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ABSTRACT: Global climate models, like any in silico numerical experiments, are affected by different types of bias. Uncer-
tainty quantification remains a challenge in any climate detection and attribution analysis. A fundamental methodological ques-
tion is to determine which statistical summaries, while bringing relevant signals, can be robust with respect to multimodel
errors. In this paper, we propose a simple statistical framework that significantly improves signal detection in climate attribution
studies. We show that the complex bias correction step can be entirely bypassed for models for which bias between the simu-
lated and unobserved counterfactual worlds is the same as between the simulated and unobserved factual worlds. To illustrate
our approach, we infer emergence times in precipitation from the CMIP5 and CMIP6 archives. The detected anthropogenic
signal in yearly maxima of daily precipitation clearly emerges at the beginning of the twenty-first century. In addition, no CMIP
model seems to outperform the others and a weighted linear combination of all improves the estimation of emergence times.

SIGNIFICANCE STATEMENT: We show that the bias in multimodel global climate simulations can be efficiently
handled when the appropriate metric is chosen. This metric leads to an easy-to-implement statistical procedure based on a
checkable assumption. This allows us to demonstrate that optimal convex combinations of CMIP outputs can improve the
signal strength in finding emergence times. Our data analysis procedure is applied to yearly maximum of precipitation from
CMIP5 and CMIP6 databases. The attribution of the anthropogenic forcing clearly emerges in extreme precipitation at the
beginning of the twenty-first century.

KEYWORDS: Bias; Statistics; Uncertainty; General circulation models; Model comparison; Model errors;
Model evaluation/performance

1. Introduction

Global climate model outputs like any numerical simulations
correspond to an approximation of the true system under study,
here the climate system. In the realm of detection and attribu-
tion (D&A), either in a transient setup or in the context of
extreme event attribution (EEA), numerous review studies
(see, e.g., Chen et al. 2018; Stott et al. 2016; Shepherd 2016) list
different sources of variability, uncertainties, and errors. In par-
ticular, these reviews highlight that model error in numerical
experiments like the Coupled Model Intercomparison Project
(CMIP) can be large and has to be taken into account in any
D&A statistical analysis (see, e.g., Knutti et al. 2019; National
Academies of Sciences Engineering and Medicine 2016).

To address the issue of multimodel error in attribution studies,
we need to go back to the origin of D&A. This research field
aims to answer questions related to relative changes between two
worlds. In EEA, a factual scenario of conditions that occurred
around the time of a specific event1 is compared to the

probability of the same event but under a counterfactual scenario
in which anthropogenic emissions had never occurred (see, e.g.,
Angélil et al. 2017). In D&A with transient runs, the two worlds
correspond to global coupled climate runs with all forcings
(ALL) and with only natural forcings (NAT), respectively (see,
e.g., Hegerl and Zwiers 2011). To combine model error uncer-
tainties, various authors (see, e.g., Lorenz et al. 2018) have
noticed that giving equal weight to each available model projec-
tion may be suboptimal. In addition, model interdependencies
have been identified as an important issue in uncertainties analy-
sis (see, e.g., Abramowitz et al. 2019). To integrate multimodel
error into the EEA, we leverage a hypothesis from the bias-
correction community to propose an easy-to-implement strategy
that, under well-identified conditions, has the main advantage of
bypassing multimodel error. In addition, the problem of model
interdependencies is handled by fixing a robust referential in-
variant for this issue. Our main application is the inference of
emergence times in yearly maxima of daily precipitation and
temperatures from the CMIP database.

To close this introduction on multimodel error in D&A, we
note that various articles (e.g., van Oldenborgh et al. 2021) have
proposed strategies to model extreme precipitation with multi-
plicative parametric models based on generalized extreme value
and generalized Pareto distributions (see, e.g., Coles 2001).
Bellprat et al. (2019) also promoted correction techniques to
assess the probabilities of extreme event occurrences. These
authors recalibrated an ensemble by fitting a Gaussian regres-
sion model based on well-chosen covariates and multiplicative
correction factors [see their Eq. (2)]. In this work, we explore a
different road, and we propose a statistical treatment ofCorresponding author: PhilippeNaveau, philippe.naveau@lsce.ipsl.fr

1 The word “event” can have different meanings. In this study, we
follow the definition used in probability theory, i.e., an “event” is a set
of outcomes of an experiment (a subset of the sample space) to which a
probability can be assigned; for example, {X. u} is an event. Here, the
random variableX is represented by a capital letter while the constant
scalar u is a non-capital letter. Also, we make the classical distinction
between a “realization” (a draw), say x, and its random variableX.
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multimodel bias with a nonparametric approach in a nonsta-
tionary context. By slightly changing the definition of the event
of interest, we can completely bypass parametric modeling and
avoid a nonstationary bias correction step. To explain in detail
this new approach, clear notation, definitions, and assumptions
need to be introduced.

2. Methods

a. Notation and assumptions

A common hypothesis in most D&A studies is that, although
numerical models may not be able to exactly reproduce the true
world, one can expect that any appropriate bias correction tech-
nique for a given numerical model should be applied in the
same way to correct the factual and counterfactual worlds. For
example, if factual temperature runs from a given model are too
warm with respect to recorded measurements during a specific
period and have to be corrected, say by 1 K in the factual world,
then this bias of 1 K has to be corrected in the counterfactual
world of this model during the same specific epoch. In practice,
such a hypothesis can be challenged and needs to be assessed
with caution (see, e.g., Maraun et al. 2017). Due to the lack of
records in the counterfactual world, the assessment cannot be
done without carefully designing the appropriate metric. To
explain this point, we need some mathematical notation. Let Zt

and Xt be the same real-valued continuous random variable of
interest for the year t but from the hypothetical true factual and
counterfactual worlds with cumulative distribution functions
(CDFs) Ft(z) = P(Zt # z) and Gt(x) = P(Xt # x), respectively.
In simulation studies, these two random variables are never
available because perfect factual and counterfactual distributions
cannot be exactly reproduced. Instead, imperfect ensemble out-
puts, say from M different numerical model experiments are

available, and we denote this by Z(m)
t and X(m)

t the factual and

counterfactual versions from model m and CDFs F(m)
t (z) �

P(Z(m)
t #z) andG(m)

t (x) � P(X(m)
t #x), respectively.

