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a b s t r a c t

Mobile crowdsensing allows gathering massive data across time and space to feed our
environmental knowledge, and to link such knowledge to user behavior. However, a
major challenge facing mobile crowdsensing is to guarantee privacy preservation to
the contributing users. Privacy preservation in crowdsensing systems has led to two
main approaches, sometimes combined, which are, respectively, to trade privacy for
rewards, and to take advantage of privacy-enhancing technologies ‘‘anonymizing’’ the
collected data. Although relevant, we claim that these approaches do not sufficiently
take into account the users’ own tolerance to the use of the data provided, so that the
crowdsensing system guarantees users the expected level of confidentiality as well as
fosters the use of crowdsensing data for different tasks. To this end, we leverage the
ℓ-Completeness property, which ensures that the data provided can be used for all the
tasks to which their owners consent as long as they are analyzed with ℓ − 1 other
sources, and that no privacy violations can occur due to the related contribution of
users with less stringent privacy requirements. The challenge, therefore, is to ensure
ℓ-Completeness when analyzing the data while allowing the data to be used for as
many tasks as possible, and promoting the accuracy of the resulting knowledge. This
is achieved through a clustering algorithm sensitive to the data distribution, which
optimizes data reuse and utility. Nevertheless, it is critical to allow the deployment
of such a solution even in the presence of a malicious adversary able to act on the
server side, for which we introduce a privacy-by-design architecture leveraging Trusted
Execution Environments. The implementation of a prototype using SGX enclaves further
allows running experiments that show that our system incurs a reasonable performance
overhead, while providing strong security properties against a malicious adversary.

© 2022 Elsevier B.V. All rights reserved.

1. Introduction

Mobile crowdsensing is an essential element of the Internet Of Things (IoT1) as it allows gathering tremendous data
across time and space at low cost [1]. Indeed, thanks to the democratization of smartphones that embed, and/or connect
to, increasingly rich sensing capabilities, we are able to sense a large portion of the physical environment and further relate
the observed phenomena with human behavior. Various applications illustrate the benefit of mobile crowdsensing toward

∗ Corresponding author at: Petrus Team, Inria SIF, 1 rue Honoré d’Estienne d’Orves, Palaiseau, 91120, France.
E-mail address: mariem.brahem@uvsq.fr (M. Brahem).

1 See Appendix A for the list of acronyms and abbreviations.
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Fig. 1. Multi-tasking crowdsensing system architecture.

better informing and enhancing, e.g., environmental monitoring and awareness [2], public health monitoring and policy [3]
or traffic management [4]. Still, mobile crowdsensing comes with tremendous challenges for it to be widely adopted
and to effectively feed today’s AI-powered systems. Challenges span: the ability to embark a sufficiently large crowd to
gather the required spatio-temporal knowledge [5]; ensuring the quality of data through supporting trust management [6],
context-awareness and filtering [7]; the resource-efficiency of the overall process from the data collection up to its overall
aggregation [8]; and, last but not least, enforcing privacy [9].

This paper specifically focuses on the challenge of privacy-preserving mobile crowdsensing since it is the most critical
one for crowdsensing to be a powerful technology that both brings valuable knowledge and serves the public good. The
various dimensions of the challenge together with supporting solutions have been the focus of several surveys among
which: [9–12]. Relevant studies include leveraging state of the art Privacy-Enhancing Technologies (PET) to enforce
related privacy metrics [13,14]. For instance, the early work in [15] leverages decentralization together with spatial
k-anonymity for privacy-aware task assignment. More recently, the work in [16] introduces a mechanism based on
differential-privacy and distortion-privacy to guarantee that the gathering of location-based measurements is not at the
expense of location privacy for the contributing users, while reducing the resulting loss of data quality. Still, leveraging
PET results in the obfuscation of the crowdsensed data and thus impacts the significance of the knowledge that may be
analyzed. To overcome the loss of knowledge accuracy, a significant body of research concentrates on dealing with the
tension between accuracy and privacy [17]. Proposed solutions include privacy-aware auction-based approaches so that
the contributors get rewarded for the loss of privacy [18–20]. In a nutshell, the more users accept to provide close-to-
actual observations, the more the crowdsensing system gathers accurate knowledge and contributors get rewarded. Other
approaches leverage decentralization for managing the information about the contributing users [21]. However, they focus
on privacy-preservation at the time of task assignment, and do not address the complementary issue of privacy-preserving
data collection at the server.

