
HAL Id: hal-03775870
https://hal.science/hal-03775870

Submitted on 13 Sep 2022

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Distributed under a Creative Commons Attribution - NonCommercial 4.0 International License

Variable-Length Instruction Set: Feature or Bug?
Ihab Alshaer, Brice Colombier, Christophe Deleuze, Vincent Beroulle, Paolo

Maistri

To cite this version:
Ihab Alshaer, Brice Colombier, Christophe Deleuze, Vincent Beroulle, Paolo Maistri. Variable-Length
Instruction Set: Feature or Bug?. 25th Euromicro Conference on Digital System Design (DSD 2022),
Aug 2022, Maspalomas, Spain. �hal-03775870�

https://hal.science/hal-03775870
http://creativecommons.org/licenses/by-nc/4.0/
http://creativecommons.org/licenses/by-nc/4.0/
https://hal.archives-ouvertes.fr


Variable-Length Instruction Set: Feature or Bug?
Ihab Alshaer∗†, Brice Colombier†, Christophe Deleuze∗, Vincent Beroulle∗, Paolo Maistri†

∗Univ. Grenoble Alpes, Grenoble INP1, LCIS, 26000 Valence, France
†Univ. Grenoble Alpes, CNRS, Grenoble INP1, TIMA, 38000 Grenoble, France

{first.last}@univ-grenoble-alpes.fr

Abstract—With the increasing complexity of digital applica-
tions, the use of variable-length instruction sets became essential,
in order to achieve higher code density and thus better perfor-
mance. However, security aspects must always be considered, in
particular with the significant improvement of attack techniques
and equipment. Fault injection, in particular, is among the most
interesting and promising attack techniques thanks to the recent
advancements. In this article, we provide proper characterization,
at the instruction set architecture (ISA) level, for several faulty
behaviors that can be obtained when targeting a variable-length
instruction set. We take into account the binary encoding of
instructions, and show how the obtained behaviors depend on
the alignment of the instructions in the memory. Moreover, we
are also able to give a better insight on previous results from
the literature, that were still partially unexplained. We also show
how the observed behaviors can be exploited in various security
contexts.

Index Terms—variable-length instruction set, fault injection.

I. INTRODUCTION

Digital systems complexity, including their running applica-
tions, is continuously increasing. This opens the doors to two
considerations: on the one hand, the need for high performance
and new methods to deal with such advances; on the other
hand, new vulnerabilities could appear at different levels of a
digital system and can be exploited by attackers.

Digital systems may contain sensitive information that can
be effectively protected through cryptographic algorithms, usu-
ally implemented in software on an embedded microprocessor.
Such implementations, however, might be vulnerable to attacks
that aim at extracting this sensitive information, in particular
when these attacks do not require years of computations to
break an algorithm, and here, physical attacks can take place.

Fault injection is an effective physical attack, belonging
to the family of active attacks. In this setting, the attacker
has physical access to the digital device or its surrounding
environment, and will try to change the normal behavior of
the device by injecting one or more faults, then observing the
erroneous behavior. The resulting fault or faults may lead to
an interesting behavior that could be further exploited as a
vulnerability.

To perform the fault injection, a physical interference needs
to be applied to the digital device. The interference can be in
a form of radiations [1], laser beams [2], [3], electromagnetic
(EM) pulses [4], [5], variations in the power supply [6],
perturbations to the clock signal [7], [8], or changing the

1Institute of Engineering Univ. Grenoble Alpes

environmental conditions such as the temperature [9], just to
cite the most widespread techniques.

Several research studies have been conducted to characterize
the faults at the instruction set architecture (ISA) level to
propose usable fault models, which are the abstract representa-
tions of the underlying physical phenomena: in order to build
efficient countermeasures against fault attacks, realistic fault
models are required. The choice of ISA level is due to the fact
that this can be considered as the focal point for bringing high
(software) and low (hardware) levels of abstraction together.
The majority of the proposed fault models, in fact, describe
the effects on the instruction itself: for this reason, instruction
skip and instruction corruption are the most used models. In
particular, the instruction skip (which can also be described
as a replacement with one or more NOPs) can affect one [5],
[7], [8], two [8] or multiple instructions [3], [4], [10]. It is
important to highlight, however, that in all of the previous
works, the authors always refer to the skip model only for
complete instructions, either one or more. In [3] and [4], for
instance, the authors refer to the multiple skip as a number
of bits or number of bytes, which is related to the size of the
instruction cache, but in any case, it was always skipping an
integer number of instructions. With respect to the instruction
corruption, this may be related to the opcode [2], or the
operands [2], [5], [6], either destination or source operands. All
these works described the instruction corruption with respect
to the targeted instruction itself, without taking into considera-
tion any additional constraints. And most importantly, several
observed effects still remained unexplained.