A popular approach in the bias correction literature for
univariate continuous random variables is the quantile map-
ping transform that matches two random variables with dif-
ferent distributions (e.g., Maraun et al. 2017; Cannon 2018).
A positive aspect of quantile mapping is its theoretical basis.
It can be viewed as the solution of an optimal transport
problem (e.g., Robin et al. 2019, 2017) and it has been tested
in various settings (e.g., for precipitation downscaling;
Kallache et al. 2011). Quantile mapping can be adapted to
our framework in the following way. As any continuous
real-valued random variable, the climate model output
X(m)

t can always be transformed, in a distributional sense,
into the unobserved true counterfactual random variable
X as follows:

Xt �d G←
t 8G

(m)
t

( )
X(m)

t

( )
,

where �d corresponds to an equality in distribution and G←
t ( · )

represents the inverse of Gt (i.e., its quantile function). The

same type of operator can be implemented in the factual
world, that is,

Zt �d F←
t 8 F

(m)
t

( )
Z(m)

t

( )
:

From these expressions of Xt and Zt, it is natural to define
the following hypothesis: assumption A holds for modelm if

F←
t 8 F

(m)
t � G←

t 8G
(m)
t , for t ∈ 1,…,T: (1)

One of our main goals is to identify and work with CMIP
models that satisfy assumption A. Equation (1) means that the
bias between the simulated and unobserved counterfactual
worlds is the same as between the simulated and unobserved fac-
tual worlds. Note that (1) allows for nonlinear bias correction.
For example, heavy rainfall can have different tail behaviors in
the observed and model runs [see, e.g., Coles (2001) for an intro-
duction to upper tails modeling]. It is also important to notice
that, although none of the available climate models may exactly
satisfy assumption A, it makes sense to select models according
to how closely they satisfy assumption A. Another key point is
that assumption A is related to a specific variable. For the same
climate model, assumption A can be valid for mean hemispheric
temperatures, but incorrect for heavy rainfall over a specific
region. Another feature of assumption A is the temporal index-
ing. The subscript tmakes the notation complex, but it allows for
having different bias corrections for different years, and brings
flexibility. The cooling effect of volcanic forcing, like Pinatubo in
1991, can be included in our bias correction approach. The same
could be said for slow changes due to solar forcing. So, under
assumption A, the hypothesis of temporal stationarity is not
needed in our framework.

b. Quantities of interest

In EEA studies, most researchers [see the bibliography in
the review articles by Stott et al. (2016) and Naveau et al.
(2020)] aim to contrast differences between two worlds (the
factual and counterfactual worlds). In particular, making the
distinction between the two survival functions

P(Xt . u) and P(Zt . u) (2)

has been a recurrent theme in EEA. To explain our statistical
approach, we can start by asking a typical hydrological EEA
question. For the current year t, are precipitation intensities in
the factual world heavier than those produced in the counter-
factual world? If two random precipitation intensities have
the same distribution in the factual and counterfactual worlds,
then the probability of observing the event (Zt . Xt) would
be the same as that for (Zt , Xt) for any given year, and
consequently P(Zt . Xt) = 0.5 in this case.2 If, instead, factual

2 Independence between Xt and Zt is not necessary to get
P(Zt . Xt) = 0.5. As the sum P(Zt . Xt) 1 P(Zt , Xt) is always
equal to one for continuous random variables, the only require-
ment is that P(Zt . Xt) = P(Zt , Xt). This is always true whenever
Zt ,Xt( )�d Xt ,Zt( ), e.g., if (Zt, Xt) follows a standardized and corre-
lated bivariate Gaussian vector.
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rainfalls are heavier than counterfactual ones, this will imply
that the chance of Zt being greater than Xt is greater than 0.5.
To make the link with the classical EEA expressions defined
by (2), we can look at the special case where the threshold u
in (2) is chosen to be equal to a random draw from Gt. This
choice leads to our definition of two simple probabilities:

q0 � 1
2
and qt � P(Zt . Xt): (3)

These two probabilities have many advantages. They are
invariant with respect to nondecreasing changes. For example,
if both X and Z are simultaneously multiplied by two, then qt
remains the same. This is a critical feature when climate models
are bias corrected. More precisely, under assumption A, we
always have (see appendix B for a proof)

qt � P Z(m)
t . X(m)

t

( )
, for all t � 1,…,T: (4)

The fact that the left-hand part of this equation does not
depend on m under assumption A is fundamental in this
work. The remaining part of this article is to explain its conse-
quences, its applicability, and its validity within the CMIP
database.