Overall, the state of the art of privacy-preserving mobile crowdsensing provides a number of advanced protocols that
may be combined toward enforcing some level of privacy. And, whatever is the crowdsensing protocol implemented, it
comes with a necessary trade-offs between knowledge accuracy and privacy guarantees. The challenge is then for the
crowdsensing system to get the best out of the contributed data. Part of the solution lies in the elicitation of application-
specific data analyses to reduce the loss of accuracy [22]. However, we argue that it is as important to foster the re-use of
data across tasks, as also advocated by the IoT data marketplace trend [23]. Indeed, this results in the enhanced resource-
efficiency of mobile crowdsensing. This is known as multi-tasking in crowdsensing sensing, for which recent studies focus
on optimizing the allocation of tasks from the perspective of the task organizer [24], resp. task participant [25]. Our work
distinguishes itself from, and complements, related research by concentrating on fostering privacy-preserving data reuse in
multi-tasking, mobile crowdsensing systems. We further focus on participatory sensing where users explicitly register for
possible participation to tasks although our approach could easily be adapted to opportunistic sensing. Fig. 1 illustrates
the Multi-tasking Crowdsensing System (MCS) architecture we consider in our work: data requesters submit tasks to the
MCS server so that the server gathers and analyzes the specified data using the provided tasks; mobile users register for the
advertised tasks to the server to contribute relevant data. In this context, our goal is to ensure secure privacy-preserving
collection and analysis of crowdsensed data at the MCS server. We refer the readers to complementary work for what
concerns privacy-preserving interactions (e.g., [26,27]) and dealing with the trustworthiness of mobile users and data
requesters (e.g., [26,28–30]).

The research question that the paper addresses is: ‘‘How to foster the reuse of crowdsensed data across various eligible
tasks while still guaranteeing the right level of privacy and security to the contributing users at the MCS server?’’. A first design
choice that we make is to addressprivacy preservation according to the user’s consent to the use of their data. Consent is one
of the legal frameworks set in many places (e.g., GDPR [31], CCPA [32]) as a precondition for any processing of personal
data. In this context, informed and specific consent requires that users be informed of the type of data collected, the
identity of the recipient of the results, and the precise nature and purpose of the task. In particular, these legal terms are
intended to act as a safeguard against function creep and data reuse.2 Thus, personal data collected for one function on the

2 According to European Commission [33]: ‘‘If your company/organisation has collected the data on the basis of consent (...) no further processing
beyond what is covered by the original consent or the provisions of the law is possible. Further processing would require obtaining new consent ’’.
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basis of consent cannot be extended or reused for another function without obtaining consent for that function. Defects in
consent are considered a cause of nullity in many countries (e.g., see [34] for European countries such as France, Germany
or UK). As a result, digital consent has become an integral part of privacy management in computing platforms [35]. This
leads us to build upon the ℓ-Completeness property for mobile crowdsensing platforms, which we initially introduced
in [36]. ℓ-Completeness defines the extent to which mobile users consent to the reuse of the contributed observations,
that is, the property enforces that: (1) The user’s data are analyzed with at least ℓ − 1 other data sources in all the
tasks the data contribute to, and (2) No individual knowledge may be inferred due to the participation to many tasks
that may not involve the same contributors. The proposed consent-driven property directly derives from the properties
associated with sample size determination [37] in relation with privacy [38]. One challenge facing the enforcement of
ℓ-Completeness is to analyze the users’ contributed data in as many permissible and relevant tasks as possible while
guaranteeing ℓ-Completeness. This challenge is overcome with a distribution-sensitive clustering algorithm to optimize
both data reuse and utility (aka knowledge accuracy) [36]. Still, to avoid defect in consent under ℓ-Completeness, and in
accordance with the principles of privacy-by-design enacted in global privacy laws (e.g., Article 5 of the GDPR [31] in
the EU) and recommended privacy practices (e.g., by the Federal Trade Commission [39] in the US), the server should: (i)
Never expose personal information, i.e., raw contribution values or information derived from these values, and (ii) Enforce
ℓ-Completeness even in the presence of attacks. A second challenge is therefore to enforce these guarantees by default
on the server side.

After an overview of the consent-driven ℓ-Completeness approach, from formal definition to supporting algorithms [36]
(Section 2), the paper makes the following contributions:

• Privacy-by-design architecture of the server implementing the proposed consent-driven, privacy-preserving data
use in MCS; the architecture specifically leverages trusted execution environments so as to ensure that the
task assignment as well as the collection and multi-task analyses of the crowdsensed data are both secure and
privacy-preserving (Section 3).
• Prototype implementation of the MCS server that builds upon SGX enclaves [40] and the SCONE secure container

environment [41] (Section 4).
• Experiment-based evaluation showing that our solution incurs a reasonable performance overhead when adding

security to the consent-driven approach to privacy preservation in MCS (Section 4).