In [8], the authors provided fault effect characterization at
ISA level after performing clock glitch fault injection cam-
paigns on ARM Cortex-M4 processor. Some of their observed
faulty behaviors could not be explained, such as the corrupted
values that are found in some registers, independently of their
actual use in the code. Also, the reason of having single
or double skip was not clear. Similarly, EM fault injection
campaigns on ARM Cortex-A9 processor have been carried
out in [5] to provide characterization at ISA level as well:
here, the authors explicitly stated that some of the obtained
faults remained unexplained. In addition, [11] described EM
fault campaigns on two modern processors: ARM BCM2837,
which embeds Cortex-A53, and Intel Core i3-6100T CPU.
The authors also provided characterization at ISA level to
propose general fault models for different architectures: one of
their proposed models is random register corruption; moreover,
some of their faults were still left unexplained, with unknown



fault model. Finally, in [6], [12], [13], the authors showed that
modifying the program counter, as a result of fault injection
attacks, is code dependent in terms of instructions, registers
and/or immediate values, without further explanation.

We believe that this work can explain the rationale behind
several of the inferred fault models in previous works, and also
help in explaining most of the unexplained faulty behaviors.
To our knowledge, there is no research that takes into con-
sideration whether the targeted ISA supports variable-length
instructions or not, nor uses this knowledge to explain the
obtained results. In particular, they never consider whether the
instruction bits fetched from the memory are corresponding to
complete instructions or not, as the fetch size is always fixed
while the ISA may support variable-length instructions. How
such information can be exploited in a security application, or
taken into account when designing countermeasures has never
been discussed either.

In this article, we present two new inferred fault models:
skip 32 bits, and skip & repeat 32 bits that are applied on
the encoding of the instructions. These two models allow us
to explain a wide range of the obtained faulty behaviors at
the ISA level, regardless of the targeted instructions. This
allows providing proper characterization for the effects of
the observed faulty behaviors. Also, we show how the faulty
behaviors will differ depending on the alignment of the code
in memory. In other words, the difference relies on the
fact of whether the fetched 32 bits correspond to the same
instruction or not. Finally, we provide various examples to
violate a predefined security property in a specific program
by exploiting the obtained results.

The rest of the article is organized as follows: Section II
provides a background on the variable-length instruction sets.
Section III describes the experimental setup. The results and
the analysis are presented in Section IV. Section V provides an
exploitation example for one of the observed faulty behaviors.
The article is concluded along with the perspectives in Section
VI.

II. VARIABLE-LENGTH INSTRUCTION SETS

Reducing code size is one of the earliest applied methods
to reduce power consumption and memory space, and with
them the overall cost of a digital system, which is highly
affected by program code and the fetch stage in the pipeline
[14]. Code size reduction, which aims at reaching the highest
possible code density and hence better performance, can be
achieved by using a variable-length instruction set [14], [15],
[16], [17]. Additionally, less power is consumed due to the
smaller number of fetches [15].

A variable-length instruction set can be described as a
combination of two sets of instructions: short instructions
with regard to their encoding, nonetheless providing the same
functionality as their corresponding instructions, which have
larger encoding. This set can also be called compressed
set. The second set consists of instructions that have larger
encoding and cannot be compressed while providing the same

functionality. High code density can be achieved by the com-
pressed instructions, while the second set allows preserving the
high performance. An example of the effect of ISA on cost and
performance is the instruction cache: shorter encoding needs
smaller caches for the same performance [17], [18]. Therefore,
having shorter encoding will have fewer cache misses (with
a given size), thus increasing the overall throughput of the
processor. On the other hand, dealing with different versions
of encoding will increase the complexity of the instruction
decoder [18].

The x86 [19] ISA, which is supported by Intel and AMD
processors, offers various lengths of encoding between 1 and
15 bytes. Another example of a variable-length instruction set
is microMIPS [16], which provides a set of 16-bit instructions
that correspond to the commonly used ones, in addition to
all of the instructions from the MIPS32/64 ISAs [20], [21].
For some benchmarks, microMIPS has 35% smaller code size
and almost similar performance compared to MIPS32 [16].
In 2015, a draft proposal [17] has been published to provide
16-bit encodings for some instructions in RISC-V ISA [22],
this new instruction set is known as RISC-V Compressed
(RVC), which delivers more than 25% code size reduction
[17]. Finally, most ARM processors, such as Cortex-M3 and
Cortex-A9, support their dedicated variable-length instruction
set as well, known as Thumb2 instruction set [23]. It consists
of two sets of instructions: 16-bit and 32-bit. Thumb2 delivers
30% of code size reduction on average [15]. In this article,
we chose a Cortex-M3 as target processor, and thus Thumb2
as target instruction set, but we consider that the results can
be generalized to other variable-length instruction sets.

III. EXPERIMENTAL SETUP

Physical fault injection experiments have been performed
in order to investigate the fault injection effects on a variable-
length instruction set. This aims at providing better character-
ization and description, at the ISA level, for the wide range
of faulty behaviors that might be obtained when performing
fault injection campaigns.

The following subsections present the fault injection tech-
nique we have used, the target device, and the target programs.
The last subsection describes the injection parameters and the
classification categories for the experimental outcomes.

A. Clock glitch fault injection

Applying perturbations to the main clock signal that is fed to
the processor is a non-invasive and an effective fault injection
technique. Clock glitch is considered as a low-cost fault
injection technique compared to other techniques like laser and
EM pulses. Also, it can provide an acceptable controllablility
with respect to the temporal accuracy, and hence the location
of the injection in the target program. However, since the glitch
is injected in the global clock, there is no particular knowledge
about which architectural element could be affected as a result
of the injection.