Under assumption A, we do not need to observe Xt and Zt to
compute qt. This probability can be obtained directly from real-
izations of X(m)

t and Z(m)
t . The most important consequence of

assumption A is that biased models’ outputs do not need to be
corrected. Practically, this also implies that we do not need to
know the CDFs, Ft and Gt, to estimate qt. In addition, qt in (3) is
always equal to 0.5 whenever the true factual and counterfactual
worlds are exchangeable. Consequently, no inference is
required in this case. Last but not least, the value of 0.5 can be
used a reference point when the factual and counterfactual
start to differ.

c. Inference in the transient case

The temporal indexing t in the probability qt defined by (2)
can be interpreted in two different ways. One can freeze the
time to the current year, and this leads to the so-called event
attribution realm. Large ensembles of simulations of this
given year are classically drawn from both factual and coun-
terfactual worlds (see, e.g., Stott et al. 2016) to estimate prob-
abilities like qt. Another setup is to allow years to spread over
a long time period, say from the preindustrial epoch to 2100.
This so-called transient case corresponds to the framework of
GCM experiments where two types of runs are compared, say
NAT and ALL runs. In this paper, we focus on the transient
case, but all statistical techniques developed here can be easily
transferred to the EEA setup (see, e.g., Naveau et al. 2020).
In terms of EEA terminology, our analysis belongs to the so-
called unconditional class, a term found in Knutson et al.
(2017). In particular we focus on unconditional events of the
type {Zt . Xt}. Knutson et al. (2017) defined this category to
highlight the contrast with “conditional attribution.” In other
words, events like {X . u}, or like {X . u|C} where the
threshold u and the conditioning C (say a SST field) are

chosen relatively to observed realizations, will not be treated
in this paper.

The CMIP experiments are recognized worldwide as a valu-
able repository of climate simulations. This database contains
numerous simulations and has the advantage of being global.
The 16 model runs used in this work are listed in Table 1.3

Their main drawbacks are the model uncertainties, small
ensemble sample sizes, and spatial resolution, which can be
too coarse for some applications. Statistically, a subtle point is
the transient nature of these simulations. This implies that
factual runs in CMIP contain some nonlinear trends that
should be taken into account in the statistical analysis (see,

e.g., Kharin and Zwiers 2000). As the ALL run Z(m)
t distri-

bution may change over time, we estimate the time-varying

q(m)
t � P(Z(m)

t .X(m)
t ) using a nonparametric regression

approach. A classical kernel regression approach (Nadaraya
1964; Watson 1964) leads to the following estimator:

q̂(m)
t � 1∑

Kh(t 2 tj)
∑J
j�1

Kh(t 2 tj)G(m)
I Z(m)

tj

( )
, (5)

where the positive function Kh(·) corresponds to a weighting
kernel with bandwidth h, and G

(m)
I ( · ) represents any estima-

tor of G(m)
t ( · ). In appendix B, the choices of the kernel and

G
(m)
I ( · ) are discussed and the statistical arguments needed to

build asymptotic confidence intervals for qt are given.
At this stage, assumption A has not been used yet. If assump-

tion A was satisfied, it would be straightforward to move, via (4),
from q̂(m)

t to a common estimator of qt. To combine climate
model outputs, the ability to satisfy assumption A for a given
modelm will be key.

3. Merging climate model simulations

The main roadblock for assessing the quality of simulated
runs is that we will never observe draws from Xt, only meas-
urements with observational errors at spatial scales different
from those represented by climate models. This lack of data is
even worse for Zt, the hypothetical world of an unperturbed
and never observed climate. To bypass this difficulty, we
assume that there exists a time period, say T , during which
the ALL and NAT worlds were identical (in distribution). In
practice, this corresponds to the preindustrial period for
which we assume

Ft � Gt, for all years t ∈ T : (6)

Again, we do not need to assume that Ft = Ft11 as natural
forcings may change in time, even at the annual scale, such as
after the 1883 Krakatoa eruption. In section 4, we define the
preindustrial epoch T as T � 1850,…, 1900{ }. Then, we can
always write

qt � P Zt . Xt( ) � 1
2
, for any year t ∈ T : (7)

3 After the year 2006, we analyze CMIP precipitation under
their respective worst-case scenarios (RCP8.5 and SSP5–8.5).
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This equality is parameter-free, and it does not depend
on model m. There is nothing to estimate, so no inferential
error needs to be taken into account. As already
highlighted in section 2b, the bivariate vector (Xt, Zt) does
not have to be stationary in t; only exchangeability
between Xt and Zt is required. This last condition is always
satisfied as Xt and Zt are not computer simulated. They just
represent conceptual independent draws from a thought
experiment of two possible climate trajectories in prein-
dustrial times. For simulated runs from model m, we also

expect to have P(Z(m)
t .X(m)

t ) � 0:5 for any year t ∈ T if the

two continuous random variables Z(m)
t and X(m)

t are
exchangeable (label free) during the preindustrial period.
Exchangeability is a weak hypothesis with respect to the
issue of model interdependencies studied by Abramowitz et al.

(2019). Concerning the validity of P(Z(m)
t .X(m)

t ) � 0:5 in
regard to a given model, we leverage the following fact. Dur-
ing the time period T , we have Ft = Gt, and consequently, the
following equivalence is always true:

F(m)
t � G(m)

t ,;t ∈ TÛassumption A holds for any t ∈ T :

Hence, checking that F(m)
t is equal toG(m)

t for each model m
during the preindustrial epoch appears as the appropriate step.
A simple scatterplot between the ranked X(m)

t and the ranked
Z(m)

t should be close to a straight line. As an example, yearly
maxima of CMIP daily precipitation for two randomly chosen
grid points near Oxford in Great Britain and Hohenpeissen-
berg in Germany are analyzed in Fig. 1 (see also the left panel
of Fig. C1 in appendix C). Overall, most CMIP climate model
runs behave appropriately with respect to simulated precipita-
tion at the Oxford and Hohenpeissenberg grid points. The p
values of the two-sample Anderson–Darling test (Pettitt 1976;
Anderson and Darling 1952) are indicated in the white boxes

(see also Fig. C3 for p values over the globe). As expected, pre-
cipitation ranges vary strongly among models; for example,
compare the precipitation spread between IPSL-CM5A-LR
and CERFACS-CNRM-CM6 for the Oxford grid point. By
construction, this difference is not an issue because we always
look at relative changes within a CMIP run. According to (7),
we also expect q(m)

t to be close to half for t ∈ T . This can be
used to weight and merge our 16 models.