Finally, we position our contribution with respect to related work (Section 5) and offer conclusion (Section 6).

2. Consent-driven ℓ-completeness for privacy-preserving data reuse

2.1. Consent-driven privacy preservation in multi-tasking crowdsensing

Focusing on multi-tasking crowdsensing systems, consent-driven participation allows users to specify the tasks to
which they consent to contribute with mobile observations according to their privacy requirements. Without loss of
generality, we consider that a task submitted to the server for execution is defined by3: the function f (code) applied
to the collected data of the specified type S , the time period ∆ during which each participant contributes observations, a
minimal number ℓ of participants required to provide contributions to execute f .4 The value of ℓ is deemed critical to both:
(i) obtain a useful result (e.g., the evaluation of the noise level in a street requires the analysis of several contributions [42]),
and (ii) protect the privacy of the participants as their individual contributions get aggregated with the ones of the ℓ− 1
others. Typically, national agencies and data research centers impose a minimum number of individuals to be taken into
account [38] when producing any aggregate – table, graph or map based on aggregate values – for research purposes.
For instance, the INSEE confidentiality guide [43] and CASD rules [44] impose a minimum of 11 individuals for any
computation based on tax data or 5 individuals for social data.

The value of ℓ (resp. ∆) is task-dependent; hence, for the sake of simplicity but without loss of generality, ℓ (resp. ∆)
is aggregated as the maximum of the ℓs (resp. ∆s) of all the tasks. Following, each task is associated with a Manifest that
summarizes how the contributed data is consumed and thereby allows users to provide an informed and specific consent
for the task. The Manifest is specified using a dedicated language such as, e.g., the AnonyTL language [45] introduced by
the AnonySense privacy-aware system for opportunistic sensing [46]. We specifically assume the following specification
for a task and its Manifest:

Definition 1 (Task and Associated Manifest). A task T is defined as a tuple ⟨a, f , S, ∆, ℓ⟩ such that a is the sensing function
(code) to be executed on the mobile client,5 f is a function (code) executed on an input set with non empty contributions
of type S produced by at least ℓ consenting participants over a time period ∆. We denote by OT the result of T . The
manifest M(T ) is a declarative and intelligible representation of T regarding the consumption of the gathered data so that
users may provide an informed and specific consent for it.

3 See Appendix B for the list of symbols.
4 Additional elements may characterize the data consumption by the task — e.g., the frequency of execution or the retention period of the data.

Considering such parameters is area for future work.
5 We recall that we focus primarily on the secure privacy-preserving treatment of contributed observations on the MCS server and thus do not

elaborate on a in what follows.
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Table 1
Consent table C.
User b1 b2 b3
u1 1 0 0
u2 1 1 0
u3 1 1 1
u4 1 1 1
u5 1 1 0
u6 1 1 1
u7 1 1 1
u8 1 1 0
u9 1 1 1
u10 1 1 1

Given a set of m tasks T = {Ti}0<i≤m and associated manifests, managed and advertised by the multi-tasking
crowdsensing system, any user can consent to a desired subset of T . We denote the consents of a user u with the tuple
Cu = ⟨b1, . . . , bm⟩ where bi = 1 if the user consents to Ti and bi = 0 otherwise. By giving consents, a user accepts
contributing to (only) the set of results {OTi = Ti.f (sUi )}Ti∈T |Cu.bi=1, with sUi being the related contributions of type Ti.S
from a set Ui of users consenting to Ti that includes u.

Combining the contributions of users who tolerate different disclosure policies – as defined from their consents to
multiple tasks – creates the risk of unintended secondary uses and may result in defects in consent. Consider the knowledge
K that the crowdsensing system may disclose from the set of tasks T , provided the table C = {⟨u, Cu⟩}u∈U of consents
of the set of registered users U to the tasks (e.g., see Table 1), i.e., K = {OTi}Ti∈T |C.bi . The system must guarantee that it
conforms to C while computing and delivering K. However, we claim that meeting this constraint only is not sufficient
to guarantee that there is no defect in consent. For example, consider the consents of 10 users to 3 tasks represented
in Table 1. All 10 users consent to T1 (e.g., a task computing the average noise at a given location to request the city
government to take appropriate measures to reduce the nuisance). As for T2, all the users but User u1 consent to a more
privacy-invasive task (e.g., displaying the noise measurements across the users’ journeys). Assigning tasks to users based
only on their respective task consents (i.e., the system assigns T1, resp. T2, to all 10, resp. 9, users) results in a defect
in consent. Indeed, although User u1 does not consent to reveal the detailed noise observations they contribute to, the
specific observations may be inferred from composing OT1 and OT2 .

