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Steady-state solutions for a reaction-diffusion

equation with Robin boundary conditions:

Application to the control of dengue vectors.

L. Almeida1, P.A. Bliman2,1, N. Nguyen3,1, N. Vauchelet3

Abstract

In this paper, we investigate an initial-boundary-value problem of a reaction-diffusion equation
in a bounded domain with a Robin boundary condition and introduce some particular parameters to
consider the non-zero flux on the boundary. This problem arises in the study of mosquito populations
under the intervention of the population replacement method, where the boundary condition takes
into account the inflow and outflow of individuals through the boundary. Using phase-plane analysis,
the present paper studies the existence and properties of non-constant steady-state solutions depend-
ing on several parameters. Then, we prove some sufficient conditions for their stability. We show
that the long-time efficiency of this control method depends strongly on the size of the treated zone
and the migration rate. To illustrate these theoretical results, we provide some numerical simulations
in the framework of mosquito population control.

1 Introduction

The study of scalar reaction-diffusion equations ∂tp−∆p = f(p) with a given nonlinearity f has a long
history. For suitable choices of f , this equation can be used to model some phenomena in biology such as
population dynamics (see e.g. [4], [16], [25]). To investigate the structure of the steady-state solutions,
the semilinear elliptic equation ∆p+ f(p) = 0 has been studied extensively.

Many results about the multiplicity of positive solutions for the parametrized version ∆p+λf(p) = 0
in a bounded domain are known. Here, λ is a positive parameter. Various works investigated the number
of solutions and the global bifurcation diagrams of this equation according to different classes of the
nonlinearity f and boundary conditions. For Dirichlet problems, in [15], Lions used many “bifurcation
diagrams” to describe the solution set of this equation with several kinds of nonlinearities f , and gave
nearly optimal multiplicity results in each case. The exact number of solutions and the precise bifurcation
diagrams with cubic-like nonlinearities f were given in the works of Korman et. al. [13], [14], Ouyang
and Shi [18] and references therein. In these works, the authors developed a global bifurcation approach
to obtain the exact multiplicity of positive solutions. In the case of one-dimensional space with a two-
point boundary, Korman gave a survey of this approach in [12]. Another approach was given by Smoller
and Wasserman in [24] using phase-plane analysis and the time mapping method. This method was
completed and applied in the works of Wang [28], [29]. While the bifurcation approach is convenient to
solve the problem with more general cubic nonlinearities f , the phase-plane method is more intuitive
and easier to compute.

Although many results were obtained concerning the number of solutions for Dirichlet problems,
relatively little seems to be known concerning the results for other kinds of boundary conditions. For the
Neumann problem, the works of Smoller and Wasserman [24], Schaaf [21], and Korman [11] dealt with
cubic-like nonlinearities f in one dimension. Recently, more works have been done for Robin boundary
conditions (see e.g. [3], [22], [33]), Neumann-Robin boundary conditions (see e.g. [27]), or even nonlinear
boundary conditions (see e.g. [6], [7] and references therein). However, those works only focused on
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other types of nonlinearities such as positive or monotone f . An analogous problem with advection
term was studied in [31], [30] for cubic-like nonlinearities, but in these works, they used a homogeneous
non-symmetric Robin boundary condition to characterize the open or closed environment boundary.
To the best of our knowledge, the study of inhomogeneous symmetric Robin problems with cubic-like
nonlinearities remains quite open.

In this paper, we study the steady-state solutions with values in [0, 1] of a reaction-diffusion equation
in one dimension with inhomogeneous Robin boundary conditions

∂tp
0 − ∂xxp0 = f(p0), (t, x) ∈ (0, T )× Ω, (1a)

∂p0

∂ν
= −D(p0 − pext), (t, x) ∈ (0, T )× ∂Ω, (1b)

p0(0, x) = pinit(x), x ∈ Ω, (1c)

where Ω = (−L,L) is a bounded domain in R, time T > 0. The steady-state solutions satisfy the
following elliptic boundary-value problem,

− p′′(x) = f(p(x)), x ∈ (−L,L), (2a)

p′(L) = −D(p(L)− pext), (2b)

−p′(−L) = −D(p(−L)− pext), (2c)

where L > 0, D > 0, pext ∈ (0, 1) are constants. The reaction term f : [0, 1] → R is of class C1, with
three roots {0, θ, 1} where 0 < θ < 1 (see Figure 1a). The dynamics of (1) can be determined by the
structure of steady-state solutions which satisfy (2). Note that, by changing variable from x to y = x/L,
then (2) becomes p′′(y) +L2f(p(y)) = 0 on (−1, 1) with parameter L2. Thus, we study problem (2) with
three parameters L > 0, D > 0, and pext ∈ (0, 1).

The Robin boundary condition considered in (1) and (2) means that the flow across the boundary
points is proportional to the difference between the surrounding density and the density just inside the
interval. Here we assume that pext does not depend on space variable x nor time variable t.

The existence of classical solutions for such problems was studied widely in the theory of elliptic and
parabolic differential equations (see, for example, [19]). In our problem, due to difficulties caused by the
inhomogeneous Robin boundary condition and the variety of parameters, we cannot obtain the exact
multiplicity of solutions. However, our main results in Theorems 2.1 and 2.2 show how the existence of
solutions and their “shapes” depend on parameters D, pext and L. The idea of phase plane analysis and
time-map method as in [24] are extended to prove these results.

Since the solutions of (2) are equilibria of (1), their stability and instability are the next problems
that we want to investigate. The stability analysis of the non-constant steady-state solutions is a delicate
problem especially when the system under consideration has multiple steady-state solutions. In Theorem
2.3, we use the principle of linearized stability to give some sufficient conditions for stability. Finally, as
a consequence of these theorems, we obtain Corollary 2.1 which provides a comprehensive result about
existence and stability of the steady-state solutions when the size L is small.

The main biological application of our results is the control of dengue vectors. Aedes mosquitoes are
vectors of many vector-borne diseases, including dengue. Recently, a biological control method using an
endosymbiotic bacterium called Wolbachia has gathered a lot of attention. Wolbachia helps reduce the
vectorial capacity of mosquitoes and can be passed to the next generation. Massive release of mosquitoes
carrying this bacterium in the field is thus considered as a possible method to replace wild mosquitoes
and prevent dengue epidemics. Reaction-diffusion equations have been used in previous works to model
this replacement strategy (see [1, 2, 26]). In this work, we introduce the Robin boundary condition
to describe the migration of mosquitoes through the boundary. Since inflows of wild mosquitoes and
outflows of mosquitoes carrying Wolbachia may affect the efficiency of the method, the study of existence
and stability of steady-state solutions depending on parameters D, pext and L as in (2), (1) will provide
necessary information to maintain the success of the control method using Wolbachia under the effects
of migration.

Problem (1) arises often in the study of population dynamics. p0 is usually considered as the relative
proportion of one population when there are two populations in competition. This is why, we only
focus on solutions with values that belong to the interval [0, 1]. Problem (1) is derived from the idea in
paper [26], where the authors reduce a reaction-diffusion system modeling the competition between two
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populations n1 and n2 to a scalar equation on the proportion p = n1

n1+n2
. More precisely, they consider

two populations with a very high fecundity rate scaled by a parameter ε > 0 and propose the following
system depending on ε for t > 0, x ∈ Rd,

∂tn
ε
1 −∆nε1 = nε1f1(nε1, n

ε
2), (3a)

∂tn
ε
2 −∆nε2 = nε2f2(nε1, n

ε
2). (3b)

The authors obtained that under some appropriate conditions, the proportion pε =
nε1

nε1+nε2
converges

strongly in L2(0, T ;L2(Rd)), and weakly in L2(0, T ;H1(Rd)) to the solution p0 of the scalar reaction-
diffusion equation ∂tp

0 −∆p0 = f(p0) when ε → 0 , where f can be given explicitly from f1, f2. Now,
in order to describe and study the migration phenomenon, we aim here at considering system (3) in
a bounded domain Ω and introduce the boundary conditions to characterize the inflow and outflow of
individuals as follows

∂nε1
∂ν

= −D(nε1 − n
ext,ε
1 ), (t, x) ∈ (0, T )× ∂Ω, (4a)

∂nε2
∂ν

= −D(nε2 − n
ext,ε
2 ), (t, x) ∈ (0, T )× ∂Ω, (4b)

where next,ε
1 , next,ε

2 depend on ε but do not depend on time t and position x. (4) models the tendency of
the population to cross the boundary, with rates proportional to the difference between the surrounding
density and the density just inside Ω. Reusing the idea in [26], we prove in Section A that the proportion

pε =
nε1

nε1+nε2
converges on any bounded time-domain to the solution of (1) when ε goes to zero. Hence, we

can reduce the system (3), (4) to a simpler setting as in (1). The proof is based on a relative compactness
argument that was also used in previous works about singular limits (e.g. [8,9,26]), but here, the use of
the trace theorem is necessary to prove the limit on the boundary.

The outline of this work is the following. In the next section, we present the setting of the problem
and the main results. In Section 3, we provide detailed proof of these results. Section 4 is devoted to an
application to the biological control of mosquitoes. We also present numerical simulations to illustrate
the theoretical results we obtained. Section A is devoted to proving the asymptotic limit of a 2-by-2
reaction-diffusion system when the reaction rate goes to infinity. Finally, we end this article with a
conclusion and perspectives section.

2 Results on the steady-state solutions

2.1 Setting of the problem

In one-dimensional space, consider the system (1) in a bounded domain Ω = (−L,L) ⊂ R. Let D > 0,
pext ∈ (0, 1) be some constant and pinit(x) ∈ [0, 1] for all x ∈ (−L,L). The reaction term f satisfies the
following assumptions

Assumption 2.1 (bistability). Function f : [0, 1]→ R is of class C1([0, 1]) and f(0) = f(θ) = f(1) = 0

with θ ∈ (0, 1), f(q) < 0 for all q ∈ (0, θ), and f(q) > 0 for all q ∈ (θ, 1). Moreover,

∫ 1

0

f(s)ds > 0.

