the community has been recently calling for

more investigation of the cerebellum in the aetiology of PD

(Mirdamadi, 2016).

Our population-wise results of the post-registration networks

show a distinct focus of the neural networks on the basal ganglia and

cerebellum, indicating that the network can both identify these

regions easily as well as use them to distinguish between PD patients

and healthy controls. For the pre-registration network, these locations

are also highlighted, indicating that the diffusion characteristics of

these regions, rather than their morphology which is removed in the

pre-registration workflow, are predictive of PD. What is of particular

interest is that these locations are not highlighted in the traditional

approach, indicating that the predictive characteristics are truly nonlo-

cal, referring to a collection of correlated diffusion changes rather

than a cluster of pixels that happen to co-vary. The traditional

approach appeared to highlight many areas that are not associated

with the symptomatology of PD, likely due to statistical artefacts,
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whereas the proposed methods highlight areas that are either already

known in PD physiopathology (e.g. the basal ganglia) or are under

investigation such as the cerebellum.

Our studies agree with the more general observation made by

Xiao et al. (2021) in that differences between PD patients and con-

trols seem to be lateralised. However, there appears to be a difference

in how this lateralisation can be interpreted, specifically between the

pre- and post-registration approaches. One possible explanation for

this is that the pre-registration approach is comparing the two hemi-

spheres, looking for asymmetries which would not be as easily per-

formed by the post-registration network that cannot rely on particular

pixels location always representing the same anatomy.

4.4.4 | Role of different diffusion characteristics

Unsurprisingly, MD played the strongest role in the analysis, generat-

ing the highest number of significant voxels for both the proposed

diktiometric and the traditional voxel-based diffusion analysis

approaches. Given that other voxel-based diffusion studies uniformly

use MD in their analysis, this is coherent with the literature and con-

firms the role of MD in understanding the diffusion characteristics of

neurological disorders (Atkinson-Clement et al., 2017).

Interestingly, FA appears to have played only a secondary role in

the analysis of the CNNs, largely due to its strong connection to MD in

its normalisation term. This means that the regions identified by FA sen-

sitivity maps were almost always a subset of those identified by an MD

sensitivity, only with a sign inversion as increasing the MD naturally

lowered the FA. Although this theoretically could have been overcome

by the contribution of the anisotropy (σ) term, this was not observed.

Thus, in this sensitivity analysis, it was more meaningful to look to the

unnormalised anisotropy term rather than FA to see information tradi-

tionally associated with organised microstructure. In addition, we

observed the same qualitative results in the traditional voxel-based

diffusion analysis. This calls into question the role of FA in diffusion

analysis studies more generally as it may be possible that correlated

MD increases with FA decreases (and vice versa) are possibly solely

due to MD and the contribution of the denominator term, although

much more investigation would need to be done to determine what

diffusion parameters are sufficiently decoupled to avoid this issue.

The pseudo-planarity appeared to play a very minor role in the

analysis, which indicates that the majority of the sensitivity was

assigned to the orthogonal MD and A terms. This is unsurprisingly as

in the literature, measurements of MD and FA tend to be more signifi-

cant than the other metrics that measure the shape of the tensor (Abe

et al., 2010).

4.5 | Limitations and future work

4.5.1 | Technical limitations of simple CNNs

One of the major technical limitations of this framework involves the

translation invariance property of traditional, simple CNNs. Although

translation invariance is often seen as a strength of CNNs, in the con-

text of medicine, it means that the network has to be able to first

localise particular structures before being able to use their diffusion

characteristics. This is in contrast to simpler methods such as

registration + SVM (Chen et al., 2020) in which the metrics can be

extracted from consistent anatomical locations directly as input. This

is particularly evident in the post-registration network lacking sym-

metric features that are opposite in magnitude, indicating an assess-

ment of asymmetry.

However, it should be noted that this limits the degree to which

one can use geometric data augmentation techniques, which we

hypothesise is one of the reasons why applying CNNs on unregistered

images (i.e. the post-registration approach) had a slighter higher per-

formance than when applied on registered ones (i.e. the pre-

registration approach). This experiment also relied on a traditional

CNN architecture which also leaves open the possibility that a more

complex architecture could incorporate more localisation information.

4.5.2 | Diagnostic performance and use

Lastly, the classification performance of these networks needs to be

improved before they can be used as a diagnostic tool on their own.

Although the motivation behind this study was to develop a tool simi-

lar to VBA, the end goal of these systems should be to improve the

diagnosis of patients more accurately and at earlier time-points in the

disease's progression. Although the method's 70% accuracy is much

lower than we have come to expect from deep learning methods in

general, it must be noted that it is still, to the best of the author's

knowledge, one of the best in the literature that uses only diffusion

tensor information. Not even the T1 structural images, which are

often acquired at the same time, are used in the current framework in

order for the networks to focus on specifically diffusion-related bio-

markers. Thus, there are four ways we envision this technique to be

more useful as a diagnostic tool:

1. the inclusion of more imaging modalities,

2. architectural improvements,

3. prediction of symptom severity, rather than diagnosis,

4. increasing the size of the training data set or

5. investigation of a more heterogeneous cohort including early-stage

PD.