The consent-driven task assignment must account for the disclosure policies of the users across all the tasks they each
contribute to, to avoid a defect in consent. In other words, the multi-task assignment must be achieved in such a way
that the data gathered by a task T1 cannot be analyzed together with data also gathered by a task T2 with a weaker
disclosure policy. A simple solution to the above issue would consist in assigning tasks according to either the least or
the greatest, common disclosure policy of the eligible users. Going back to our example, this means assigning task T1 to
the participants consenting to either T1 only, or both T1 and T2. However, this would lead to sub-optimal data reuse, with
a contribution loss for certain tasks and a resulting reduced utility. A research question that arises is then: How to avoid
by design the defects in consent in a multi-tasking crowdsensing system, while ensuring efficient data reuse in as many eligible
tasks as possible?

2.2. Consent-driven ℓ-completeness

Still consider the set of tasks, T = {Ti}0<i≤m with any Ti = ⟨ai, fi, Si, ∆, ℓ⟩. We recall that the values of ℓ and ∆ are
identical in all tasks for simplicity, but without loss of generality (see Section 2.1). It is direct to infer that a multi-task
assignment does not create any defect in consent if for any pair of distinct tasks Ti and Tj, their respective outputs
OTi = fi(SUi ) and OTj = fj(SUj ) are processed over the respective input sets SUi (|SUi | ≥ ℓ) and SUj (|SUj | ≥ ℓ) such that either
SUi = SUj (i.e., they analyze the very same set of contributions from the same consenting users) or SUi ∩ SUj = ∅ (i.e., they
analyze contributions from distinct sets of users). However, such a task assignment is too restrictive. For instance, consider
a set of users U1 (resp. U2) consenting (only) to a task T1 (resp. T2), and a (disjoint) set of users U12 consenting to tasks T1
and T2 (see Fig. 2). If T1 uses all usable contributions (i.e., the result OT1 = f1(SU1 ∪ SU12 ) is produced) then T2 cannot use
any contribution in SU12 produced by any user in U12 (i.e., only result OT2 = f2(SU2 ) can be produced, but not OT2 = f2(SU12 )
neither OT2 = f2(SU2 ∪ SU12 )).

To enable a better data reuse in practice, we introduce the following definition of ℓ-Completeness.

Definition 2 (Practical ℓ-Completeness Over ∆). Let a set of m tasks T = {T1, T2, . . . , Tm} and a set of users U who consent
to (a desired subset of) these tasks and contribute input data for these tasks over a period of time ∆.

Let a family of computation input sets (SUi )i≤m, where Ui is the set of users consenting to Ti ∈ T whose contribution
is used in (SUi )i≤m to evaluate tasks Ti ∈ T .

Let F (X ) = {X ∩ X ′|X, X ′ ∈ X }
⋃
{X \ X ′|X, X ′ ∈ X }

⋃
X .

Let F =
⋃

k∈N F k({Ui}i≤m) be the least fixed point of F containing {Ui}i≤m.
The family of computation input sets (SUi )i≤m is ℓ-Complete over ∆ iff for all X ∈ F either X = ∅ or |X | ≥ ℓ.

4
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Fig. 2. Strict vs. practical ℓ-Complete data reuse schemes.

In addition to the no reuse and strict reuse schemes, Definition 2 allows for further data reuse, while still prohibiting any
defect in consent (see practical reuse in Fig. 2). Reuse is enabled as long as applying any combination of the intersection
and difference over the respective users’ contributed data consumed by different tasks does not produce information
on a set of less than ℓ users’ contributions. In particular, Definition 2 allows evaluating both OT1 = f1(SU1 ∪ SU12 ) and
OT2 = f2(SU2 ∪ SU12 ) when the conditions of practical ℓ-Completeness are met. The following sections introduce concrete
techniques for data reuse, which conform by design to Definition 2.