Assumption 2.2 (convexity). There exist α1 ∈ (0, θ) and α2 ∈ (θ, 1) such that f ′(α1) = f ′(α2) = 0,
f ′(q) < 0 for any q ∈ [0, α1) ∪ (α2, 1], and f ′(q) > 0 for q ∈ (α1, α2). Moreover, f is convex on (0, α1)
and concave on (α2, 1).

A function f satisfying Assumptions 2.1 and 2.2 is illustrated in Figure 1a.

Remark 2.1.

1. Due to Assumption 2.1 and the fact that pext ∈ (0, 1), pinit(x) ∈ [0, 1] for any x, one has that 0 and
1 are respectively sub- and super-solution of problem (1). Since f is Lipschitz continuous on (0, 1)
then by Theorem 4.1, Section 2.4 in [19], we obtain that problem (1) has a unique solution p0 that
is in C1,2((0, T ]× Ω) with 0 ≤ p0(t, x) ≤ 1 for all x ∈ (−L,L), t > 0.

3



(a) f(q) (b) F (q)

Figure 1: Sketch of the functions f and F

2. Again by Assumption 2.1, 0 and 1 are respectively sub- and super-solutions of (2). For fixed values
of D, pext and L, we use the same method as in [19] to obtain that there exists a C2 solution of
(2) with values in [0, 1]. However, Assumption 2.1 and 2.2 on f are not enough to conclude the
uniqueness of the solution. In the following section, we prove that the stationary problem (2) may
have multiple solutions and their existence depends on the values of the parameters.

The following proposition shows that solutions of system (2) always have at least one extreme value
in (−L,L).

Proposition 2.1. For any pext ∈ (0, 1) and pext 6= θ, system (2) does not have any non-constant
monotone solution on the whole interval (−L,L).

Proof. Assume that (2) admits an increasing solution p on (−L,L) (the case when p is decreasing on
(−L,L) is analogous). Thus, we have p′(x) ≥ 0 for all x ∈ [−L,L] and p(L) > p(−L). So thanks to the
boundary condition of (2), one has

Dpext = p′(L) +Dp(L) ≥ Dp(L) > Dp(−L) ≥ −p′(−L) +Dp(−L) = Dpext,

which is impossible. Therefore, we can deduce that the solutions of system (2) always admit at least one
local extremum on the open interval (−L,L).

To study system (2), we define function F (see Figure 1b) as below

F (q) =

∫ q

0

f(s)ds, (5)

then F ′(q) = f(q) and F (0) = 0. From Assumption 2.1, F reaches the minimal value at q = θ and

the (locally) maximal values at q = 0 and q = 1. Since

∫ 1

0

f(s)ds > 0, then F (1) > F (0), it implies

that F (1) = max
[0,1]

F ;F (θ) = min
[0,1]

F . Moreover, since F (θ) < F (0) and function F is monotone in (θ, 1)

(F ′(q) = f(q) > 0 for any q ∈ (θ, 1)). Thus, there exists a unique value β ∈ (θ, 1) such that

F (β) = F (0) = 0. (6)

The main results of the present work concern the existence and stability of steady-state solutions of
(1), i.e. solutions of (2).

2.2 Existence of steady-state solutions

In our result, we first focus on two types of steady-state solutions defined as follows
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(a) (SD): p is decreasing on (0, L) (b) (SI): p is increasing on (0, L)

Figure 2: Sketch of the symmetric steady-state solutions p

Definition 2.1. Consider a steady-state solution p(x),
p is called a symmetric-decreasing (SD) solution when p is symmetric on (−L,L) with values in [0, 1],

decreasing on (0, L) and p′(0) = 0 (see Figure 2a).
Similarly, p is called a symmetric-increasing (SI) solution when p is symmetric on (−L,L) with values

in [0, 1], increasing on (0, L) and p′(0) = 0 (see Figure 2b).
Any solution which is either (SD) or (SI) is called a symmetric-monotone (SM) solution.

The following theorems present the main result of the existence of (SM) solutions depending upon
the parameters. For each value of pext ∈ (0, 1) and D > 0, we find the critical values of L such that (2)
admits solutions.

Theorem 2.1. In a bounded domain Ω = (−L,L) ⊂ R, consider the stationary problem (2). Assume
that the reaction term f satisfies Assumptions 2.1 and 2.2. Then, there exist two functions

Md,Mi : (0, 1)× (0,+∞) −→ [0,+∞],
(pext, D) 7−→ Md(p

ext, D),Mi(p
ext, D),

(7)

such that for any pext ∈ (0, 1), D > 0, problem (2) admits at least one (SD) solution (resp., (SI) solution)
if and only if L > Md(p

ext, D) (resp., L > Mi(p
ext, D)) and the values of these solutions are in [pext, 1]

(resp., [0, pext]). More precisely,

1. If 0 < pext < θ, then for any D > 0, Mi(p
ext, D) = 0 and Md(p

ext, D) ∈ (0,+∞).

Moreover, if pext ≤ α1, the (SI) solution is unique.

2. If θ < pext < 1, then for any D > 0, Md(p
ext, D) = 0. If α2 ≤ pext, the (SD) solution is unique.

Moreover, consider β as in (6),

• if pext ≤ β, then Mi(p
ext, D) ∈ (0,+∞) for any D > 0;

• if pext > β, then there exists a constant D∗ > 0 such that Mi(p
ext, D) ∈ (0,+∞) for any D < D∗,

and Mi(p
ext, D) = +∞ for D ≥ D∗.

3. If pext = θ, then Md(θ,D) = Mi(θ,D) = 0. Moreover, there exists a constant solution p ≡ θ.

In the statement of the above result, Mi = 0 means that for any L > 0, (2) always admits (SI)
solutions. Mi = +∞ means that there is no (SI) solution even when L is large. The same interpretation
applies for Md.

Besides, problem (2) can also admit solutions that are neither (SD) nor (SI). The following theorem
provides an existence result for those solutions.

Theorem 2.2. In a bounded domain Ω = (−L,L) ⊂ R, consider the stationary problem (2). Assume
that the reaction term f satisfies Assumption 2.1 and 2.2. Then, there exists a function

M∗ : (0, 1)× (0,+∞) −→ [0,+∞],
(pext, D) 7−→ M∗(p

ext, D),
(8)
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Table 1: The existence of steady-state solutions corresponding to values of parameters.

Parameters
0 < pext < θ, D > 0

0 = Mi < L < Md Md ≤ L < M∗ M∗ ≤ L < +∞
Types of solutions (SI) (SI), (SD) (SI), (SD), non-(SM)

Parameters
pext = θ, D > 0

0 = Md = Mi = M∗ < L
Types of solutions (SD), (SI), non-(SM)

Parameters
θ < pext ≤ β, D > 0 or pext > β, 0 < D < D∗

0 = Md < L < Mi Mi ≤ L < M∗ M∗ ≤ L < +∞
Types of solutions (SD) (SI), (SD) (SI), (SD), non-(SM)

Parameters
β < pext < 1, D > D∗

0 = Md < L < Mi = M∗ = +∞
Types of solutions (SD)

such that for any pext ∈ (0, 1), D > 0, problem (2) admits at least one solution which is not (SM) if and
only if L ≥M∗(pext, D). Moreover,
• If pext ≤ β, then for any D > 0, one has

0 < Mi(p
ext, D) +Md(p

ext, D) < M∗(p
ext, D) < +∞. (9)

• If pext > β, then for any D < D∗, one has 0 < Mi(p
ext, D) < M∗(p

ext, D) < +∞. Otherwise, for
D ≥ D∗, M∗(pext, D) = +∞. Here, D∗ was defined in Theorem 2.1.

The construction of Mi,Md,M∗ will be done in the proof in Section 3. The idea of the proof is based
on a careful study of the phase portrait of (2). To make the results more reader-friendly, we present the
types of steady-state solutions corresponding to different parameters in Table 1.

In the next section, we present a result about the stability and instability of steady-state solutions of
(2).

2.3 Stability of steady-state solutions

The definition of stability and instability used in the present work comes from Lyapunov stability

Definition 2.2. A steady-state solution p(x) of (1) is called stable if for any constant ε > 0, there exists
a constant δ > 0 such that when ||pinit − p||∞ < δ, one has

||p0(t, ·)− p||∞ < ε, for all t > 0 (10)

where p0(t, x) is the unique solution of (1). If, in addition,

lim
t→∞

||p0(t, ·)− p||∞ = 0, (11)

then p is called asymptotically stable. The steady-state solution p is called unstable if it is not stable.

The following theorem provides sufficient conditions for the stability of steady-state solutions given
in Section 2.2.

Theorem 2.3. In the bounded domain Ω = (−L,L) ⊂ R, consider the problem (1) with the reaction term

satisfying Assumptions 2.1 and 2.2. There exists a constant λ1 ∈
(

0, π
2

4L2

)
such that for any steady-state

solution p of (1),
• If f ′(p(x)) > λ1 for all x ∈ (−L,L), then p is unstable.
• If f ′(p(x)) < λ1 for all x ∈ (−L,L), then p is asymptotically stable.

More precisely, λ1 is the principal eigenvalue of the linear problem (12)

− φ′′(x) = λφ(x) x ∈ (−L,L), (12a)

φ′(L) = −Dφ(L), (12b)

φ′(−L) = Dφ(−L), (12c)
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where λ is an eigenvalue with associated eigenfunction φ. It may be proved that its value is the smallest

positive solution of equation
√
λ tan

(
L
√
λ
)

= D (see more details in Section 3).

Note that we cannot apply the first statement if sup
q∈(0,1)

f ′(q) ≤ λ1. However, due to the fact that

λ1 ∈
(

0, π
2

4L2

)
, when L gets larger, the value of λ1 gets closer to zero and the inequality in the first

statement becomes valid.

Remark 2.2. By Assumption 2.2, f ′(q) ≤ 0 < λ1 for all q ∈ [0, α1] ∪ [α2, 1], we can deduce that the
steady-state solutions with values smaller than α1 or larger than α2 are asymptotically stable.

As a consequence of Theorems 2.1, 2.2, and 2.3, the following important result provides complete
information about the existence and stability of steady-state solutions in some special cases.