With the exception of including T1 imaging, this would require

extensive research and data collection.

By focusing on symptomatology rather than diagnosis, it may be

possible to use these methods in a broader array of clinical contexts

related to PD. For example, dementia and other severe cognitive dis-

orders are common counter-indications for deep brain stimulation due

to its potentially deleterious impact on cognition, so if cognition-

specific biomarkers can be identified, these patients could be more

readily screened using imaging (Rodriguez-Oroz et al., 2005). Similarly,

more patient-specific maps could be used to help guide deep brain

stimulation procedures by targeting areas that are more affected by
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that patient's specific symptomatology. In addition, separating the

maps based on symptomatology may also help to disentangle the

effects specific to PD from those caused by other age-related disor-

ders common in PD cohorts.

4.5.3 | Other areas of future work

Aside from technical development and network optimisation, there is

a large potential for the use of more complex diffusion models than

the standard diffusion tensor which could still be used in the frame-

work of CNN sensitivity analysis. Specific examples of these models

which are already known to be useful in the context of PD include

higher order tensors such as those extracted in diffusion kurtosis

imaging (J.-J. Wang et al., 2011) and fibre orientation and density dis-

tributions (Xiao et al., 2021). This would also have the benefit of nuan-

cing the results from a scientific perspective, giving us more insight

into the diffusion-related effects of PD.

Even with the tensor model, there are still avenues to explore. By

acting directly on the diffusion tensors themselves, sensitivity informa-

tion may be extractable for other information, such as tensor orienta-

tion, that is not usually investigated. However, more research would

need to be done to ensure that the sensitivity maps for tensor orienta-

tion can be meaningfully aggregated (i.e. meaningfully combined in a

population-wise manner) and interpreted. The approach may also be

improved through the use of more advanced diffusion protocols that

have been developed since the PPMI data set was launched. However,

any improvement in the protocol may be offset by the more limited sup-

ply of training data at least until new, large databases are constructed.

5 | CONCLUSIONS

This article presents VBD, a technique for combining traditional VBA

with CNNs in order to identify, visualise, and analyse regions of the

brain associated with a particular disorder. The strength of this

method comes from the inversion of the traditional VBA paradigm. In

VBA, regions of the image that show statistically robust differences

are identified which could then be used to help guide diagnosis. In

VBD, a strong classifier is used first, and the classifier sensitivity is

evaluated for statistical significance, displaying what information is

empirically more useful for said classifier. This inversion allows for the

ROI to display a more nonlocal character unlike traditional VBA in

which (setting aside smoothing and spatial correction) the emphasis is

on singular voxels at particular registered locations.

This method has shown evidence for diffusion biomarkers for PD

that are specifically nonlocal in nature. For example, there is evidence

to suggest that asymmetry in the diffusivity of the white matter may

be a usable biomarker for lateralisation. These biomarkers are inher-

ently nonlocal in that they describe how diffusion characteristics in

different, separate regions of the brain co-vary and correlate with

each other and not only the disease status.

Interestingly, for traditionally CNN-based classification, it appears

that the white matter areas in the cerebellum and brain stem are par-

ticularly indicative of PD, more so than the cerebrum which provides

additional evidence of the cerebellar role in PD (Mirdamadi, 2016).

Overall, VBD provides an interesting new tool for the investiga-

tion of nonlocal imaging biomarkers of neurological disorders.
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APPENDIX A

GRADIENT PROPAGATION TO DIFFUSION METRICS

The result of gradient propagation through the network to the input

yields the derivatives δN
δD x,y,zð Þ, i,jð Þ

where D x,y,zð Þ, i,jð Þ is the value of the ith

row, jth column element of the diffusion tensor at location x, y, z. As

the following is equivalent for all voxels, we will remove x, y, z and

drop the indexing brackets for the purposes of notation. (Also for

notation, both the different and gradient notations are used depend-

ing on which is more succinct. For total clarity, rxy is a vector whose

entries are all δyδz where z is some element of x, which is itself a list or a

vector of variables.)

In order to retrieve the values of μ and σ, it is necessary to per-

form an eigendecomposition of the diffusion matrix:

D¼RΛRT , ðA1Þ

where R is an orthonormal matrix and Λ is a nonnegative diagonal

matrix containing the eigenvalues of the diffusion matrix. Note that

this decomposition is not fully unique: it is possible to re-order the

elements of Λ and still have a valid matrix. The benefit of μ and σ is

that they are invariant to this ordering whereas other diffusion met-

rics largely depend on having a specific eigenvalue ordering

(e.g. comparing the relative sizes of the largest and second-largest

eigenvalues).