When performing clock glitch fault injection, a glitch is
injected just before or after the rising edge of the clock. This



glitch would appear as a new clock cycle for the microproces-
sor, disrupting the regular behavior of the clock signal. Thus,
a timing violation will possibly occur, leading to various kinds
of faulty behaviors.

When performing a clock glitch, three parameters must be
tuned as shown in Fig. 1:

• Delay: the time between the rising edge of the trigger
signal used for synchronization and the rising edge of
the targeted clock cycle.

• Shift: the time between the rising edge of the glitch and
the rising edge of the targeted clock cycle.

• Width: the duration of the glitch itself.

trigger

clk
width

shift

delay

Fig. 1: Clock glitch parameters [8].

B. Target device

The boards that are used for the experiments are the Chip-
Whisperer [24] boards: ChipWhisperer-Lite, CW308 UFO
baseboard and the target board. The Lite board is the control
board that is connected to the control laptop through a USB
cable. The CW308 allows the portability and the usability of
different targets, it provides a host for the microcontroller
target board and it is connected to the Lite board while
performing an experiment. The target board is a 32-bit mi-
crocontroller, which embeds an ARM Cortex-M3 processor.
These ChipWhisperer boards include a dedicated environment
for side channel analysis, voltage and clock glitch generation.
We will leverage the clock glitch capabilities of this setup in
the experiments.

Cortex-M3 includes a pipeline with three stages: fetch,
decode and execute. Cortex-M3 is based on the ARMv7-M
[25] architecture and supports the Thumb2 instruction set,
which consists of variable-length instructions as mentioned
in the previous section: 16-bit and 32-bit instructions. In this
microcontroller, the fetch size from the memory through the
AHB (Advanced High performance Bus) is fixed and equal to
32 bits, regardless of the instruction size. Hence, as a result
of having variable-length instructions, the fetched 32 bits can
belong to one of the cases in Fig. 2 or Fig. 3. Fig. 2 represents
the fetching cases when the code is aligned in the memory,
while Fig. 3 represents the misaligned cases. In Section IV, we
will see how these different possibilities affect the observed
execution as a result of the fault injection campaigns.

The processor detects whether the instruction that is going
to be executed is 16-bit or 32-bit by analyzing the most

I32
(a) Fetching one 32-bit instruction.

I16 I16

(b) Fetching two 16-bit instructions.

Fig. 2: Fetching aligned instructions.

I32 I32
(a) Fetching the bottom half of a 32-bit instruction and the top half
of another 32-bit instruction.

I16 I32
(b) Fetching one 16-bit instruction and the top half of a 32-bit
instruction.

I32 I16

(c) Fetching the bottom half of a 32-bit instruction and one 16-bit
instruction.

Fig. 3: Fetching misaligned instructions.

significant five bits of the half-word that will arrive first to the
processor itself [25]. If these five bits are one of the following
values, then the word contains a 32-bit instruction, otherwise,
the arrived half-word is a 16-bit instruction:

• 0b11101,
• 0b11110,
• 0b11111.

This knowledge is very important to explain the observed
faulty behaviors, as detailed in Section IV. A note to take into
consideration for the following sections is that we use the big-
endian representation for the binary encoding of the instruc-
tions to ease the readability. Thus, for a 32-bit instruction, the
most significant 16 bits arrive first in the pipeline, where they
are checked for 16- or 32-bit instruction as described above.

C. Target programs

The injection is performed into inline assembly instructions
within a C program. To ease the process of the injection, the
program is divided into three parts as follows:

• Prologue: initialization instructions to put the processor
in a known state before starting the fault injection.

• Target: instructions targeted by the fault injection as well
as extra instructions that would allow observing any
propagation effect.

• Epilogue: reading the registers’ state, in particular the
general purpose registers R0 to R12; the values are then
transferred to the control laptop through serial communi-
cation.



Two series of NOP instructions are used to isolate the three
parts from each other. The registers used in the target part are
initialized in the prologue.

In the injection campaigns, we used specific instructions in
the target part as shown in Listing 1 and Listing 2. Listing 1
shows an example of an aligned code. Hence, every fetched
32 bits are either two full 16-bit instructions or one 32-bit
instruction as shown in Fig. 2. The first two instructions (MOV
and LSLS) are 16-bit instructions; all the ADD instructions are
32-bit instructions. Such instructions are chosen to simplify the
characterization of the fault injection effects. At the end of the
normal execution, each register has a different value from the
others, which increases the observability of occurring faults.
Small and different immediate values are used with the ADD
instructions, in order to see if an immediate value is replaced
with a register number or vice-versa (e.g., R3 becomes 0x3),
as explained in Section IV.

Listing 2 shows an example of a misaligned code. It is
exactly the same as Listing 1, except that the first instruction
(i.e., MOV instruction) is removed. Therefore, the code is
misaligned, and hence, when 32 bits are fetched, they now
belong to either two different 32-bit instructions or one 16-bit
instruction and the other 16 bits belong to a 32-bit instruction
as shown in Fig. 3. In Section IV, we will show how such
a small modification of the target code greatly affects the
observed behaviors at the ISA level.