Corollary 2.1. In the bounded domain Ω = (−L,L) ⊂ R, consider the problem (1) with the reaction
term satisfying Assumption 2.1 and 2.2. Then for any D > 0, we have
• If pext ≤ α1, for any L > 0, there exists exactly one (SI) steady-state solution p and it is asymp-

totically stable. Moreover, if L < Md(p
ext, D), then p is the unique steady-state solution of (1).

• If pext ≥ α2, for any L > 0, there exists exactly one (SD) steady-state solution p and it is asymp-
totically stable. Moreover, if L < Mi(p

ext, D), then p is the unique steady-state solution of (1).

Remark 2.3. This corollary gives us a comprehensive view of the long-time behavior of solutions of (1)
when the size L of the domain is small. In this case, the unique steady-state solution p is symmetric,
monotone on each half of Ω, and asymptotically stable. Its values will be close to 0 if pext is small and
close to 1 if pext is large. We discuss an essential application of this result in Section 4.

3 Proof of the theorems

3.1 Proof of existence

In this section, we use phase-plane analysis to prove the existence of both (SM) and non-(SM) steady-
state solutions depending on the parameters. The studies of (SD) and (SI) solutions will be presented
respectively in Sections 3.1.1 and 3.1.2. Then, using these results, we prove Theorem 2.1. The proof of
Theorem 2.2 will be presented after that using the same technique.

First, we introduce the following function

E(p, p′) =
(p′)2

2
+ F (p). (13)

Since d
dxE(p, p′) = p′(p′′ + f(p)) = 0, then E(p, p′) is constant along the orbit of (2). From Proposition

2.1, we can deduce that there exists an x0 ∈ (−L,L) such that p′(x0) = 0, thus one has

E(p(x0), 0) = E(p(x), p′(x)), (14)

for all x ∈ (−L,L). Therefore, the relation between p′ and p is as below

p′ = ±
√

2F (p(x0))− 2F (p). (15)

According to this relation, one has a phase plane as in Figure 3a, in which the curves illustrate the
relation between p′(x) and p(x) in (15) with respect to different values of p(x0). We can see that some
curves do not end on the axis p = 0 but wrap around the point (θ, 0). This is dues to the fact that for any
p1 ∈ [θ, β], there exists a value p2 ∈ [0, θ] such that F (p1) = F (p2). Thus, if the curve passes through the
point (p1, 0), it will also pass through the point (p2, 0) on the axis p′ = 0. Moreover, those curves only
exist if their intersection with the axis p′ = 0 has p-coordinate less than or equal to β. Besides, the two
straight lines show the relation between p′ and p at the boundary points. Solutions of (2) correspond to
those orbits that connect the intersection of the curves with the line p′ = D(p− pext) to the intersection
of the curves with the line p′ = −D(p− pext).

In the phase plane in Figure 3a, orbit T1 describes an (SD) solution, while orbit T2 corresponds to
a (SI) solution. On the other hand, the solid curve T3 shows the orbit of a steady-state solution that is
not symmetric-monotone.
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(a) pext < θ < β,D > 0 (b) pext > β,D ≤ D∗

Figure 3: Phase portraits of (2): straight lines illustrate the boundary conditions, solid curves show
relations between p′ and p. Figure (a): curves T1, T2, and T3 correspond to orbits of (SD), (SI), and

non-(SM) solutions, respectively. Figure (b): curve T4 corresponds to an orbit of a non-(SM) solution.

Remark 3.1. (Graphical interpretation of D∗) The (SI) solutions (see Figure 2b) have orbit as T2 in
Figure 3a. This type of orbits only exists when the lines p = ±D(p− pext) intersect the curves wrapping
around the point (θ, 0). In the case when pext > β, the constant D∗ > 0 in Theorem 2.1 is the slope of
the tangent line to the curve passing through (β, 0) as in Figure 3b. Hence, if D > D∗, there exists no
(SI) solution. We construct explicitly the value of D∗ in Proposition 3.2 below.

Next, we establish some relations between the solution p and the parameters based on the phase
portrait above. For any x > x0, if p is monotone on (x0, x), we can invert x 7→ p(x) into function
p 7→ X(p). We obtain X ′(p) = ±1√

2F (p(x0))−2F (p)
. By integrating this equation, we obtain that

x− x0 =

∫ p(x)

p(x0)

(−1)kds√
2F (p(x0))− 2F (s)

, (16)

where k = 1 if p is decreasing and k = 2 if p is increasing on (x0, x). We can obtain the analogous
formula for x < x0.

First, we focus on symmetric-monotone (SM) solutions for which p′(0) = 0, then we analyze the
integral in (16) with x = L, x0 = 0. For any pext ∈ (0, 1), using (15), we have

F (p(0)) = F (p(L)) +
1

2
D2
(
p(L)− pext

)2
= G(p(L)), (17)

for F defined in (5) and

G(q) := F (q) +
1

2
D2(q − pext)2, (18)

and from (16) with x = L, x0 = 0, we have

L =

∫ p(L)

p(0)

(−1)kds√
2F (p(0))− 2F (s)

, (19)

where k = 1 if p is decreasing on (0, L), k = 2 if p is increasing on (0, L).
Thus, the (SM) solution of (2) exists if there exist values p(L) and p(0) that satisfy (17) and (19).

When such values exist, we can assess the value of p(x) for any x in (−L,L) using (16).
Before proving the existence of such values of p(0) and p(L), we establish some useful properties of

the function G defined in (18). It is continuous in [0, 1] and G(q) ≥ F (q) for all q ∈ [0, 1]. Moreover, the
following lemma shows that G has a unique minimum point.

Lemma 3.1. For any pext ∈ (0, 1), there exists a unique value q ∈ (0, 1) such that G′(q) = 0, G′(q) < 0
for all q ∈ [0, q) and G′(q) > 0 for all q ∈ (q, 1]. Particularly, G(q) = min

[0,1]
G.

8



Proof. We have G′(q) = f(q) +D2(q − pext). We consider the following cases.
Case 1: When pext = θ, we have G′(pext) = G′(θ) = f(θ) = 0, G′(q) < 0 for all q ∈ (0, θ) and

G′(q) > 0 for all q ∈ (θ, 1). Thus q = θ = pext.
Case 2: When pext < θ, we have G′(q) < 0 for all q ∈ [0, pext] and G′(q) > 0 for all q ∈ [θ, 1]. So

there exists at least one value q ∈ (pext, θ) such that G′(q) = 0.

For any q ∈ (pext, θ) such that G′(q) = 0, we have f(q) + D2(q − pext) = 0 so that D2 = − f(q)
q−pext .

We can prove that G′′(q) is strictly positive. Indeed, from Assumption 2.2 we have that α1 is the unique
value in (0, θ) such that f ′(α1) = 0, thus f(α1) = min

[0,θ]
f < 0.

If α1 ≤ q < θ then f ′(q) ≥ 0. One has G′′(q) = f ′(q) +D2 > 0.

If pext < q < α1, due to the fact that f is convex in (0, α1) one has f ′(q) ≥ f(q)−f(pext)
q−pext . Since

f(pext) < 0, one has G′′(q) = f ′(q) + D2 = f ′(q) − f(q)
q−pext > f ′(q) + f(pext)−f(q)

q−pext ≥ 0. One can deduce

that q is the unique value in (0, 1) such that G′(q) = 0 and G(q) = min
[0,1]

G, so it satisfies Lemma 3.1.

Case 3: When pext > θ, the proof is analogous to case 2 but using the concavity of f in (α2, 1). We
obtain that there exists a unique value q in (θ, pext) that satisfies Lemma 3.1.

When pext = θ, it is easy to check that p ≡ θ is a solution of (2). We now analyze two types of (SM)
solutions (see Figure 2) in the following parts.

3.1.1 Existence of (SD) solutions

In this part, the solution p we study is symmetric on (−L,L) and decreasing on (0, L) (see Figure 2a). So
p(L) < p(x) < p(0) for any x ∈ (0, L). But from (15), we have that F (p(x)) ≤ F (p(0)), so F ′(p(0)) ≥ 0.
It implies that p(0) ∈ [θ, 1]. Next, we use two steps to study the existence of (SD) solutions:

Step 1: Rewriting as a non-linear equation on p(L)
For any q ∈ (θ, 1), we have F ′(q) = f(q) > 0 so F |(θ,1) : (θ, 1) −→ (F (θ), F (1)) is invertible.

Define F−1
1 := (F |(θ,1))

−1 : (F (θ), F (1)) −→ (θ, 1), and F−1
1 (F (θ)) = θ, F−1

1 (F (1)) = 1. Then, F−1
1 is

continuous in [F (θ), F (1)]. For any y ∈ (F (θ), F (1)), one has
(
F−1

1

)′
(y) = 1

F ′(F−1
1 (y))

= 1

f(F−1
1 (y))

> 0,

so F−1
1 is an increasing function in (F (θ), F (1)). From (17) and (19), since p is decreasing in (0, L), we

have L =

∫ p(0)

p(L)

ds√
2G(p(L))− 2F (s)

. Denote

F1(q) :=

∫ F−1
1 (G(q))

q

ds√
2G(q)− 2F (s)

. (20)

Hence, a (SD) solution p of system (2) has p(0) = F−1
1 (G(p(L))), and p(L) satisfies

L = F1(p(L)). (21)

Moreover, one has p′(x) ≤ 0 for all x ∈ (0, L) thus −D(p(L)− pext) = p′(L) ≤ 0. One can deduce that

p(L) ≥ pext. (22)

Step 2: Solving (21) in [pext, 1]
The following proposition states the existence of a solution of (21).

Proposition 3.1. For any D > 0, pext ∈ (0, 1), we have

1. If 0 < pext < θ, then there exists a constant M1 > 0 such that equation (21) has at least one
solution p(L) ≥ pext if and only if L ≥M1.

2. If θ ≤ pext < 1, then equation (21) admits at least one solution p(L) ≥ pext for all L > 0. If
pext ≥ α2, then this solution is unique.