Binary events like {Z(m)
t .X(m)

t } during the preindustrial

period are the building blocks of q(m)
t � P(Z(m)

t .X(m)
t ). In our

setup, the reference distribution is the Bernoulli distribution
with probability of success qt = 0.5 and the competitor corre-
sponds to a Bernoulli distribution with probability of success

q(m)
t . A statistical tool is needed to differentiate these two Ber-

noulli distributions. The Kullback–Leibler divergence (see,
e.g., Burnham and Anderson 1998; Naveau et al. 2014) com-
pares two distributions by calculating the expectation of the
logarithmic difference between a target probability and a
competitor, where the expectation is obtained with respect to
the target density; see appendix D for a detailed discussion
about Bernoulli modeling and the intermodel exchangeability
assumption (see also Haughton et al. 2015; Knutti et al. 2009).
As any Kullback–Leibler divergence is convex, it is natural to
merge our estimates as a convex combination defined in the
following way:

q̂t �
∑M
m�1

wm 3 q̂(m)
t , with wi $ 0 and w1 1 · · · 1 wM � 1:

(8)

Concerning the Oxford and Hohenpeissenberg grid points,
their associated q̂(m)

t values are displayed in Fig. 2. Each panel
represents one CMIP climate model from Table 1. In each

TABLE 1. List of the 16 CMIP runs used in this study. For each run, the last column shows the percentage of grid points for which
the climate modal is rejected according to the Anderson–Darling p value below 0.2 (see, e.g., Fig. 1). The fourth column represents
the global average estimated weight for each model (see, e.g., Fig. C2).

Institute Name Runs Global weights Percent of p value , 0.2

CMIP6 climate models
CCCma CanESM5 r10i1p1f1 0.06 0.21
CNRM-CERFACS CNRM-CM6-1 r1i1p1f2 0.07 0.21
IPSL IPSL-CM6A-LR r1i1p1f1 0.06 0.19
MRI MRI-ESM2-0 r1i1p1f1 0.07 0.19

CMIP5 climate models
CCCma CanESM2 r1i1p1 0.06 0.20
CNRM-CERFACS CNRM-CM5 r1i1p1 0.07 0.20
CSIRO-BOM ACCESS1.3 r1i1p1 0.07 0.20
CSIRO-QCCCE CSIRO-Mk3.6.0 r1i1p1 0.06 0.20
IPSL IPSL-CM5A-LR r1i1p1 0.06 0.21
IPSL IPSL-CM5A-MR r1i1p1 0.06 0.20
MIROC MIROC-ESM r1i1p1 0.06 0.20
MIROC MIROC-ESM-CHEM r1i1p1 0.06 0.24
MRI MRI-CGCM3 r1i1p1 0.06 0.20
NCAR CCSM4 r1i1p1 0.06 0.20
NCC NorESM1-M r1i1p1 0.07 0.19
NSF-DOE-NCAR CESM1-CAM5 r1i1p1 0.07 0.19
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panel, the x axis spans the year t = 1850 to t = 2100 and the
y axis corresponds to the probability q̂(m)

t obtained from (5).
The departure from the horizontal line at qt = 0.5 indicates a
change between factual runs and counterfactual trajectories
without anthropogenic forcing. All panels show a smooth
increase in q̂(m)

t over time, but each model appears to give a dif-
ferent speed and amplitude of change. Intermodel variability
appears to be large and combining model errors is necessary.

To compute the weights (w1, … , wM)
T, we implement a

two-step procedure. Small p values of the two-sample Ander-
son–Darling test in the previous section (see white boxes in
Fig. 1) highlighted a poor fit. For this reason, our first step is
to remove all models that have Anderson–Darling p values
smaller than 20%, a very conservative rejection rate. The red
boxes in Fig. 2 indicate these models, which will be removed
from the merging. This first step allows us to treat the rare but
possible case when all models are wrong. In such a case, the
grid point is removed (in practice, this never occurs in our
example). Our second step is to simply find the weights of
selected models that minimize the Kullback–Leibler diver-
gence between q̂t∈T and qt∈T � 0:5,…,0:5( )T, under the con-
straint w1 1 · · ·1 wM � 1.

Concerning CMIP yearly maxima of precipitation around
the two grid points (Oxford and Hohenpeissenberg), the 90%
green confidence band in Fig. 3 represents the estimate of the
convex weighted combination (i.e., of q̂t) with the weights
shown in Fig. 2. In Fig. 3, the 90% red confidence band corre-
sponds to the model with the highest Anderson-Darling
p value. As expected, combining estimates of qt reduces the
confidence bandwidth. By construction, q̂t follows well the
reference horizontal line centered at 0.5 during the preindus-
trial period. The departure from this horizontal gray line
becomes statistically significant around the year 2000. Overall,
the estimate q̂t has a smooth trajectory over time and the
detected signal is strong in 2100. A clear indication that
anthropogenic forcing is projected to cause changes in precip-
itation intensities at this location.