The prologue is controlled to be always aligned in the
code memory space. Hence, it has no influence on the code
alignment, which only depends on the instructions of the target
part.

1 MOV R8, R4 // R8 = R4

2 LSLS R2, R0, 0x10 // R2 = R0 << 0x10

3 ADD R1, R1, 0x6 // R1 = R1 + 0x6

4 ADD R3, R3, 0xa // R3 = R3 + 0xa

5 ADD R4, R4, 0xb // R4 = R4 + 0xb

6 ADD R5, R6, R3 // R5 = R6 + R3

7 ADD R3, R3, 0xf // R3 = R3 + 0xf

Listing 1: Target part in the aligned code.

1 LSLS R2, R0, 0x10
2 ADD R1, R1, 0x6
3 ADD R3, R3, 0xa
4 ADD R4, R4, 0xb
5 ADD R5, R6, R3
6 ADD R3, R3, 0xf

Listing 2: Target part in the misaligned code.

D. Injection parameters and classification

Each injection campaign consists in repeating the clock
glitch fault injection several times (1000-10 000 times) for the
same shift and width values. The Delay value is based on the
targeted instructions. A single glitch is injected during each
program execution.

Three outcomes can occur as a result of the fault injection
as follows:

• Crash: the injection causes a crash, a reset, or a failure
when reading the final state in the epilogue.

• Silent: the outcome of the injection is identical to the
normal state, i.e., without any injection.

• Fault: a successful fault has occurred and can be observed
as a result of the clock glitch injection.

In the next section, we focus on a subset of the obtained
faults, discarding the crashes and silent cases. This subset
represents the largest subset of the obtained faulty behaviors
and our focus is on the occurrence of these behaviors, not their
probability of occurrence. However, it is worth mentioning that
these behaviors are highly and easily reproducible.

IV. EXPERIMENTAL RESULTS AND ANALYSIS

Different faulty behaviors were observed after performing
the clock glitch fault injection campaigns. In the following
subsections, we only focus on the faulty behaviors that are
related to two specific inferred fault models that are applied
on the encoding of the instructions: skip 32 bits or skip &
repeat 32 bits. These are strongly related to the fetch stage of
the processor pipeline. These faulty behaviors, as mentioned
earlier, represent the largest subset of the observed behaviors.
We show how the outcomes of the injection campaigns depend
on the code alignment in memory, whether it is aligned or
misaligned, although the inferred fault models at the encoding
level (i.e., skip or skip & repeat 32 bits) are always the same
in both cases. The last subsection provides further details
about the last behavior, where we were able to execute a new
instruction as a result of the clock glitch.

A. Aligned code scenario

Listing 3 represents the binary encoding of the target
program in Listing 1. Each line corresponds to one 32-bit
instruction, except line 1, which corresponds to the first two
16-bit instructions. Therefore, this code is aligned in the
memory.

1 46a00402 // MOV R8, R4 // LSLS R2, R0, 0x10

2 f1010106 // ADD R1, R1, 0x6

3 f103030a // ADD R3, R3, 0xa

4 f104040b // ADD R4, R4, 0xb

5 eb060503 // ADD R5, R6, R3

6 f103030f // ADD R3, R3, 0xf

Listing 3: Binary encoding for the aligned code in Hex.

Assuming i is the line number that points to a 32-bit block
of the encoded target program, then the “skip 32 bits” and
“skip & repeat 32 bits” fault models are described as follows:

• Skip 32 bits: the 32 bits at line i are skipped, and the
execution resumes from line i+1.

• Skip & repeat 32 bits: the 32 bits at line i+1 are skipped
and the 32 bits at line i are repeated.

The following subsections show three observed faulty be-
haviors of skip and skip & repeat after performing the fault



injection campaigns. Although we focus here on a specific
instruction for our discussion, what is applied on these ex-
amples can also be applied to other locations of the target
program without loss of generality. For each subsection, two
descriptions are hence provided: at the binary encoding level
and at the ISA level.

1) Skip & repeat 32 bits / single instruction skip & single
instruction repeat: skipping the ADD R3, R3, 0xa in-
struction at line 3 in Listing 3 and repeating the ADD R1,R1,
0x6 instruction at line 2 is an example of this model. The
observed execution at the ISA level is shown in Listing 4.

1 MOV R8, R4
2 LSLS R2, R0, 0x10
3 ADD R1, R1, 0x6
4 ADD R1, R1, 0x6
5 ADD R4, R4, 0xb
6 ADD R5, R6, R3
7 ADD R3, R3, 0xf

Listing 4: Observed execution for skip & repeat 32 bits / single
instruction skip & single instruction repeat.

2) Skip 32 bits / single instruction skip: skipping any line
in Listing 3, except line 1, led to a single instruction skip, as
each line of these represents a complete 32-bit instruction. For
example, when skipping the ADD R4, R4, 0xb instruction
at line 4 in Listing 3, the observed execution at the ISA level
is shown in Listing 5.

1 MOV R8, R4
2 LSLS R2, R0, 0x10
3 ADD R1, R1, 0x6
4 ADD R3, R3, 0xa
5 ADD R5, R6, R3
6 ADD R3, R3, 0xf

Listing 5: Observed execution for skip 32 bits / single
instruction skip.