9



Proof. Since F−1
1 is only defined in [F (θ), F (1)], we need to find p(L) ∈ [pext, 1] such that G(p(L)) ∈

[F (θ), F (1)].
For all q ∈ (0, 1), we have G(q) ≥ F (q) ≥ F (θ) and from Lemma 3.1, there exists a value q ∈ (0, 1)

such that min
[0,1]

G = G(q) ≤ G(pext) = F (pext) < max
[0,1]

F = F (1). Moreover, one has G(1) > F (1), thus

there exists a value p∗ ∈ (pext, 1) such that G(p∗) = F (1). Then, for all q ∈ [pext, p∗], G(q) ∈ [F (θ), F (1)]
and we will find p(L) in [pext, p∗]. Since F−1

1 increases in (F (θ), F (1)), then p(0) = F−1
1 (G(p(L))) ≥

F−1
1 (F (p(L))) ≥ p(L).

Function F1 in (20) is well-defined and continuous in [pext, p∗), F ≥ 0 in [pext, p∗). Moreover, since

F ′(1) = 0, one has lim
p→p∗

F1(p) =

∫ 1

p∗

ds√
2F (1)− 2F (s)

= +∞.

Case 1: If 0 < pext < θ, we will prove that F1 is strictly positive in [pext, p∗). Indeed, for any y ∈ [0, 1],
if y < θ, by the definition of F−1

1 , we have F−1
1 (G(y)) ∈ [θ, 1] so F−1

1 (G(y)) > y. If y ≥ θ > pext then
G(y) = F (y)+ 1

2D
2(y−pext)2 > F (y) so again F−1

1 (G(y)) > y. Hence F1(y) > 0 for all y ∈ [pext, p∗). We
have F1(p) → +∞ when p → p∗, so there exists p ∈ [pext, p∗) such that M1 := F1(p) = min

[pext,p∗]
F1 > 0,

and system (21) admits at least one solution if and only if L ≥M1.
Case 2: If θ ≤ pext < 1, one has G(pext) = F (pext), then F−1

1 (G(pext)) = pext so F1(pext) = 0. On
the other hand, F1(p)→ +∞ when p→ p∗. Thus, for any L > 0, there always exists at least one value
p(L) ∈ (pext, p∗) such that F1(p(L)) = L.

Proof of uniqueness: When pext ≥ α2, we can prove that F ′1 > 0 on (pext, p∗). Indeed, denoting
γ(q) = F−1

1 (G(q)), and changing the variable from s to t such that s = tγ(q) + (1− t)q, one has

F1(q) =

∫ 1

0

[γ(q)− q]dt√
2F (γ(q))− 2F (tγ(q) + (1− t)q)

.

To simplify, denote s(q) = tγ(q) + (1 − t)q. For any t ∈ (0, 1), one has q < s(q) < γ(q). Let us define
∆F = F (γ(q))− F (s(q)), then one has
√

2F ′1(q) =

∫ 1

0

(γ′(q)− 1)(∆F )−1/2dt− 1

2

∫ 1

0

(∆F )−3/2(γ(q)− q)d∆F

dq
dt

=

∫ 1

0

(∆F )−3/2

[
(γ′(q)− 1)∆F − 1

2
(γ(q)− q)(f(γ(q))γ′(q)− f(s(q))s′(q))

]
.

Let P be the formula in the brackets, then
P = (γ′ − 1)∆F − 1

2 (γ − q) [f(γ)γ′ − f(s)(tγ′ + 1− t)]
= (γ′ − 1)

[
∆F − 1

2 (γ − q)f(γ) + 1
2 (s− q)f(s)

]
− 1

2 (γ − q)(f(γ)− f(s)),

Define ψ(y) := F (y)− 1
2f(y)(y−q) for any y ∈ [q, γ(q)], then one has ψ′(y) = 1

2 [f(y)−f ′(y)(y−q)] ≥
f(q)

2 > 0 since y ≥ q > pext ≥ α2 and f is concave in (α2, 1), f(q) > 0. Moreover, f is decreasing on

(α2, 1) so 0 < f(γ(q)) < f(s(q)) < f(q), and γ′(q) = G′(q)

f(F−1
1 (G(q)))

= f(q)+D2(q−pext)
f(γ(q)) > 1. Hence, we can

deduce that P = (γ′ − 1)(ψ(γ)− ψ(s))− 1
2 (γ − q)(f(γ)− f(s)) > 0 for any t ∈ (0, 1). This proves that

function F1 is increasing on (pext, p∗), so the solution of equation (21) is unique.

3.1.2 Existence of (SI) solutions

In this case, the technique we use to prove the existence of (SI) solutions is analogous to (SD) solutions
except in the case when pext > β (case 3 below). Since the proof is not straightforward, it is worth to
re-establish this technique for (SI) solutions in two following steps:
Step 1: Rewriting as a non-linear equation on p(L)

Since now p is symmetric on (−L,L) and increasing in (0, L) (see Figure 2b), then p(0) < p(x) < p(L)
for any x ∈ (0, L). But from (15), we have that F (p(x)) ≤ F (p(0)), so F ′(p(0)) ≤ 0. This implies that
p(0) ∈ [0, θ].

For any q ∈ (0, θ), we have F ′(q) = f(q) < 0 so F |(0,θ) : (0, θ) −→ (F (θ), F (0)) is invertible. Define

F−1
2 := (F |(0,θ))−1 : (F (θ), F (0)) −→ (0, θ), F−1

2 (F (θ)) = θ, F−1
2 (F (0)) = 0, and F−1

2 is continuous in

[F (θ), F (0)]. For any y ∈ (F (θ), F (0)),
(
F−1

2

)′
(y) = 1

F ′(F−1
2 (y))

= 1

f(F−1
2 (y))

< 0, so F−1
2 is a decreasing
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function in (F (θ), F (0)). From (17) and (19), we have L =

∫ p(L)

p(0)

ds√
2G(p(L))− 2F (s)

. Denote

F2(q) :=

∫ q

F−1
2 (G(q))

ds√
2G(q)− 2F (s)

. (23)

Hence, a (SI) solution of system (2) has p(0) = F−1
2 (G(p(L))), and p(L) satisfies

L = F2(p(L)), (24)

and in this case, one needs to find p(L) in [0, pext].
Step 2: Solving of (24) in [0, pext]

The following proposition states the existence of a solution of (24).

Proposition 3.2. For any pext ∈ (0, 1), considering the value β as in (6), we have:

1. If 0 < pext ≤ θ, then equation (24) admits at least one solution p with p(L) ≤ pext for all L >
0, D > 0. If pext ≤ α1, this solution is unique.

2. If θ < pext ≤ β, then for all D > 0, there exists a constant M2 > 0 such that equation (24) has at
least one solution p with p(L) ≤ pext if and only if L ≥M2.

3. If β < pext < 1, then there exists a constant D∗ > 0 such that when D ≥ D∗, equation (24) has
no solution. Otherwise, there exists a constant M3 > 0 such that equation (24) has at least one
solution p with p(L) ≤ pext if and only if L ≥M3.

Proof. As we assume that F (0) < F (1) and F (θ) < F (0) then, due to the continuity of F , one can
deduce that there exists a value β ∈ (θ, 1) such that F (β) = F (0) = 0.

Since F−1
2 is only defined in [F (θ), F (0)], we need to find p(L) ∈ [0, pext] such that G(p(L)) ∈

[F (θ), F (0)]. For all q ∈ (0, 1), we have G(q) ≥ F (q) ≥ F (θ), thus equation (24) has solutions if and only
if min

[0,1]
G < F (0). Even when min

[0,1]
G = G(q) = F (0), F2 is still not defined in [0, 1] since F2(q) = +∞.

One has the following cases:
Case 1: 0 < pext ≤ θ:
We have min

[0,1]
G = G(q) ≤ G(pext) = F (pext) < max

[0,θ]
F = F (0), and G(0) > F (0) so there is a value

p∗ ∈ (0, pext) such that G(p∗) = F (0). Moreover F ′(0) = 0, then lim
p→p∗

F2(p) = +∞. Thus, function F2

is only well-defined and continuous in (p∗, p
ext].

When 0 < pext ≤ θ, F−1
2 (G(pext)) = F−1

2 (F (pext)) = pext so F2(pext) = 0. We can deduce that
for any L > 0, there always exists at least one value p(L) ∈ (p∗, p

ext) such that F2(p(L)) = L. When
pext ≤ α1, arguing analogously to the second case of Proposition 3.1, one has F ′2 < 0 on (p∗, p

ext), thus
the solution is unique.

Case 2: θ < pext ≤ β:
Since F increases on (θ, 1), then min

[0,1]
G = G(q) < G(pext) = F (pext) ≤ F (β) = F (0). Analogously to

the previous case, F2 is well-defined and continuous in (p∗, p
ext], lim

p→p∗
F2(p) = +∞, and F2 is strictly

positive in (p∗, p
ext]. Therefore, there exists p ∈ (p∗, p

ext] such that

M2 := F2(p) = min
[p∗,pext]

F2 > 0, (25)

and system (24) admits as least one solution if and only if L ≥M2.
Case 3: β < pext < 1:
Consider the function H(q) = F (q) + 1

2f(q)(pext − q) defined in an interval [θ, pext]. For any θ < q <
pext, one can prove that H ′(q) ≥ 0.

Indeed, if q ≤ α2, then f ′(q) ≥ 0, and f(q) > 0. One has H ′(q) = 1
2f(q)+ 1

2f
′(q)(pext−q) > 0. If q >

α2, from Assumption 2.2, the function f is concave in (α2, 1), and hence f ′(q)(pext− q) ≥ f(pext)− f(q).
Thus,

H ′(q) = 1
2 (pext − q)

(
f ′(q) + f(q)

pext−q

)
> 1

2 (pext − q)
(
f ′(q) + f(q)−f(pext)

pext−q

)
≥ 0.
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Therefore, function H increases in (θ, pext). Moreover H(θ) = F (θ) < F (0) and H(pext) = F (pext) >
F (β) = F (0), and so there exists a unique value p∗ ∈ (θ, pext) such that H(p∗) = F (0). Take D∗ > 0

such that D2
∗ = f(p∗)

pext−p∗
. Then, for any D > 0, from Lemma 3.1, there is a unique value q ∈ (θ, pext) such

that G′(q) = 0, G(q) = min
[0,1]

G, and D2 = f(q)
pext−q . If D < D∗, then f(q)

pext−q <
f(p∗)
pext−p∗

.