Given that E is a diagnonal matrix, we can easily derive a simple

formula for the elements of D in terms of the rotation matrix and

eigenvalues, λk , for some ordering:

di,j ¼RiΛ Rj

� �T
di,j ¼

X
k

ri,kλkrj,k
, ðA2Þ

which yields the derivative:

δdi,j
δλk

¼ ri,krj,k: ðA3Þ

We can then analytically propagate gradients back through this

operation under the assumption that R is constant with respect to λ

using the chain rule:

δN
δλk

¼
X
i, j

δN
δdi,j

δdi,j
δλk

δN
δλk

¼
X
i, j

δN
δdi,j

ri,krj,k

: ðA4Þ

In order to retrieve the gradients with respect to μ and σ, we pro-

pose the following invertible co-ordinate transformation:

μ¼ 1=3 λ1þλ2þ λ3ð Þ
σ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
λ1�μð Þ2þ λ2�μð Þ2þ λ3�μð Þ2

q
θ¼ arctan λ1�μ,

ffiffiffiffiffiffi
1=3

p
λ2�λ3ð Þ

� �
λ1 ¼ μþσ

ffiffiffiffiffiffi
2=3

p
cosθ

� �
λ2 ¼ μþσ � ffiffiffiffiffiffi

1=6

p
cosθþ ffiffiffiffiffiffi

1=2

p
sinθ

� �

λ3 ¼ μþσ � ffiffiffiffiffiffi
1=6

p
cosθ� ffiffiffiffiffiffi

1=2

p
sinθ

� �

, ðA5Þ

which, using the chain rule, yields the derivatives:

δN
δμ

¼ δN
δλ1

þ δN
δλ2

þ δN
δλ3

δN
δσ

¼
ffiffiffiffiffiffi
2=3

p
cosθ

δN
δλ1

þ
ffiffiffiffiffiffi
1=2

p
sinθ�

ffiffiffiffiffiffi
1=6

p
cosθ

� � δN
δλ2

�
ffiffiffiffiffiffi
1=2

p
sinθþ

ffiffiffiffiffiffi
1=6

p
cosθ

� � δN
δλ3

δN
δθ

¼�
ffiffiffiffiffiffi
2=3

p
σ sinθ

δN
δλ1

þσ
ffiffiffiffiffiffi
1=2

p
cosθþ

ffiffiffiffiffiffi
1=6

p
sinθ

� � δN
δλ2

�σ
ffiffiffiffiffiffi
1=2

p
cosθ�

ffiffiffiffiffiffi
1=6

p
sinθ

� � δN
δλ3

: ðA6Þ

An alternative way of computing the gradients is to consider the

above co-ordinate transform as a local basis transformation. The ben-

efit of this transformation is that it is a locally orthogonal basis given

σ≠0, and thus have orthogonal sensitivities. That is:

rλμ �rλσ¼rλμ �rλθ¼rλσ �rλθ¼0: ðA7Þ

In order to get an orthonormal basis, we have to ensure that the

vectors are all unit length, that is rλbμj j ¼ rλbσj j ¼ rλ
bθ			 			¼1. Note that

this is already the case for σ, that is bσ¼ σ and can be achieved for μ

using simple scaling, that is bμ¼ ffiffiffiffiffiffi
1=3

p
μ, so the last vector rλ

bθ can be

found using the cross product: rλ
bθ¼rλbσ�rλbμ. This gives us a

magnitude-preserving expression for the sensitivity of the network:

δN
δbμ ¼ δN

δλ1

δN
δλ2

δN
δλ3


 � >
� 1ffiffiffi

3
p 1ffiffiffi

3
p 1ffiffiffi

3
p


 � >
¼ 1ffiffiffi

3
p δN

δμ

� �
δN
δbσ ¼ δN

δλ1

δN
δλ2

δN
δλ3


 � >
� λ1�μ

σ

λ2�μ

σ

λ3�μ

σ


 � >
¼ δN

δσ

� �
δN

δbθ ¼ δN
δλ1

δN
δλ2

δN
δλ3


 � >
� λ3�λ2ffiffiffi

3
p

σ

λ1�λ3ffiffiffi
3

p
σ

λ2�λ1ffiffiffi
3

p
σ


 � >
¼ σ�1 δN

δθ

� �
: ðA8Þ

Unlike μ and σ which are invariant to the ordering of the eigen-

values, θ has an ordering dependency, meaning that a consistent

ordering must be used for θ to be aggregated across a population and

θ must also be provably continuous at boundary cases where this

ordering may be effected by random noise. In the case where the

eigenvalues are ascending (i.e. λ1 ≥ λ2 ≥ λ3), θ can be thought of as the

pseudo-planarity, that is an approximate measure of planarity, which
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describes how much of the remaining degree of freedom is used to

make two of the three eigenvalues similar. θ¼0 implies that the ten-

sor is as close to being linear (i.e. λ2 ≈ λ3) as possible given its mean

diffusivity and anisotropy. As θ! π=3, the tensor is as planar as possi-

ble with λ1 ≈ λ2 again given the mean diffusivity and anisotropy. As sug-

gestedbythetrigonometric functions,θ also has meaningful units, radians.

Interestingly, the sensitivity with respect to θ which is neither

cyclic nor has an ordering dependence. This means that our method

can measure in a population-wise manner, the sensitivity of the classi-

fication network with respect to the shape of the tensor not reflected

by its overall size (i.e. mean diffusivity) or overall anisotropy, but by a

third, completely orthogonal measure.
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