3) Skip 32 bits / double instruction skip: skipping the first
line in Listing 3, led to a double instruction skip, as this line
represents two blocks of 16-bit instructions. Listing 6 shows
the observed execution at ISA level for this example.

1 ADD R1, R1, 0x6
2 ADD R3, R3, 0xa
3 ADD R4, R4, 0xb
4 ADD R5, R6, R3
5 ADD R3, R3, 0xf

Listing 6: Observed execution for skip 32 bits / double
instruction skip.

B. Misaligned code scenario

We now consider the case of a misaligned code. We achieve
this by removing the MOV instruction, which is a 16-bit
instruction, from the target part in the program as shown
in Listing 2. Listing 7 shows the binary encoding of the

misaligned code. Just as before, each line contains 32 bits,
but unlike previous case each line does not correspond now to
a single 32-bit instruction. For sake of clarity, we highlighted
each instruction by a different color: the reader can clearly see
that each 32-bit instruction is split over two consecutive lines.

Again, in terms of 32-bit faults, similar outcomes were
obtained. However, as the line now consists of two 16 bits
that belong to two different instructions (as previously shown
in Fig. 3), different faulty behaviors were observed at the
ISA level. The actual faulty behaviors that can be obtained
depend on the target location of the glitch injection; hence,
the following subsections provide two observed examples for
each model, i.e., two examples of skip & repeat 32 bits, and
two examples of skip 32 bits. It is interesting to note that the
observed behaviors in this scenario were more complex than
the previous one: among several outcomes, for example, we
were able to observe double instruction corruption, and new
instruction execution.

1 0402f101
2 0106f103
3 030af104
4 040beb06
5 0503f103
6 030fbf00 // bf00: NOP.

Listing 7: Binary encoding for the misaligned code in Hex.

1) Skip & repeat 32 bits / double instruction corruption
example 1: this example presents the case when skipping and
repeating 32 bits refers to the configuration shown in Fig. 3a.
An example of this case is when skipping line 4 and repeating
line 3 in Listing 7.

As a result, two instructions are corrupted as shown in
Listing 8. 0xf104 means that the instruction to be executed
is a 32-bit instruction as the most significant five bits are
0b11110. The repeated red part (0x030a) is going to be part
of the new executed instruction. In addition, since 0xf104 is
repeated, then another new 32-bit instruction is executed. Its
first half is from the green and the second half is from the
16 bits that remained from the orange instruction at line 5 in
Listing 7 (0x0503).

1 LSLS R2, R0, 0x10
2 ADD R1, R1, 0x6
3 ADD R3, R3, 0xa
4 ADD R3, R4, 0xa // f104030a
5 ADD R5, R4, 0x3 // f1040503
6 ADD R3, R3, 0xf

Listing 8: Observed execution for skip & repeat 32 bits /
double instruction corruption example 1.

To describe the observed behaviors for this example at
ISA level and generalizing the obtained faults to other target
programs that could have similar structure, we explain the
corruption of two 32-bit instructions as follows:



• For the ADD R4, R4, 0xb instruction: the destination
operand and the second source operand are replaced by
operands from the previous instruction.

• For the ADD R5, R6, R3 instruction: the first source
operand is replaced by the first source operand
from the previous instruction. Its opcode (ADD with
register) is also replaced by the previous opcode
(ADD with immediate). Therefore, the register num-
ber R3 is now considered as an immediate value: 0x3.

2) Skip & repeat 32 bits / double instruction corruption
example 2: this example presents the case when skipping 32
bits refers to the configuration shown in Fig. 3a, and repeating
32 bits refers to Fig. 3b. This is the case when skipping line
2 and repeating line 1 in Listing 7.

In this case, the repeated 16 bits: 0x0402, which is
originally 16-bit instruction, is going to be part of a 32-
bit instruction since 0xf101 requires a 32-bit instruction to
be executed (the most significant five bits are 0b11110, as
discussed in Section III-B). Thus, the ADD R1, R1, 0x6
instruction is corrupted. The ADD R3, R3, 0xa instruction
is corrupted as well, as half of it is skipped. Listing 9 shows
the observed execution for this example at ISA level.

1 LSLS R2, R0, 0x10
2 ADD R4, R1, 0x2 // f1010402
3 ADD R3, R1, 0xa // f101030a
4 ADD R4, R4, 0xb
5 ADD R5, R6, R3
6 ADD R3, R3, 0xf

Listing 9: Observed execution for skip & repeat 32 bits /
double instruction corruption example 2.

To describe the observed behaviors for this example at
ISA level and generalize the obtained faults to other target
programs that could have similar structure, we explain the
corruption of two 32-bit instructions as follows:

• For the ADD R1, R1, 0x6 instruction: two operands
were replaced. The two new operands are coming
from the previous 16-bit instruction encoding (not its
operands), as this encoding allows having a valid 32-bit
instruction, i.e., valid register number and valid immedi-
ate value.

• For the ADD R3, R3, 0xa instruction: the first source
operand is replaced by the first source operand from
the previous instruction. Additionally, the opcode is also
replaced by the previous opcode. However, as in this case
the previous opcode is similar, it does not lead to execute
a different instruction.