4. Emergence times in yearly precipitation maxima

Our methodology can be applied to any type of real-valued
continuous atmospheric variable: temperatures, wind speeds,
precipitation intensities and others. As many EEA studies
have already focused on temperature, we chose to study the

FIG. 1. Analysis of yearly maxima of daily precipitation from 16 CMIP climate runs, providing a visual check to know if, within each of
the 16 models, NAT and ALL runs have similar distributions over the preindustrial period defined as years in T � 1850,…, 1900{ } (left) at
the grid point near Oxford and (right) at the grid point near Hohenpeissenberg. The x axis corresponds to the ranked yearly maxima of
daily precipitation for the ALL run; the same quantity is displayed on the y axis, but for the NAT run. Each panel represents a CMIP
model. If the points are aligned along the black diagonal, then NAT and ALL distributions can be considered similar. Each white box con-
tains the p values of the two-sample Anderson–Darling test (Pettitt 1976; Anderson and Darling 1952). The red subpanels have a p value
lower than 0.2 and the associated models are then discarded from the corresponding grid point.
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annual maxima of daily precipitation (results about tempera-
ture are available upon request). Statistically, precipitation
intensities are skewed and sometimes heavy tailed. So, this
type of non-Gaussian random variable represents a challeng-
ing test bed for our approach. In addition, multi-error analysis
with annual precipitation maxima can reveal key information
for impact studies. Details about our selected CMIP models
can be found in appendix A.

To illustrate our statistical method described in the previ-
ous sections, we focused on two grid points, one near Oxford
(U.K.) and Hohenpeissenberg (Germany), see Figs. 1–3. The
same type of analysis can be done for each individual grid
point. The nine panels of Fig. 4 provide global snapshots of
the estimates q̂t for nine different years: 1850, 1900, 1940,
1970, 2000, 2020, 2030, 2050, and 2100. As already pointed out
in Fig. 3, a signal starts to emerge in 2000 and, for some areas,
becomes very clear in 2020. In 2050, q̂t departs from the refer-
ential 0.5 in vast regions (red and orange), especially southern
and northern, and there the annual precipitation maxima
can be attributed to changes in anthropogenic forcing. This
statement integrates larger zones in 2100. It is noteworthy
that a few patches of green colors indicate that anthropo-
genic forcing has a reverse impact (i.e., a decrease in precip-
itation intensities). These spatial precipitation patterns are
consistent with the results of previous studies showing that,
under continued greenhouse gas emissions, heavy precipita-
tion magnitude is expected to increase over much of the
world, except in the subtropics where robust declines are
projected (e.g., Pfahl et al. 2017; Tandon et al. 2018; Dong

et al. 2021). Hence, the green areas of decreasing extreme
precipitation are consistent with other studies (Collins et al.
2013) that reveal significant drying of precipitation of all
intensities (mean and extreme). Significant decreases remain
confined to ocean regions and barely, if at all, propagate to
land areas.

Figures C2 and C3 show that no specific model appears to
outperform other models. This complements our understand-
ing at the Oxford grid point in Fig. 1 where four among the 16
models had strong weights. For other grid point locations,
other models are chosen. Overall, if all models were equi-
probable, then, on average, each model should have a weight
of around 1/16 = 0.0625. This value basically corresponds to
the fourth column of Table 1, which indicates the global aver-
age of the estimated weights for each model. Concerning the
first step of our weight procedure during which we only kept
models that have an Anderson–Darling p value above 0.2 at a
given grid point, the last column of Table 1 confirms that, at
the global scale, the average number of grid point rejected by
each model is, as expected, around 20%. This points toward
the fact that no model appears to be superior (less rejected)
at the global scale.

Emergence times definition

As already mentioned, a consequence of our definition qt is
that, when there is no difference between the factual (ALL)
and counterfactual (NAT) worlds, it has to be equal to 0.5.
This robust reference allows us to define an emergence time
in the following way:

FIG. 2. As in Fig. 1, but in each panel the x axis corresponds to the years from t = 1850 to t = 2100 (RCP8.5 or SSP5–8.5 after 2006) and
the y axis represents the estimate of qt defined by (5). Each panel corresponds to a specific CMIP model setup (see Table 1). The shaded
area denotes 90% confidence intervals around the mean estimate of qt. The horizontal black line centered on 0.5 corresponds to the null
hypothesis where the factual and counterfactual worlds are indistinguishable. Each white box contains the weight associated with each
model.
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tp � argmin t for all t′ $ t, we have P q̂t′ . 0:5
( )

. p
{ }

:

This means that, at the 1 2 p significance level, all years
after the emergence time tp have a qt value significantly
higher than 0.5. That is, an increase in precipitation is
detected at year tp and this signal remains present after this
specific year. From Fig. 5, one can deduce that, in most
regions, the anthropogenic signal becomes detectable in
model-simulated annual maximum 1-day precipitation around
the year 2000 at the level of 90%. In northern latitudes (below
508N), the detection starts to emerge even as early 1950s. The
gray areas do not mean that the signal is not attributable, but,
instead of an increase, these regions correspond to a precipita-
tion decrease (see the green areas in the bottom three panels
of Fig. 4; e.g., Pfahl et al. 2017; Tandon et al. 2018; Dong et al.
2021).

5. Conclusions and discussion

In the introduction, we claimed that our approach has the
key advantage of bypassing multimodel error in EEA analysis.
Our treatment of annual maxima of daily rainfall from the

CMIP repository provided a clear case study where none of the
models were bias corrected. By removing this bias correction
step, we avoid the inference of the distribution of extremes rain-
fall in both factual and counterfactual worlds and the use of
bias correction like quantile–quantile mapping for each model
(see, e.g., Maraun et al. 2017; Cannon 2018). In addition to pro-
viding a simpler setup, our approach also reduces the computa-
tional cost.