Let h(q) = f(q)
pext−q , then h′(q) = 1

pext−q

(
f ′(q) + f(q)

pext−q

)
> 0 for q ∈ (θ, pext). So function h is

increasing in (θ, pext), and we can deduce that q < p∗. Hence, min
[0,1]

G = G(q) = F (q) +
1

2
D2(pext − q)2 =

F (q) +
1

2
f(q)(pext − q) = H(q) < H(p∗) = F (0).

Moreover, G(pext) = F (pext) > F (β) = F (0), G(0) > F (0). Thus, there exists a maximal interval
(q∗, q

∗) ⊂ [0, pext] such that G(q) ∈ (F (θ), F (0)) for all q ∈ (q∗, q
∗). We have 0 < q∗ < q < q∗ < pext

and G(q∗) = G(q∗) = F (0). Therefore, F2 is well-defined and continuous in (q∗, q
∗), and lim

p→q∗
F2(p) =

lim
p→q∗

F2(p) = +∞. Reasoning like in the previous case, (24) admits solution if and only if L ≥M3, where

M3 := min
[q∗,q∗]

F2 > 0, (26)

On the other hand, if D ≥ D∗, min
[0,1]

G ≥ F (0), and equation (24) has no solution.

Proof of Theorem 2.1. As we showed in Section 3.1.1, the (SD) steady-state solution p of (2) has p(L)
satisfying equation (21). From Proposition 3.1, we can deduce that for fixed pext ∈ (0, 1), D > 0,
Md(p

ext, D) = min
q
F1(q). Thus, we obtain the results for (SD) steady-state solutions of (2) in Theorem

2.1.
Similarly, Proposition 3.2 provides that for fixed pext ∈ (0, 1), D > 0, we have Mi(p

ext, D) = min
q
F2(q)

when pext ≤ β or D < D∗. Otherwise, Mi(p
ext, D) = +∞.

3.1.3 Existence of non-(SM) solutions

As we can see in the phase portrait in Figure 3, there exist some solutions of (2) which are neither
(SD) nor (SI). These solutions can be non-symmetric or can have more than one (local) extremum. By
studying these cases, we prove Theorem 2.2 as follows

Proof of Theorem 2.2. We can see from Figure 3a that for fixed pext ≤ β,D > 0, the non-(SM) solutions
p of (2) have more than one (local) extreme value because their orbits have at least two intersections with
the axis p′ = 0 (see e.g. T3). Those solutions have the same local minimum values, denoted pmin, and
the same maximum values, denoted pmax. Moreover, we have pmin < θ < pmax, and F (pmin) = F (pmax).

Since the orbits make a round trip of distance 2L, then the more extreme values a solution has, the
larger L is. Hence, to find the minimal value M∗, we study the case when p has one local minimum and
one local maximum with orbit as T3 in Figure 3a. Then we have

G(p(−L)) = G(p(L)) = F (pmin) = F (pmax), (27)

and by using (16), we obtain

2L = F1((p(−L)) +

∫ pmax

pmin

ds√
2F (pmin)− 2F (s)

+ F2(p(L))

= 2 [F1(p(−L)) + F2(p(L))] +

∫ p(−L)

p(L)

ds√
2G(p(L))− 2F (s)

.

Using the same idea as above, we can show that L depends continuously on p(L). Moreover, we know
that Md = minF1, Mi = minF2, therefore there exists a constant M∗ such that (2) admits at least one
non-(SM) solution p if and only if L ≥M∗ > Md +Mi.
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On the other hand, for fixed pext > β,D < D∗, it is possible that (2) admits a non-symmetric
solution with only one minimum. The orbit of this solution is as T4 in Figure 3b. In this case, we have
G(p(L)) = G(p(−L)) = F (pmin) with p(−L) < p(L) and

2L = F2(p(−L)) + F2(p(L)) > 2Mi.

Hence, we only need M∗ > Mi.

3.2 Stability analysis

We first study the principal eigenvalue and eigenfunction for the linear problem. Then by using these
eigenelements, we construct the super- and sub-solution of (1) and prove the stability and instability
corresponding to each case in Theorem 2.3.

Proof of Theorem 2.3. Consider the corresponding linear eigenvalue problem (12). We can see that

φ = cos
(√

λx
)

is an eigenfunction iff
√
λ tan

(
L
√
λ
)

= D. Denote λ1 the smallest positive value of λ

which satisfies this equality, thus L
√
λ1 ∈

(
0, π2

)
. Hence, λ1 ∈

(
0, π

2

4L2

)
. Moreover, for any x ∈ (−L,L),

the corresponding eigenfunction φ1(x) = cos
(√
λ1x

)
takes values in (0, 1).

Proof of stability: Now let p be a steady-state solution of (1) governed by (2). First, we prove that
if f ′(p(x)) < λ1 for any x ∈ (−L,L) then p is asymptotically stable. Indeed, since f ′(p(x)) < λ1, there
exist positive constants δ, γ with γ < λ1 such that for any η ∈ [0, δ],

f(p+ η)− f(p) ≤ (λ1 − γ)η, f(p)− f(p− η) ≤ (λ1 − γ)η, (28)

on (−L,L). Now consider

p(t, x) = p(x) + δe−γtφ1(x), p(t, x) = p(x)− δe−γtφ1(x).

Assume that pinit(x) ≤ p(x) + δφ1(x). Then by (28), we have that p is a super-solution of (1) because

∂tp− ∂xxp = (λ1 − γ)δe−γtφ1(x) + f(p) ≥ f(p+ δe−γtφ1(x)) = f(p),

due to the fact that 0 < δe−γtφ1(x) < δ for any t > 0, x ∈ (−L,L). Moreover, at the boundary points
one has ∂p

∂ν +D(p− pext) = ∂p
∂ν +D(p− pext) = 0.

Similarly, if we have pinit(x) ≥ p(x) − δφ1(x), and so p is a sub-solution of (1). Then, by the

method of super- and sub-solution (see e.g. [19]), the solution p0 of (1) satisfies p ≤ p0 ≤ p. Hence,

|p0(t, x)− p(x)| ≤ δe−γtφ1(x). Therefore, we can conclude that, whenever |pinit(x)− p(x)| ≤ δφ1(x) for
any x ∈ (−L,L), the solution p0 of (1) converges to the steady-state p when t → +∞. This shows the
stability of p.

Proof of instability: In the case when f ′(p(x)) > λ1, there exist positive constants δ, γ, with
γ < λ1, such that for any η ∈ [0, δ],

f(p+ η)− f(p) ≥ (λ1 + γ)η, (29)

on (−L,L).
For any pinit > p, there exists a positive constant σ < 1 such that pinit ≥ p + δ(1 − σ). Then

p̃(t, x) = p(x) + δ(1 − σe−γ
′t)φ1(x), with γ′ < γ small enough, is a sub-solution of (1). Indeed, by

applying (29) with η = δ(1− σe−γ′t)φ1(x) ∈ [0, δ] for any x ∈ (−L,L), we have

∂tp̃− ∂xxp̃ = γ′δσe−γ
′tφ1(x) + λ1δ(1− σe−γ

′t)φ1(x) + f(p) ≤ f(p+ δ(1− σe−γ
′t)φ1(x))

if γ ≥ γ′σe−γ
′t

1−σe−γ′t = γ′σ

eγ′t−σ for any t ≥ 0. This inequality holds when we choose γ′ ≤ γ(1−σ)
σ . Now, we have

that p̃ is a sub-solution of (1), thus for any t ≥ 0, x ∈ (−L,L), the corresponding solution p0 satisfies

p0(t, x)− p(x) ≥ p̃(t, x)− p(x) ≥ δ(1− σe−γ
′t)φ1(x).

Hence, for a given positive ε < δmin
x
φ1(x), when t → +∞, solution p0 cannot remain in the ε-

neighborhood of p even if pinit − p is small. This implies the instability of p.
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Proof of Corollary 2.1. For pext ≤ α1 < θ,D > 0, from Theorem 2.1, the (SI) steady-state solution p
exists for any L > 0 and is unique, p(x) ≤ pext ≤ α1 for all x ∈ (−L,L). Moreover, from Assumption
2.2, the reaction term f has f ′(q) < 0, for any q ∈ (0, α1). Then, for any x ∈ (−L,L), f ′(p(x)) ≤ 0 < λ1.
Hence, p is asymptotically stable.

Besides, from Theorems 2.1 and 2.2, for any L > 0 such that L < Md(p
ext, D) < M∗(p

ext, D), (1)
has neither (SD) nor non-(SM) steady-state solutions. So the (SI) steady-state solution is the unique
steady-state solution.

Using a similar argument for the case pext ≥ α2, we obtain Corollary 2.1.

4 Application to the control of dengue vectors by the introduc-
tion of the bacterium Wolbachia

4.1 Model

In this section, we show an application of our model to the control of mosquitoes using Wolbachia.
Mosquitoes of genus Aedes are the vector of many dangerous arboviruses, such as dengue, zika, chikun-
gunya and others. There exists neither effective treatment nor vaccine for these vector-borne diseases,
and in such conditions, the main method to control them is to control the vector population. A bio-
logical control method using a bacterium called Wolbachia (see [10]) was discovered and developed with
this purpose. Besides reducing the ability of mosquitoes to transmit viruses, Wolbachia also causes an
important phenomenon called cytoplasmic incompatibility (CI) on mosquitoes. More precisely, if a wild
female mosquito is fertilized by a male carrying Wolbachia, its eggs almost cannot hatch. For more
details about CI, we refer to [32]. In the case of Aedes mosquitoes, Wolbachia reduces lifespan, changes
fecundity, and blocks the development of the virus. However, it does not influence the way mosquitoes
move.

In [26], model (3), (4) was considered with n1 = ni the density of the mosquitoes which are infected
by Wolbachia and n2 = nu the density of wild uninfected mosquitoes. Consider the following positive
parameters:
• du, δdu: death rate of, respectively uninfected mosquitoes and infected mosquitoes, δ > 1 since

Wolbachia reduces the lifespan of the mosquitoes;
• bu, (1− sf )bu: birth rate of, respectively uninfected mosquitoes and infected ones. Here sf ∈ [0, 1)

characterizes the fecundity decrease;
• sh ∈ (0, 1]: the fraction of uninfected females’ eggs fertilized by infected males that do not hatch,

due to the cytoplasmic incompatibility (CI);
• K: carrying capacity, A: diffusion coefficient.
Parameters δ, sf , sh have been estimated in several cases and can be found in the literature (see [1]

and references therein). We always assume that sf < sh (in practice, sf is close to 0 while sh is close to
1).