3) Skip 32 bits / single instruction skip and single instruc-
tion corruption: this example presents the case when skipping
32 bits refers to Fig. 3a. For instance, it is the case when
skipping line 3 in Listing 7. The observed execution at ISA is
shown in Listing 10. The ADD R4, R4, 0xb instruction is
skipped and the ADD R3, R3, 0xa instruction is corrupted
by replacing two of its operands by operands from the skipped
instruction.

1 LSLS R2, R0, 0x10
2 ADD R1, R1, 0x6
3 ADD R4, R3, 0xb // f103040b
4 ADD R5, R6, R3
5 ADD R3, R3, 0xf

Listing 10: Observed execution for skip 32 bits / single
instruction skip and single instruction corruption.

4) Skip 32 bits / double instruction skip and new instruction
execution: this example presents the case when skipping 32
bits refers to Fig. 3b. It occurs, for example, when skipping
line 1 in Listing 7.

As a result of skipping line 1, 0x0106 arrives first to
the core, and since the most significant five bits of 0x0106
are 0b00000, a 16-bit instruction is going to be executed,
which has the encoding of 0x0106. This instruction is
LSLS R6, R0, 0x4. The other instructions in the target
program will not be affected and they are going to be executed
normally. Listing 11 shows the observed execution of this
example at ISA level. The first instruction is colored blue
since its encoding came from the original blue instruction.
It is shown that two instructions were skipped (one 16-
bit instruction and one 32-bit instruction) and a new 16-bit
instruction was executed instead.

1 LSLS R6, R0, 0x4 // 0106
2 ADD R3, R3, 0xa
3 ADD R4, R4, 0xb
4 ADD R5, R6, R3
5 ADD R3, R3, 0xf

Listing 11: Observed execution for skip 32 bits / double
instruction skip and new instruction execution.

To prove that the new LSLS instruction is not related to the
original LSLS instruction, the following subsection provides a
variety of instructions that can be executed as a result of this
observed behavior.

C. More on the last observed behavior

Since the encoding of the new logical shift left instruction
in the last skip example is coming from the destination
register and the second source operand in the ADD instruction,
then changing these two operands to other values allows
“generating” new instructions.

Table I shows examples of new instructions when changing
these two operands. All the examples in Table I were validated
experimentally by clock glitch fault injection campaigns. In
other words, replacing the blue instruction in Listing 7 by an
instruction in the first column of Table I, allows observing
the execution of the corresponding instruction from the third
column of Table I, when performing clock glitch fault injec-
tion campaigns. Column 2 shows the encoding of the new
instruction, which comes from the least 16 bits of the original
32-bit instruction.

By generating all 65 536 possible 16-bit combinations and
disassembling them to check if they are a valid 16-bit Thumb2



TABLE I: Effect of last observed behavior with different
destination register and/or immediate value.

Original instruction Least-significant New instruction
16 bits

ADD R4, R1, 0x9 0x0409 LSLS R1, R1, 0x10
ADD R0, R1, 0x46c 0x406c EORS R4, R5
ADD R12, R1, 0x60c 0x6c0c LDR R4, [R1, 0x40]
ADD R0, R1, 0x161 0x1061 ASRS R1, R4, 0x1
ADD R0, R1, 0x205 0x2005 MOV R0, 0x5
ADD R3, R1, 0x416 0x4316 ORRS R6, R2

instruction or not, we identified more than 58 000 valid 16-bit
instructions. Each of these instructions can be executed as a
result of this specific faulty behavior, regardless of the opcode
of the original 32-bit instruction in the target program.

The consequences are particularly interesting. Trouchkine et
al. [11] observed R8 and R0 corruption when targeting a series
of AND R8, R8, R8. They said the corruption is sometimes
a complete reset of the register. This AND instruction has
the encoding: 0xea080808. Thanks to our analysis, we
can fully explain the corruption they observe on the Cortex-
A53 processor, which supports the Thumb2 instruction set.
The fault injection leads to the creation and execution of
the 16-bit instruction 0x0808, which is the encoding of
LSRS R0, R1, 0x20. This operation leads to a reset of
R0, since the value in R1 is shifted right by 32 bits and its
result (obviously 0) is stored in R0.

In Table I, it is shown that many instructions can lead to
violate different security properties. For example, executing an
LDR (LOAD) instruction could lead to reveal some values in
the memory, breaking the confidentiality property. As another
example, executing the EORS (XOR) instruction could allow
an attacker to observe a collision in a cryptographic algorithm,
which could lead to recover secret data. Finally, moving an
immediate value to a register could lead to corrupt a loop
counter value if this register is used for the counter itself. In the
next section, we focus on a small subset of the instructions that
can be executed, allowing an attacker to control the program
flow by performing clock glitch fault injection.

V. EXPLOITATION

To exploit the previous results, we leverage the ability of ex-
ecuting a new 16-bit instruction to control the program counter,
where those 16 bits are originally belonging to a 32-bit
instruction as shown above. We consider this specific example,
because controlling the program counter as mentioned in [6],
[12], could lead to harmful attacks, like privilege escalation or
secure boot violation. Thus, our provided example works as
a proof of concept for potential exploitation of the presented
results.