From a climatological point of view, our analysis clearly
indicates changes in precipitation intensities. Emergence
times and precipitation patterns are spatially coherent (see
Figs. 4 and 5). Overall, our merging of models indicates signif-
icant anthropogenic influence in heavy rainfall over most of
Earth’s surface by 2030 [see Li et al. (2021) and Sun et al.
(2022) for similar conclusions but with a parametric
approach]. We also found that a convex combination of all
models performs better than any single one.

The optimization of model weights is tuned during the pre-
industrial period. This calibration is assumed to be valid over
other time periods and one can wonder if our results are
robust with respect to weights changes. To explore this possi-
bility, we also studied two other ways of setting weights. We

FIG. 3. Oxford grid point: comparison between the best individual model (red), with respect to
the Anderson–Darling statistic, and the best convex combination (blue/green) q̂t defined by (8)
that merges the 16 estimates. The probability qt should be equal to 0.5 (see the horizontal black
line) over the preindustrial period when t ∈ T � 1850,…, 1900{ }.
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implemented the classical form of weights in variable selec-
tion problems (see, e.g., Burnham and Anderson 1998) and
used in the climate literature (see, e.g., Lorenz et al. 2018).
Another approach is a so-called expert aggregation approach
(e.g., Gaillard and Goude 2015). Overall, all three approaches
gave similar emergence times, with well-structured spatial
patterns with the expert aggregation technique and our
approach. For these two methods, estimates of q̂t are robust
to weight changes during the preindustrial period. For
other time periods, the absence of counterfactual perfect

observations makes it impossible to remove the assumption of
stationary weights. Other research avenues could be explored
to integrate observational data in our statistical approach (see,
e.g., Sabourin et al. 2013). In this work, our analysis only relies
on numerical simulation outputs from CMIP, and not on
observations. Consequently, our conclusions have to be solely
interpreted within numerical worlds [see Otto et al. (2020) for
a discussion about the confidence assignment of EEA studies].

Another delicate issue, especially for precipitation, is to
define the spatial scale of interest. In most CMIP-based D&A

FIG. 4. Values of the multimodel estimates defined by (8) at each grid point for yearly maxima of daily precipitation from CMIP runs in
Table 1. A red (green) color indicates a significant increase (decrease) in precipitation intensities due to anthropogenic forcing.

FIG. 5. Emergence times: years after which all qt values are significantly higher the 0.5 at the
significance level of 10%. The gray regions correspond to a detected decrease in precipitation;
see green patches in Fig. 4.
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studies, such as in Ribes et al. (2021), the analysis is done at
global or regional scales. This facilitates the integration of
observations and improve the signal-to-noise ratio (see, e.g.,
Hannart et al. 2014). But, gridded spatial features like the
ones in Fig. 4 are lost. This also leads to the open question of
how to find optimal regions that maximize the attribution
power in a multivariate context (see, e.g., Le Gall et al. 2021;
Kiriliouk and Naveau 2020; Yiou et al. 2017; Vannitsem and
Naveau 2007). A related question is how to adapt our
approach to a multivariate framework to attribute compounds
events (see, e.g., Zscheischler et al. 2019). Coupling the field
of counterfactual theory and multivariate analysis could help
in the direction (see, e.g., Hannart et al. 2016). Our attribution
approach can also be extended to the analysis of record events
(e.g., to assess probabilities that the current realization is the
largest ever recorded). In our approach, the level u was
replaced by a random variable; see how we went from (2) to
(3). As in Naveau et al. (2018) and Worms and Naveau (2020),
it would be possible to replace u in (2) by the random variable
max(X1, … , Xt). In this case, the set {Xt .max(X1, … , Xt21)}
corresponds to the event that the record occurs at time t.
Hence, it would be possible to use the same multimodel combi-
nation technique to analyze records. While conceptually possible,
this extension needs future work in terms of implementation.

A last point is our use of the CMIP worst-case scenarios
(RCP8.5 and SSP5–8.5). Our proposed technique can be eas-
ily applied to other scenarios. Still, most inferred emergence
times of yearly maxima of precipitation span the period
2000–20 (see the blue to yellow regions in Fig. 5). This period
is prior to any strong differences among scenarios. Hence, our
estimated emergence times for these regions will remain valid
with other scenarios.
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APPENDIX A

Datasets

From the CMIP5 archive, we select 12 models for which
we found a complete set of precipitation simulations for the
historical (1850–2005), historicalNat (1850–2012), and RCP8.5

(2006–2100) experiments. Additionally, we also treat four
CMIP6 models (see, e.g., Eyring et al. 2016) for which we
found historical simulations in the CMIP6 deck and hist-nat
simulations in DAMIP and SSP585 projection. The historical
simulations combined with the RCP8.5 and SSP585 simulations
represent the factual world whereas the historicalNat simula-
tions correspond to the counterfactual world. All runs have
been remapped to a common 58 3 58 HadCRUT grid (cdo
rmapcon operator). Table 1 provides the list of the 16 CMIP
models used in this study.

APPENDIX B

Methods

Proof of Eq. (4): To simplify the proofs, we have
dropped the temporal indexing t whenever it was possible.
We have, by definition of Zt and Xt,

qt � P(Zt . Xt),
� P F←

t 8 F
(m)
t Z(m)

t

( )
. G←

t 8G
(m)
t X(m)

t

( )[ ]
;