Several models have been proposed using these parameters. In the present study, a system of Lotka-
Volterra type is proposed, where the parameter ε > 0 is used to characterize the high fertility as follows

∂tn
ε
i −A∂xxnεi = (1− sf )

bu
ε
nεi

(
1− nεi + nεu

K

)
− δdunεi , (30a)

∂tn
ε
u −A∂xxnεu =

bu
ε
nεu

(
1− sh

ni
nεi + nεu

)(
1− nεi + nεu

K

)
− dunεu, (30b)

where the reaction term describes birth and death. The factor
(

1− sh nεi
nεi+n

ε
u

)
characterizes the cytoplas-

mic incompatibility. Indeed, when sh = 1, no egg of uninfected females fertilized by infected males can

hatch, that is, there is complete cytoplasmic incompatibility. The factor becomes
nεu

nεi+n
ε
u

which means

the birth rate of uninfected mosquitoes depends on the proportion of uninfected parents because only an
uninfected couple can lay uninfected eggs. Whereas, sh = 0 means that all the eggs of uninfected females

hatch. In this case, the factor
(

1− sh nεi
nεi+n

ε
u

)
becomes 1, so the growth rate of uninfected population is

not altered by the pressure of the infected one.
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In paper [26], the same model was studied in the entire space R. In that case, the system (30) has
exactly two stable equilibria, namely the Wolbachia invasion steady state and the Wolbachia extinction
steady state. In this paper, the authors show that when ε → 0 and the reaction terms satisfy some

appropriate conditions, the proportion pε =
nεi

nεi+n
ε
u

converges to the solution p0 of the scalar equation

∂tp
0 −A∂xxp0 = f(p0), with the reaction term

f(p) = δdush
p(1− p)(p− θ)

shp2 − (sf + sh)p+ 1
, (31)

with θ =
sf+δ−1
δsh

. We will always assume that sf + δ(1 − sh) < 1, so θ ∈ (0, 1), and f is a bistable

function on (0, 1). The two stable steady states 1 and 0 of (1) correspond to the success or failure of the
biological control using Wolbachia.

4.2 Mosquito population in presence of migration

In this study, the migration of mosquitoes is taken into account. Typically, the inflow of wild unin-
fected mosquitoes and the outflow of the infected ones may influence the efficiency of the method using
Wolbachia. Here, to model this effect, system (30) is considered in a bounded domain with appropriate
boundary conditions to characterize the migration of mosquitoes. In one-dimensional space, we consider
Ω = (−L,L) and Robin boundary conditions as in (4) at points x = −L, and x = L

∂nεi
∂ν

= −D(nεi − n
ext,ε
i ), (32a)

∂nεu
∂ν

= −D(nεu − next,ε
u ), (32b)

where next,ε
i , next,ε

u do not depend on t and x but depend on parameter ε > 0. Denote pε =
nεi

nεi+n
ε
u
, nε =

1
ε

(
1− nεi+n

ε
u

K

)
. In Section A, we prove that when ε→ 0, up to extraction of sub-sequences, nε converges

weakly to n0 = h(p0) for some explicit function h, and pε converges strongly towards solution p0 of (1)

where pext is the limit of
next,ε
i

next,ε
i +next,ε

u
when ε→ 0, and the reaction term f as in (31). Function f satisfies

Assumptions 2.1 and 2.2, so the results in Theorem 2.1 and 2.3 can be applied to this problem. By
changing the spatial scale, we can normalize the diffusion coefficient into A = 1.

In this application, the parameters L,D, pext correspond to the size of Ω, the migration rate of
mosquitoes, and the proportion of infected mosquitoes surrounding the boundary. The main results
in the present paper give information about the existence and stability of equilibria depending upon
different conditions for these parameters. Especially, from Corollary 2.1, we obtain that when the size L
of the domain is small, there exists a unique equilibrium for this problem and its values depend on the
proportion of mosquitoes carrying Wolbachia outside the domain (pext). More precisely, when pext is small
(i.e., pext ≤ α1), the solution of (1) converges to the steady-state solution close to 0, which corresponds to
the extinction of mosquitoes carrying Wolbachia. Therefore, in this situation, the replacement strategy
fails because of the migration through the boundary. Otherwise, when the proportion outside the domain
is high (i.e., pext ≥ α2), then the long-time behavior of solutions of (1) has values close to 1, which means
that the mosquitoes carrying Wolbachia can invade the whole population.

4.3 Numerical illustration

In this section, we present the numerical illustration for the above results. Parameters are fixed according
to biologically relevant data (adapted from [5]). Time unit is the day, and parameters per day are in
Table 2. Then, the reaction term f in (31) has θ = 0.2375, β ≈ 0.3633, α1 ≈ 0.12, α2 ≈ 0.7. As proposed
in section 3 of the modeling article [17], we may pick the value 830m2 per day for the diffusivity of Aedes
mosquitoes. Choose A = 1, so the x-axis unit in the simulation corresponds to

√
830/1 ≈ 29 m.

In the following parts, we check the convergence of pε when ε→ 0 in 4.3.1. In 4.3.2, corresponding to
different parameters, we compute numerically the solutions of (1) and (2) to check their existence and
stability.
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Table 2: Parameters for the numerical illustration

Parameters bu du δ σ sf sh

Values 1.12 0.27 10
9 1 0.1 0.8

(a) ε = 0.1 (b) ε = 0.05 (c) ε = 0.01

Figure 4: Convergence of pε to p0 as ε goes to zero. The solid lines represent the solution p0(t, x) of (1)

at t = 50 days. The dashed lines represent the proportion pε =
nεi

nεi+n
ε
u

of solution nεi , n
ε
u of system (30),

(32) at t = 50.

4.3.1 Convergence to the scalar equation

Consider a mosquito population with a large fecundity rate, that is, ε � 1. Model (30) with boundary
condition in (32) takes into account the migration of mosquitoes.

Fix D = 0.05, pext = 0.1 and L = 2, the system (30), (32) is solved numerically thanks to a semi-
implicit finite difference scheme with 3 different values of the parameters ε. The initial data are chosen
such that nεi(t = 0) = nεu(t = 0), that is, pinit = 0.5. In Figure 4, at time t = 50 days, the numerical

solutions of (1) are plotted with blue solid lines, the proportions pε =
nεi

nεi+n
ε
u

are plotted with dashed

lines. We observe that when ε goes to 0, the proportion pε converges to the solution p0 of system (1).

4.3.2 Steady-state solutions

For the different values of pext, the values of the integrals F1 and F2 as functions of p(L) in (20) and (23)
are plotted in Figure 5. For fixed values of D and pext, Figure 5 can play the role of bifurcation diagrams
that show the relation between the value p(L) of symmetric solutions p and parameter L. Then, we can
obtain the critical values of parameter L. Next, we compute numerically the (SM) steady-state solutions
of (1) with different values of L > 0, D > 0, pext ∈ (0, 1).
Numerical method: To approximate the (SM) steady-state solution, we use the Newton method to
solve nonlinear equations and follow these steps:
◦ Step 1: Solve L = Fi(p(L)) for i = 1 or 2, and obtain the values of p(L).
◦ Step 2: Find p(0) by solving (17).

◦ Step 3: For each x in (0, L), interpolate p(x) by solving x =

∫ p(x)

p(0)

(−1)kds√
2F (p(0))− 2F (s)

due to (16)

with k = 1 if p is decreasing and k = 2 if p is increasing on (0, x).
The construction of a non-(SM) steady-state solution is more sophisticated since it is hard to find

p(L) for a fixed L like in step 1. We presented a numerical non-(SM) equilibrium in Figure 6c where
we first fixed a value p(L). Then similarly to step 2, we solved (27) to find all the extreme values of p.
Finally, we applied step 3 with p(0) replaced by pmin or pmax.

We also plot the time dynamics of the solution p0(t, x) of (1) at t = 10, 20, 40, 60, 100 to verify the
asymptotic stability of steady-state solutions. Next, we consider different values of pext and present our
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(a) pext = 0.1, D = 0.05 (b) pext = 0.8, D = 0.05 (c) pext = 0.8, D = 0.5

Figure 5: The blue and red solid lines represent respectively functions F1 and F2 of p(L)
.

observation in each case.
• Case 1: pext = 0.1 < α1.

For D = 0.05 fixed, we observe in Figure 5a that for any L > 0, equation F2(p(L)) = L always
admits exactly one solution. Thus, there always exists one (SI) steady-state solution with small values.
We approximate that

Md(0.1, 0.05) = M1 ≈ 0.8819, M∗(0.1, 0.05) ≈ 8.625.

Also from Figure 5a, we observe that when L = M1, a bifurcation occurs and (1) admits an (SD) steady-
state solution, and when L > M1 one can obtain two (SD) solutions. Moreover, when L ≥ M∗, there
exist non-symmetric steady-state solutions. We do numerical simulations for two values of L as follows.

For L = 0.5 < M1, the unique equilibrium p21 is (SI) and has values close to 0 (see Figure 6a).
Solution p0 of (1) with any initial data converges to p21. This simulation is coherent with the asymptotic
stability that we proved in Corollary 2.1.

For L = 8.96 > M∗ > M1, together with p21, there exist two more (SD) steady-state solutions,
namely p11, p12, (see Figure 6b). This plot shows that these steady-state solutions are ordered, and the
time-dependent solutions converge to either the largest one p11 or the smallest one p21, while p12 with
intermediate values is not an attractor. In Figure 6c, we find numerically a non-symmetric solution p of
(2) corresponding to orbit T3 as in Figure 3a. Let the initial value pinit ≡ p, then we observe from Figure
6c that p0 still converges to the symmetric equilibrium p21.
Moreover, the value λ1 of Theorem 2.3 in this case is approximately equal to 0.0063. We also obtain
that for any x ∈ (−L,L),

f ′(p11(x)) < 0, f ′(p21(x)) < 0, f ′(p12(x)) > 0.0462, f ′(p(x)) > 0.022.