In the following, we assume that R8 contains an address
that points to a critical part of the code, which can only be
executed in a secure mode. Hence, our security property is
to not modify the program counter to that critical address.
This security property is violated if we manage to execute the

MOV PC, R8 instruction for example. The 16-bit encoding
of this instruction is 0x46c7.

Several examples lead to violate this security property.
Table II summarises some of the instructions allowing that.
Having one of these instructions in a misaligned code allows
controlling the program counter to the value of R8 when
applying a fault injection attack. To validate this theoretical
analysis, we performed clock glitch fault injection campaigns
on the code in Listing 12.

A specific address is stored in R8 in the prologue. This
address refers to line 12 in Listing 12. The instruction at line
6 can be any instruction from Table II and we were able to
validate all of them. In other words, we were always able to
jump to line 12 in Listing 12 when performing the attack on
any of the instructions in Table II.

Other instructions may be a source for such vulnerability,
especially if other source registers store critical addresses, and
not only R8 as in our example. However, most of the original
instructions that could be a source of such vulnerability, have
R6 as a destination register, as already shown in Table II.
Gratchof et al. [13], said that there is a higher probability to
change the value of the program counter when the destination
register of a MOV instruction is R6. They observed varied
jumps in a program when performing fault injection attacks
on a Cortex-A9, which supports two execution states: Thumb2
and ARM32. Hence, our observations can reasonably explain
and prove their results regarding the R6 register, assuming that
their execution state was Thumb2.

1 //prologue
2 MOVW R8, 0x056e // storing the critical-

3 MOVT R8, 0x0800 // -address in R8

4 //series of NOPs
5 LSLS R2,R0,0x10
6 //any instruction from Table II
7 ADD R3, R3, 0xa
8 ADD R4, R4, 0xb
9 ADD R5, R6, R3

10 ADD R3, R3, 0xf
11 //series of NOPs
12 LDR R1,[R1,0xf00]
13 MOV R9,R6
14 //epilogue

Listing 12: Target program for exploitation example.

TABLE II: Instructions that lead to modify the PC to the value
in R8 when performing clock glitch fault injection.

Original instruction Least-significant 16 bits

ADD R6, R1, 0x4c7 0x46c7
SUB R6, R1, 0x4c7 0x46c7
MOVW R6, 0x4c7 0x46c7
LDR R4, [r0, 0x6c7] 0x46c7
ORR R6, R6, 0x63800000 0x46c7



VI. CONCLUSION AND PERSPECTIVES

In this article, we show how the observed faulty behaviors
at ISA level can dramatically change depending on the code
alignment in memory. This comes from the fact that Thumb2
instruction set supports variable-length instructions, which can
lead to aligned or misaligned code in memory. We also show
that all these behaviors can be explained at the binary encoding
level with the same two fault models: skip 32 bits or skip
& repeat 32 bits. In addition, we provide some examples
on how such behaviors can be exploited in different security
contexts. All these claims have been validated through actual
fault injection experiments based on clock glitching.

The provided detailed description at ISA level clearly ex-
plains many faulty behaviors mentioned in the literature. It
would also help in designing the countermeasures, in par-
ticular, at the software level, where the countermeasures are
usually less expensive to implement.

In terms of perspectives, exploiting the aforementioned
behaviors in a real life application would be very interesting.
In addition, RTL fault simulation experiments are going to be
conducted to validate the inferred fault models and explain the
origin of such faulty behaviors at the microarchitectural level.
Looking for countermeasures for the different faulty behaviors
without significantly affecting the performance would also be
very important and necessary. These countermeasures will be
investigated both at software and hardware levels.

Finally, This work opens the door to investigate how fault
injection would affect different architectures, taking into ac-
count the fact that the supported ISA provides variable-length
instructions or not. These results could also motivate the
(re)engineering of novel compressed instruction sets, which
would be designed as to be immune to such vulnerability,
even in the presence of faults.

ACKNOWLEDGMENT

This work has been supported by the LabEx PERSYVAL-
Lab (ANR-11-LABX-0025-01) and the French National Re-
search Agency in the framework of the “Investissements
d’avenir” program (ANR-15-IDEX-02).

REFERENCES

[1] R. Baumann, “Radiation-induced soft errors in advanced semiconductor
technologies,” IEEE Transactions on Device and Materials Reliability,
vol. 5, no. 3, pp. 305–316, 2005.

[2] B. Colombier, A. Menu, J.-M. Dutertre, P.-A. Moëllic, J.-B. Rigaud,
and J.-L. Danger, “Laser-induced Single-bit Faults in Flash Memory:
Instructions Corruption on a 32-bit Microcontroller,” in 2019 IEEE
International Symposium on Hardware Oriented Security and Trust
(HOST). McLean, United States: IEEE, May 2019, pp. 1–10.

[3] V. Werner, L. Maingault, and M. Potet, “An end-to-end approach
for multi-fault attack vulnerability assessment,” in Workshop on Fault
Detection and Tolerance in Cryptography. Milan, Italy: IEEE, 2020,
pp. 10–17.

[4] L. Rivière, Z. Najm, P. Rauzy, J.-L. Danger, J. Bringer, and L. Sauvage,
“High precision fault injections on the instruction cache of armv7-m
architectures,” in 2015 IEEE International Symposium on Hardware
Oriented Security and Trust (HOST), 2015, pp. 62–67.