� P G←
t 8G

(m)
t Z(m)

t

( )
. G←

t 8G
(m)
t X(m)

t

( )[ ]
, from assumption A,

� P G(m)
t Z(m)

t

( )
. G(m)

t X(m)
t

( )[ ]
, as Gt ·( ) non-decreasing,

� P Z(m)
t . X(m)

t

( )
, as G(m)

t

( )←
·( ) non-decreasing ·

Computation of confidence intervals of q̂(m)
t

For each climate model m, the year-varying probability

q(m)
t � P(Z(m)

t .X(m)
t ) � E[G(m)

t (Z(m)
t )] can be inferred from

the Nadaraya–Watson estimate q̂(m)
t defined by Eq. (5). To

simplify the inference process, we consider the CDF Gt of
the NAT as a stationary process.B1 In this case, Gt can be

estimated by the classical empirical estimator G(m)
I defined as

G
(m)
I (x) � 1

I

∑I
I�1

I X(m)
ti # x

( )
,

where I A( ) represents the indicator function equal to one if
A is true and zero otherwise and Xt1 ,…,XtI( )T corresponds
to a NAT run trajectory of I time steps. To derive confi-
dence intervals around this estimate, we need to introduce

q̃(m)
t � 1∑

Kh(t 2 tj)
∑J
j�1

Kh(t 2 tj)G(m)
I Z(m)

tj

( )
,

which corresponds to a simpler version of q̂(m)
t in which the

CDF G(m) is supposed to be known. In this case, the asymptotic
behavior of the difference A � q̃(m)

t 2 q(m)
t is well known (see,

e.g., Härdle 1991). It converges toward a Gaussian limit law
with known asymptotic mean and variances,

B1 This assumption could easily be removed by adding a kernel
estimator forG(m)

t ; however, this was not necessary for our precipi-
tation application.
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(Jh)1=2 q̃(tj) 2 q(tj)
s2(tj)

��K��2
2=f (tj)

[ ]1=2⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
⎫⎪⎪⎪⎪⎬⎪⎪⎪⎪⎭
J

j�1

converges into toward

N q′′(tj) 1 2q′(tj)f ′(tj)=f (tj)[ ]�
s2K(s)ds

{ }J
j�1

, I

( )

where s2(t) is the conditional variance of {Gt(Zt} and f is
the density of the temporal variable T. Hence, we can write

q̂(m)
t 2 q(m)

t � A 1 B, with

B � 1∑
Kh(t 2 tj)

∑J
j�1

Kh(t 2 tj) G(m)
I Z(m)

tj

( )
2 G(m) Z(m)

tj

( )[ ]
:

Following Naveau et al. (2018), we consider that��
I

√ [G̃(m)(Z(m)
tj )2G(m)(Z(m)

tj )] behaves (almost) like a Brown-

ian bridge:

B � 1��
I

√ ∑
Kh(t 2 tj)

∑J
j�1

Kh(t 2 tj)
��
I

√
EG(m)

I Z(m)
tj

( )
2 G(m) Z(m)

tj

( )[ ]

≈ 1��
I

√ ∑
Kh(t 2 tj)

∑J
j�1

Kh(t 2 tj)
��
I

√
B G(m) Z(m)

tj

( )[ ]

where B(u) represents a classical Brownian bridge on [0, 1] with
E[B(u)] � 0 and covariance: Cov[B(u), B(y)] = min(u, y) 2 uy.

Thus, E[B] � E[q̂(m)
t 2 q̃(m)

t ] ≈ 0 and

Var[B] ≈ 1

I
∑

Kh(t 2 tj)
[ ]2 ∑J

j�1

∑J
i�1

Kh(t 2 tj)Kh(t 2 ti) 3

E min G(m) Z(m)
ti

( )
,G(m) Z(m)

tj

( )[ ]
2 G(m) Z(m)

ti

( )
G(m) Z(m)

tj

( ){ }
:

Assuming that the terms A and B are independent and
that their mean is negligible, we build confidence intervals
for q(m)

t assuming that asymptotically

q̂(m)
t ∼ N q(m)

t , Var(A) 1 Var(B)
[ ]

:

To go one step further, we need to take into account
that q(m)

t may not be centered around the real quantity of
interest qt. It is centered if assumption A is satisfied; oth-
erwise, a bias exists between q(m)

t and qt. To deal with this
issue, we additionally assume that such a bias is randomly
distributed between all our climate models in the follow-
ing way:

q(m)
t ∼ N qt,s2

t

( )
;

q̂(m)
t

∣∣∣q(m)
t ∼ N q(m)

t , s(m)
t

( )2[ ]
;

where q(m)
t and (s(m)

t )2 �Var(A)1Var(B) from the previous
paragraph. The variance s2

t captures the intermodel vari-
ability between the different climate runs. By marginalizing
over q(m)

t , we then obtain by Bayesian conjugation for nor-
mal laws that

FIG. C1. Each graph represents the probability integral transform (PIT) of different CMIP model for the Oxford grid point (the two red
boxes indicate the two models that are rejected by the Anderson–Darling test). The PIT is computed between the ranked yearly maxima
of daily precipitation for the ALL run and the ones for the NAT run. The difference between the right and left panels is the period consid-
ered, 1850–1900 on the left and 2050–100 on the right.
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q̂(m)
t ∼ N qt,s2

t 1 s(m)
t

( )2[ ]
: (B1)

This variance decomposition simply means that the variance
of q̂(m)

t can be divided into the intramodel variance (s(m)
t )2

and the intermodel variance s2
t which can be estimated as

ŝ2
t �

1
M

∑M
m�1

q̂(m)
t 2 q̂t

( )2
,

where

q̂t �
∑M
m�1

wm 3 q̂(m)
t :

The choice of the weights wm depends on the climate
model capability to satisfy during preindustrial period.
Given the weights, the weighted estimator of qt follows

q̂t ∼ N qt,
∑M
m�1

w2
m s2

t 1 s(m)
t

( )2[ ]{ }
: (B2)

Equations (B1) and (B2) were used to obtain the confi-
dence intervals displayed in our figures. The kernel used

in q̂(m)
t [see Eq. (5)] is the classical Epanechnikov kernel

(Epanechnikov 1969) with a bandwidth of 60.5 years. The
bandwidth has been determined on using a leave-one-out cross-
validation scheme to find out the bandwidth that minimizes the
root-mean-square error (RMSE) between the estimated q̂1 ti( )
and the G̃I Zti( ). More precisely, the cross-validation has been

performed for each model individually and then we select the
median of bandwidths optimized for each model.