Therefore, by applying Theorem 2.3, we deduce that the steady-state solutions p11, p21 are asymptotically
stable, p12 and the non-symmetric equilibrium p are unstable. Thus, the numerical simulations in Figure
6 are coherent to the theoretical results that we proved.
• Case 2: pext = 0.8 > α2 > β.

In this case, we obtain D∗ ≈ 0.16. We present numerical illustrations for two cases: D = 0.05 < D∗
and D = 0.5 > D∗.
◦ For D = 0.05 < D∗, we have Mi(0.8, 0.05) = M2 ≈ 10.3646 (see Figure 5b).
For L = 2 < M2, the unique equilibrium p11 is (SD) and has values close to 1 (see Figure 7a). The

time-dependent solution p0 of (1) with any initial data converges to p11. This simulation is coherent to
the asymptotic stability we obtained in Corollary 2.1.

For L = 12 > M2, together with p11, there exist two more (SI) steady-state solutions, namely p21,
p22, and they are ordered (see Figure 7b). In this case, we obtain approximately that λ1 ≈ 0.0063 and
for any x ∈ (−L,L), one has

f ′(p11(x)) < 0, f ′(p21(x)) ∈ (−0.0398, 0.0368), f ′(p22(x)) ∈ (−0.0195, 0.0673).
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(a) L = 0.5 < M1 (b) L = 8.96 > M∗ > M1
(c) L = 8.96 > M∗ > M1

Figure 6: Case pext = 0.1, D = 0.05: The solid lines illustrate the steady-state solutions. The dotted
lines show the initial data of problem (1). The dashed lines represent the solution p0(t, x) with t ∈
{10, 20, 40, 60, 100}. The color of the dashed lines corresponds to the color of the equilibrium that they
converge to.
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(a) L = 2, D = 0.05 < D∗ (b) L = 12, D = 0.05 < D∗ (c) L = 12, D = 0.5 > D∗

Figure 7: Case pext = 0.8: The solid lines illustrate the steady-state solutions. The dotted lines show the
initial data of problem (1). The dashed lines represent the solution p0(t, x) with t ∈ {10, 20, 40, 60, 100}.
The color of the dashed lines corresponds to the color of the equilibrium that they converge to.

By sufficient conditions in Theorem 2.3, we obtain that p11 is asymptotically stable but we can not
conclude the stability for p21 and p22. The time dynamics of p0 in Figure 7b suggests that the smallest
steady-state solution p21 is asymptotically stable and p22 seems to be unstable.
◦ For D = 0.5 > D∗, function F2 is not defined (see Figure 5c), so problem (2) admits only one (SD)

steady-solution, and we obtain that it is unique and asymptotically stable (see Figure 7c).

5 Conclusion and perspectives

We have studied the existence and stability of steady-state solutions with values in [0, 1] of a reaction-
diffusion equation

∂tp− ∂xxp = f(p)

on an interval (−L,L) with cubic nonlinearity f and inhomogeneous Robin boundary conditions

∂p

∂ν
= D(p− pext),

where constant pext ∈ (0, 1) is an analogue of p, and constant D > 0. We have shown how the analysis of
this problem depends on the parameters pext, D, and L. More precisely, the main results say that there
always exists a symmetric steady-state solution that is monotone on each half of the domain. For pext

large, the value of this steady-state solution is close to 1, otherwise, it is close to 0. Besides, the larger
value of L, the more steady-state solutions this problem admits. We have found the critical values of L
so that when the parameters surpass these critical values, the number of steady-state solutions increases.
We also provided some sufficient conditions for the stability and instability of the steady-state solutions.

We presented an application of our results on the control of dengue vector using Wolbachia bacterium
that can be transmitted maternally. Since Wolbachia can help reduce vectorial capacity of the mosquitoes,
the main goal of this method is to replace wild mosquitoes by mosquitoes carrying Wolbachia. In this
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application, we considered p as the proportion of mosquitoes carrying Wolbachia and used the equation
above to model the dynamic of the mosquito population. The boundary condition describes the migration
through the border of the domain. This replacement method only works when p can reach an equilibrium
close to 1. Therefore, the study of the existence and stability of the steady-state solution close to 1 is
meaningful and depends strongly on the parameters pext, D, and L. In realistic situations, the proportion
pext of mosquitoes carrying Wolbachia outside the domain is usually low. Using the theoretical results
proved in this article, one sees that, to have major chances of success, one should try to treat large
regions (L large), well isolated (D small) and possibly applying a population replacement method in a
zone outside Ω (to increase pext by reducing its denominator).

As a natural continuation of the present work, higher dimension problems and more general boundary
conditions can be studied. In more realistic cases, pext can be considered to depend on space and the
periodic solutions can be the next problem for our study. Besides, when an equilibrium close to 1
exists and is stable, one may consider multiple strategies using multiple releases of mosquitoes carrying
Wolbachia. To optimize the number of mosquitoes released to guarantee the success of this method under
the difficulties enlightened by this paper is an interesting problem for future works.

A Asymptotic limit of reaction-diffusion systems

In [26], the authors reduced a 2-by-2 reaction-diffusion system of Lotka-Volterra type modeling two
biological populations to a scalar equation as in (1) when the fecundity rate is very large. This limit
problem was first proved in the whole domain. In the present study, we prove the limit for a system in
a bounded domain with inhomogeneous Robin boundary conditions. In the following part, we recall the
necessary assumptions and present results about this problem.

Although the main result of the paper is in one-dimensional space, the following result holds in any
dimension d. Let Ω ⊂ Rd be a bounded domain and consider the initial-boundary-value problem (33)
depending on parameter ε > 0,

∂tn
ε
1 −∆nε1 = nε1f

ε
1(nε1, n

ε
2), (t, x) ∈ (0, T )× Ω, (33a)

∂tn
ε
2 −∆nε2 = nε2f

ε
2(nε1, n

ε
2), (t, x) ∈ (0, T )× Ω, (33b)

nε1(0, x) = ninit,ε
1 (x), nε2(0, x) = ninit,ε

2 (x), x ∈ Ω, (33c)

∂nε1
∂ν

= −D(nε1 − n
ext,ε
1 ),

∂nε2
∂ν

= −D(nε2 − n
ext,ε
2 ), (t, x) ∈ (0, T )× ∂Ω, (33d)

where we assume that f ε1 , f
ε
2 are smooth enough to guarantee existence and uniqueness of a classical

solution for fixed ε. More precisely, the following assumptions are made:

Assumption A.1. (Initial and boundary conditions). Assume that ninit,ε
1 , ninit,ε

2 ∈ L∞(Ω) with

ninit,ε
1 , ninit,ε

2 ≥ 0 and ninit,ε
2 is not identical to 0.

D > 0 is constant, next,ε
1 ≥ 0, next,ε

2 > 0 do not depend on time t and position x.

To study the limit problem, we define the ”rescaled total population” nε and proportion pε, by

nε :=
1

ε
− nε1 − nε2, pε :=

nε1
nε1 + nε2

.

Next, we recall some assumptions that were proposed in [26] on the families of functions (f ε1 , f
ε
2)ε>0 to

study the convergence of pε when ε→ 0

Assumption A.2. Function f ε1 , f
ε
2 are of class C2(R2

+{0}), and for i ∈ {1, 2} there exists Fi ∈ C2(R2)
(independent of ε) such that

f εi (nε1, n
ε
2) = Fi(n

ε, pε). (34)

That is, we may write f εi (nε1, n
ε
2) = Fi

(
1
ε − n

ε
1 − nε2,

nε1
nε1+nε2

)
for i ∈ {1, 2}.

Then, we can deduce that pε and nε satisfy system (35) as follows:
In (0, T )× Ω, we have

∂tn
ε −∆nε = −(

1

ε
− nε) [pεF1(nε, pε) + (1− pε)F2(nε, pε)] , (35a)
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∂tp
ε −∆pε +

2εA

1− εnε
∇pε · ∇nε = pε(1− pε)(F1 − F2)(nε, pε), (35b)

on the boundary (0, T )× ∂Ω, we have

∂nε

∂ν
= −D(nε − next,ε),

∂pε

∂ν
= −D(pε − pext,ε)

1− εnext,ε

1− εnε
, (35c)

at time t = 0, for any x ∈ Ω, the initial data read

nε(0, x) = ninit,ε(x), pε(0, x) = pinit,ε(x), (35d)

where (F1 − F2)(nε, pε) = F1(nε, pε)− F2(nε, pε), and

ninit,ε :=
1

ε
− ninit,ε

1 − ninit,ε
2 , pinit,ε :=

ninit,ε
1

ninit,ε
1 + ninit,ε

2

,

next,ε :=
1

ε
− next,ε

1 − next,ε
2 , pext,ε :=

next,ε
1

next,ε
1 + next,ε

2

.

Let us denote H(n, p) = −pF1(n, p)− (1− p)F2(n, p). The following assumption guarantees existence of
zeros of H given by (n, p) = (h(p), p) for each p ∈ [0, 1].

Assumption A.3. In addition to Assumption A.2,
(i) There exists B > 0 such that for all n ≥ 0, p ∈ [0, 1], ∂nH(n, p) ≤ −B,
(ii) For all p > 0, H(0, p) > 0.

Conditions (i) and (ii) imply that for all p ∈ [0, 1], there exists a unique n =: h(p) ∈ R∗+ such that
H(n, p) = 0. We have H ∈ C2(R2

+) (from Assumption A.2) thus h ∈ C2(0, 1), with H(h(p), p) = 0 for all
p ∈ [0, 1].

The following assumptions are made for the initial data and boundary conditions

Assumption A.4. There exists a function pinit ∈ L2(Ω) such that pinit,ε ⇀
ε→0

pinit weakly in L2(Ω).

Function ninit,ε − h(0) ∈ L2 ∩ L∞(Ω) is uniformly bounded in ε > 0.