[5] J. Proy, K. Heydemann, A. Berzati, F. Majéric, and A. Cohen, “A
first ISA-level characterization of EM pulse effects on superscalar
microarchitectures: A secure software perspective,” in Proceedings of the
14th International Conference on Availability, Reliability and Security,
ARES 2019, Canterbury, UK, August 26-29, 2019. ACM, 2019, pp.
7:1–7:10.

[6] N. Timmers, A. Spruyt, and M. Witteman, “Controlling pc on arm using
fault injection,” in 2016 Workshop on Fault Diagnosis and Tolerance in
Cryptography (FDTC), 2016, pp. 25–35.

[7] B. Yuce, N. F. Ghalaty, H. Santapuri, C. Deshpande, C. Patrick, and
P. Schaumont, “Software fault resistance is futile: Effective single-
glitch attacks,” in 2016 Workshop on Fault Diagnosis and Tolerance
in Cryptography (FDTC), 2016, pp. 47–58.

[8] I. Alshaer, B. Colombier, C. Deleuze, V. Beroulle, and P. Maistri,
“Microarchitecture-aware fault models: Experimental evidence and
cross-layer inference methodology,” in 2021 16th International Con-
ference on Design Technology of Integrated Systems in Nanoscale Era
(DTIS), 2021, pp. 1–6.

[9] S. Skorobogatov, “Local heating attacks on flash memory devices,” in
2009 IEEE International Workshop on Hardware-Oriented Security and
Trust, 2009, pp. 1–6.

[10] A. Menu, J.-M. Dutertre, O. Potin, J.-B. Rigaud, and J.-L. Danger,
“Experimental analysis of the electromagnetic instruction skip fault
model,” in 2020 15th Design Technology of Integrated Systems in
Nanoscale Era (DTIS), 2020, pp. 1–7.

[11] T. Trouchkine, G. Bouffard, and J. Clédière, “Em fault model character-
ization on socs: From different architectures to the same fault model,”
in 2021 Workshop on Fault Detection and Tolerance in Cryptography
(FDTC). IEEE, 2021, pp. 31–38.

[12] N. Timmers and C. Mune, “Escalating privileges in linux using voltage
fault injection,” in 2017 Workshop on Fault Diagnosis and Tolerance in
Cryptography (FDTC), 2017, pp. 1–8.

[13] J. Gratchoff, N. Timmers, A. Spruyt, and L. Chmielewski, “Proving the
wild jungle jump,” Technical report, University of Amsterdam, Tech.
Rep., 2015.

[14] H. Pan, “High performance, variable-length instruction encodings,”
Ph.D. dissertation, Massachusetts Institute of Technology, 2002.

[15] Prasad Kulkarni, “16/32-bit arm-thumb architecture and ax exten-
sions.” http://www.ittc.ku.edu/ kulkarni/research/thumb ax.pdf, [Ac-
cessed: March 2, 2022].

[16] MIPS Technologies, Inc., “micromipstm instruction set architecture
uncompromised performance, minimum system cost .” https://s3-eu-
west-1.amazonaws.com/downloads-mips/mips-documentation/login-
required/micromips instruction set architecture.pdf, [Accessed: March
2, 2022].

[17] A. Waterman, Y. Lee, D. A. Patterson, and K. Asanović, “The risc-
v compressed instruction set manual, version 1.7,” EECS Department,
University of California, Berkeley, UCB/EECS-2015-157, 2015.

[18] informIT, “Understanding arm architectures.”
https://www.informit.com/articles/article.aspx?p=1620207&seqNum=3,
[Accessed: March 1, 2022].

[19] Tom Shanley — Mindshare, Inc., “x86 instruction set architecture.”
https://www.mindshare.com/files/ebooks/x86[Accessed: March 2, 2022].

[20] MIPS Technologies, Inc., “Mips32™ architecture for
programmers volume ii: The mips32™ instruction set .”
https://www.cs.cornell.edu/courses/cs3410/2008fa/MIPS Vol2.pdf,
[Accessed: March 2, 2022].

[21] ——, “Mips64™ architecture for program-
mers volume ii: The mips64™ instruction set.”
https://scc.ustc.edu.cn/zlsc/lxwycj/200910/W020100308600769158777
.pdf, [Accessed: March 2, 2022].

[22] RISC-V, “RISC-V specifications,” https://riscv.org/technical/specific
ations/, [Accessed: February 22, 2022].

[23] ARM Limited, “ARM architecture reference manual Thumb-2 supple-
ment,” https://developer.arm.com/documentation/ddi0308/d, [Accessed:
February 22, 2022].

[24] C. O’Flynn and Z. D. Chen, “Chipwhisperer: An open-source platform
for hardware embedded security research,” in International Workshop
on Constructive Side-Channel Analysis and Secure Design, ser. Lecture
Notes in Computer Science, E. Prouff, Ed., vol. 8622. Paris, France:
Springer, 2014, pp. 243–260.

[25] ARM Limited, “Armv7-m architecture reference manual.”
https://developer.arm.com/documentation/ddi0403/latest, [Accessed:
February 22, 2022].