Note that the derivation of the confidence bands relies
on the assumption of independence between the estimates
of qt. Although various studies (see, e.g., Knutti et al. 2009;
Haughton et al. 2015) pointed out that climate models are
not necessarily independent, this issue may not be too prev-
alent in our case for the following reasons. We do not
require independence between raw atmospheric variables,

but between events like {Z(i)
t .X(i)

t } and {Z(j)
t .X(j)

t } for cli-
mate models i and j. These events are based on increments

like Z i( )
t 2X i( )

t and Z j( )
t 2X j( )

t and consequently, by remov-
ing additive error, increments are more likely independent
than raw data. Concerning the latter, our main focus is
gridded annual maxima of precipitation. Such variables
have high variability and intermodel dependence of incre-
ments is secondary compared to the signal-to-noise ratio
issue. In addition, Fig. 2 indicates that the differences
within a research center (e.g., IPSL) appear to be as impor-
tant than the ones between different research laboratories.

APPENDIX C

Appendix Figure

In Fig. C1, the probability integral transform of the prein-
dustrial period (left) for the Oxford grid point is compared
to the one (at right) obtained in the future (2050-2100).

FIG. C2. Weights of each model in Eq. (8) to obtain Fig. 4.
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The weights used in the aggregated estimator of qt
defined by Eq. (8) are displayed in Fig. C2. The x axis cor-
responds to the labels of the 16 CMIP models used in the
aggregation (see Table 1). The y axis represents grid points
locations of each model. The black (yellow) color corre-
sponds a weight near one (zero) in Eq. (8).

Figure C3 displays the p-value maps of each of the 12 CMIP
models under study.

APPENDIX D

SI Kullback–Leibler Divergence Computation

The log-likelihood of independentD1 Bernoulli sequences,
B(m)

t � {Z(m)
t .X(m)

t }, over t ∈ T can be written as

∑
t∈T

log 1 2 q(m)
t

( )12B(m)
t

q(m)
t

( )B(m)
t

[ ]
:

For two binomial distributions with respective success
rates p and q, the Kullback–Leibler divergence is equal to

D q; p( ) � qlog
q
p
1 1 2 q( )log 1 2 q

1 2 p
:

This leads to the following Kullback–Leibler divergence
that compares the T-dimensional vector q(m)

t∈T with qt∈T �
c 0:5, …, 0:5( ):
D c 0:5, …, 0:5( ); q(m)

t∈T
[ ]

� 2T 3 log2

2
1
2

∑
t∈T

log q(m)
t 1 2 q(m)

t

( )[ ]
:

For each model m, we can measure the departure from
the term T 3 log 2 with T = 50 years. A Kullback–Leibler
divergence is always nonnegative and equals to zero if
q(m)
t � c 0:5,…, 0:5( ). The estimate of q(m)

t from Eq. (5) can
be plugged in the expression D(·; ·), and consequently each
model m can be evaluated with respect to condition Eq. (7).
The optimization to find the weights in Eq. (8) is numerically
done using the solnp function in the R package Rsolnp.

In the model worlds, we also have that

P Z(m)
t . X(m)

t

( )
� 1
2

for all years t during which the two variables Z(m)
t and X(m)

t

are exchangeable. The exchangeability assumption simply means
that the labeling of the numerical model type (X and Z) is
uninformative; that is, P(Z(m)

t .X(m)
t ) � P(X(m)

t . Z(m)
t ).

FIG. C3. The p values of the two-sample Anderson–Darling test (Pettitt 1976; Anderson and Darling 1952).

D1 As we analyze yearly maxima of daily values in our applica-
tion, the hypothesis of year-to-year independence is reasonable. If
that is not the case, then the full times series B(m)

t with t ∈ T will
have to be modeled as a multivariate binary random vector with a
memory component (see, e.g., Tuel et al. 2017; Dai et al. 2013).
This will lead to a more complex likelihood. Albeit with added
complexity, the principles based on the Kullback–Leibler diver-
gence exposed in this section will remain valid.
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This implies that, although climate runs from the same
laboratory may be dependent and share the same code
(see, e.g., Knutti et al. 2019), they are likely to be
exchangeable (labeling free) during time periods with simi-
lar forcing. Another aspect is that the bivariate vector
(Z(m)

t ,X(m)
t ) does not have to be stationary in time to have

P(Z(m)
t .X(m)

t ) � 1=2. In particular, during the early period
where the anthropogenic forcing was weak (preindustrial
period), natural forcings were still a source of nonstationar-
ity in our climate system, but qt = 0.5 for t within this prein-
dustrial period.

Interpreting weights in the Kullback–Leibler divergence

One can notice that, if q(m)
t is stationary over T for model

m, then the divergence D[qt∈T ; q(m)
t∈T ] can be expressed as a

function of a variance ratio

D qt∈T ; q(m)
t∈T

( )
� 2

T
2
3 log

VB(m)
t

VBt

( )
,

where VB(m)
t � q(m)

t (12 q(m)
t ) is always smaller that VBt �

1=4. Equivalently, we can write the variance ratio as a function

of the divergence VB(m)
t =VBt � exp[223D(qt∈T ;q(m)

t∈T )=T]#1.

If this variance ratio is close to one (zero), then q(m)
t is close

(far) from qt = 0.5.
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