Assumption A.5. There exists positive constants ε̃ > 0, K̃ > 0 such that for any ε ∈ (0, ε̃), we have

|next,ε| < K̃.
There exists a constant pext ∈ (0, 1) not depending on ε such that pext,ε →

ε→0
pext

Convergence result. For fixed ε > 0, existence of solutions of (35) is classical (see, e.g. [20]). Following
the idea in [26], we present the asymptotic limit of the proportion pε and nε in the following theorem.

Theorem A.1. Assume that Assumptions A.1-A.5 are satisfied and consider the solution (nε, pε) of
(35). Then, for all T > 0, we have the convergencep

ε −−−→
ε→0

p0 strongly in L2(0, T ;L2(Ω)), weakly in L2(0, T ;H1(Ω)),

nε − h(pε) −−−→
ε→0

0 strongly in L2(0, T ;L2(Ω)), weakly in L2(0, T ;H1(Ω)),

where p0 is the unique solution of
∂tp

0 −∆p0 = p0(1− p0)(F1 − F2)(h(p0), p0), in (0, T )× Ω,

p0(0, ·) = pinit in Ω
∂p0

∂ν = −D(p0 − pext) on (0, T )× ∂Ω.

We recall the apriori estimates of [26] without proof and present some bounds on the boundary in
Appendix A.1. Then we use the Aubin-Lions lemma and trace theorem to prove the limit in Appendix
A.2.
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A.1 Uniform a priori estimates

First, we establish the uniform bound with respect to ε in L∞ in the following lemma

Lemma A.1. Under Assumptions A.1-A.5, for a given value ε > 0, let (nε, pε) be the unique solution
of (35). Then, for any T > 0, 0 ≤ pε ≤ 1 in [0, T ] × Ω for all ε > 0. Also, there exists ε0 > 0,K0 > 0
such that for any ε ∈ (0, ε0), ||nε||L∞([0,T ]×Ω) ≤ K0.

Moreover, nε is uniformly bounded on [0, T ]× ∂Ω.

Proof. Using the same method as in Lemma 5 of [26], we obtain the uniform bounds for pε in [0, T ]×Ω,
and for nε in L∞([0, T ]× Ω).

Moreover, for any x ∈ ∂Ω, let ν be the normal outward vector through x. Then, for δ > 0
small enough, x − δν ∈ Ω. From the boundary condition for nε in (35), one has for t ∈ [0, T ],

lim
δ→0+

nε(t, x)− nε(t, x− δν)

δ
= −D(nε(t, x)− next,ε).

So for any η > 0, there exists δ > 0 small such that∣∣∣nε(t,x)−nε(t,x−δν)
δ +D(nε(t, x)− next,ε)

∣∣∣ ≤ η.

Thus, nε(t, x)(1 + δD) ≤ nε(t, x− δν) + δDnext,ε + δη, then for η and δ small enough, for any ε < ε0,

t ∈ [0, T ], x ∈ ∂Ω, since x − δν ∈ Ω, one has |nε(t, x)| ≤ K0 + δDK̃ + δη < K1. Then nε is uniformly
bounded on [0, T ]× ∂Ω and ||nε||L∞([0,T ]×∂Ω) ≤ K1.

The following lemmas can be proved analogously to the proof in [26].

Lemma A.2. Under Assumptions A.1-A.5, for ε > 0 small enough, let (nε, pε) be the unique solution
of (35). We have the following uniform estimates

ε

∫ T

0

∫
Ω

|∇nε|2dxdt ≤ C0,

∫ T

0

∫
Ω

|∇pε|2dxdt ≤ C, (36)

for some positive constants C0 and C.

Denote M ε := nε−h(pε) where h is defined in Assumption A.3. The following provide the convergence
of M ε.

Lemma A.3. Let T > 0, under Assumptions A.1-A.5, one has M ε → 0 in L2(0, T ;L2(Ω)) when ε→ 0.

Now, we provide a uniform estimate for ∂tp
ε with respect to ε in the following lemma.

Lemma A.4. Under Assumptions A.1-A.5, for ε > 0 small enough, ∂tp
ε is uniformly bounded in

L2(0, T ;X ′) with respect to ε, where X = H1(Ω) ∩ L∞(Ω).

A.2 Proof of convergence

The idea to prove Theorem A.1 is relied on the relative compactness obtained from the Aubin-Lions
lemma below (see [23])

Lemma A.5 (Aubin-Lions). Let T > 0, q ∈ (1,∞), and (ψn)n a bounded sequence in Lq(0, T ;B), where
B is a Banach space. If (ψn) is bounded in Lq(0, T ;X) and X embeds compactly in B, and if (∂tψn)n is
bounded in Lq(0, T ;X ′) uniformly with respect to n, then (ψn)n is relatively compact in Lq(0, T ;B).

Proof of Theorem A.1. We use 3 steps to proof Theorem A.1. First, we obtain the relative compact-
ness of (pε) by applying Aubin-Lions lemma, and prove that there exists (up to extracting subsequences)
a limit function. Then, we study its behavior on the boundary using the trace theorem. Finally, thanks
to our uniform bounds, we show that the limit function satisfies a problem whose solution is unique.

Step 1: In our problem, we need to apply the Lions-Aubin lemma with q = 2, B = L2(Ω) and
X = H1(Ω) ∩ L∞(Ω) to (ψε) = (pε)ε. The compact embedding from X to B is valid by the Rellich-
Kondrachov theorem. In the previous section, we have already obtained uniform estimates that are
sufficient to apply the Aubin-Lions lemma. The sequence (pε)ε is bounded in L2(0, T ;L2(Ω)) due to
Lemma A.1
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||pε||2L2(0,T ;L2(Ω)) =

∫ T

0

∫
Ω

|pε|2dxdt ≤ ||pε||2L∞(0,T ;L2(Ω))meas(Ω)T <∞,

for ε < ε0 small enough. Then, due to Lemma A.2, this sequence is bounded in L2(0, T ;X). The sequence
(∂tp

ε)ε is bounded in L2(0, T ;X ′) by Lemma A.4. Thus, we can apply Aubin-Lions lemma and deduce
that (pε)ε is strongly relatively compact in L2(0, T ;L2(Ω)). Therefore, there exists p0 ∈ L2(0, T ;H1(Ω))
such that, up to extraction of subsequences, we have pε → p0 strongly in L2((0, T ) × Ω) and a.e.,
∇pε ⇀ ∇p0 weakly in L2((0, T )× Ω).

Moreover, by the triangle inequality we have |nε − h(p0)| ≤ |nε − h(pε)| + |h(pε) − h(p0)| ≤ |nε −
h(pε)| + ||h′||L∞([0,1])|pε − p0|. From the strong convergence of pε and M ε in Lemma A.3 when ε → 0,
we can deduce the following strong convergence in L2(0, T ;L2(Ω))

nε → n0 := h(p0) (37)

Step 2: Now, let us focus on the behavior on the boundary of the domain. Let the linear operator
γ be the trace operator on the boundary (0, T ) × ∂Ω. For any ε ∈ (0, ε0) small enough, we have
γ(pε) = pε |(0,T )×∂Ω, then by the trace theorem, one has

||γ(pε)||L2(0,T ;L2(∂Ω)) ≤ C||pε||L2(0,T ;H1(Ω))

where the constant C only depends on Ω. Then

||γ(pε)||2L2(0,T ;L2(∂Ω)) ≤ C
2

∫ T

0

∫
Ω

|pε|2dxdt+ C2

∫ T

0

∫
Ω

|∇pε(t, ·)|2dxdt <∞,

due to Lemma A.1 and A.2. Hence, we can deduce that γ(pε) is weakly convergent in L2((0, T )× ∂Ω).
Let γ0 := lim

ε→0
γ(pε). For any function ψ ∈ C1(Ω), and for i = 1, . . . , d, by Green’s formula one has∫

Ω

∂ip
εψdx = −

∫
Ω

pε∂iψ +

∫
∂Ω

ψγ(pε)νidS.

Since pε converges weakly to p0 in H1(Ω), when ε→ 0, one has∫
Ω

∂ip
0ψdx = −

∫
Ω

p0∂iψ +

∫
∂Ω

ψγ0νidS.

We can deduce that γ0 = γ(p0).
Step 3: We pass to the limit in the weak formulation of (35), for any test function ψ such that

ψ ∈ C2([0, T ]× Ω), ψ(T, ·) = 0 in Ω, one has

−
∫ T

0

∫
Ω

pε∂tψdxdt︸ ︷︷ ︸
strong convergence

+A

∫ T

0

∫
Ω

∇pε · ∇ψdxdt︸ ︷︷ ︸
weak convergence

=

∫
Ω

pinit,εψ(0, ·)dx︸ ︷︷ ︸
weak convergence

−2εA

∫ T

0

∫
Ω

ψ

1− εnε
∇pε∇nεdxdt︸ ︷︷ ︸

bounded as ε→0

+

∫ T

0

∫
Ω

ψpε(1− pε)(F1 − F2)(nε, pε)dxdt︸ ︷︷ ︸
strong convergence

−DA
∫ T

0

∫
∂Ω

(pε − pext,ε)
1− εnext,ε

1− εnε
dS︸ ︷︷ ︸

weak convergence

.

The weak convergence of the last term on the boundary is obtained from Lemma A.1 and Assumption
A.5. When ε < ε0, we have next,ε, nε are uniformly bounded on (0, T )×Ω with respect to ε, then 1−εnext,ε

1−εnε

converges strongly to 1 when ε → 0. From the previous step, one has pε|∂Ω = γ(pε) ⇀ γ(p0) weakly
in L2((0, T ) × ∂Ω). Passing to the limit, we obtain that p0 ∈ L2(0, T ;H1(Ω)) is a weak solution of the
following problem 

∂tp
0 −A∆p0 = p0(1− p0)(F1 − F2)(n0, p0) in (0, T )× Ω,

p0(0, ·) = pinit in Ω
∂p0

∂ν = −D(p0 − pext) on (0, T )× ∂Ω.

23



Using (37), we can deduce that this problem is a self-contained initial-boundary-value problem. Moreover,
since 0 and 1 are respectively sub- and super-solutions of this problem, it admits a unique classical
solution with values in [0, 1]. Hence, all the extracted sub-sequences converge to the same limit p0 and
p0|∂Ω = γ(p0).
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