2.3. ℓ-Completeness as a clustering problem

The key idea underlying the elicitation of groups of ℓ users that foster consent-driven data reuse across tasks according
to Definition 2 is to consider the ℓ-Completeness problem as a clustering problem. The objective is then to create a set
of k clusters P = {P1, P2, . . . , Pk} of the consent table C (see Table 1) in such a way that the tuples (i.e., the consent
policies of the embedded users) in the same cluster are as similar to each other as possible, thus resulting in a minimum
contribution loss. That is, we want to minimize the sum of all the intra-cluster distances (maximum distance between
any two data points), which is defined as:

d =
∑

h=1...k

max
i,j=1,...,|Ph|

distance(xh,i, xh,j) (1)

where: xh,i denotes the ith data point (in our case, a consent policy of the form ⟨b1, . . . , bm⟩) in the cluster Ph of the
consent table C, and distance(x,y) is the Euclidean distance between two data points x and y, and serves characterizing
the dissimilarity (in terms of common consents) between users. It follows that we aim at eliciting k subsets of users, Pi
(1 ≤ i ≤ k), such that:

• ∀i ̸= j ∈ {1...k} : Pi ∩ Pj = ∅
• ∀i ∈ {1...k} : |Pi| ≥ ℓ

• The distance d (defined in Eq. (1)) is minimized.

Following, we group users based on the similarity of their consent policies, and assign them the tasks that match
the consent policies of all, while discarding the others. Hence, this allows users with singular policies to contribute.
Nevertheless, we also need to ensure that the assignment of data to tasks conforms to the profile of data distribution
for each task. The consent-driven multi-task assignment is then implemented in three phases [36], as depicted in Fig. 3
and detailed next.

2.4. The learning and optimization phases

The learning phase allows evaluating the profile of data distribution for each task. It runs over a time period ∆′ < ∆ –
which is considered representative – to generate, for each task T , the reference profile ϕT

0 of the data distribution associated
with the task. For example, for tasks related to urban monitoring, the typical value for ∆’ would be a week as we observe
weekly repetitive patterns. We do not detail the computation of the reference profiles, which are task dependent. We
simply highlight that the learning phase does comply with the users’ consent policies [36].

The optimization phase then leverages the set of reference profiles {ϕT
0 }T∈T to optimize the users contributions to be

considered for each task for time period ∆. For each task T , we compute the profile ϕT
∆ as the union of the contributions

of all the users consenting to T over ∆. We then compare ϕT
∆ with T ’s reference profile ϕT

0 ; if the two profiles diverge,
we mark the contributions of some users as ’ignored’ for this task (i.e., the corresponding value bi in the consent table is
updated from 1 to 0) until ϕT

∆ gets close enough to ϕT
0 . The way users’ contributions are selected is task/profile dependent

5



M. Brahem, G. Scerri, N. Anciaux et al. Pervasive and Mobile Computing 83 (2022) 101614

Fig. 3. Three-phase consent-driven multi-task assignment.

(e.g., if the profile is a distribution or an histogram, the contributions of users with over represented values may be
‘ignored’) and is not further discussed. Note that the contributions of users that get ‘ignored’ for one task can still be
considered for any other – consented – task. The optimization phase allows ‘‘ignoring’’ subsets of users contributions that
would otherwise negatively impact the data utility, while conforming to the users’ privacy and consent requirements
through the computation of ℓ-Complete clusters.

The optimization phase allows to construct reference profiles representing the global distribution of data. Such approach
is efficient for several types of tasks where the distribution of the data can be represented by a reference profile. However,
for some where the collected data have a different distribution than the reference profiles, this approach could result in
a loss of information, for example, tasks towards anomaly/drift detection, where information related to anomalies or rare
events are not represented in the reference profiles.

2.5. The task assignment phase

The task assignment phase takes as input the consent table updated by the optimization phase, and proceeds in 3
stages (see Fig. 3): (1) Clustering that assigns users to their respective clusters while maximizing the number of tasks to
be executed by each user; (2) Adjustment to deal with clusters that contain less than ℓ users and further enforce the single
greatest common consent policy, and (3) Selection so that the task assignment to clusters maximizes data reuse.

2.5.1. Clustering stage
The ℓ-Completeness problem does not have a constraint on the number of clusters; however, it requires that each

cluster contains at least ℓ users. Thus, we pose the ℓ-Completeness problem as a clustering problem that derives from
the traditional k-means algorithm. We specifically choose k-means because it is one of the most widely used algorithms
for clustering due to its simplicity and efficiency with a low computational overhead [47]. Still, to overcome the limits of
the standard k-means algorithm for choosing the k initial random centers, we use the combined k-means++ that allows
achieving better accuracy by choosing the starting centers based on the weights of the data points according to their
squared distance from the closest center already chosen [48]. That is, we use k-means++ to seed the initial centers for
k-means in such a way that they are as far apart from each other as possible.

This results in Algorithm 1 that proceeds as follows: Let C be the consent table and k =
⌊n

ℓ

⌋
such that n is the number

of users in table C and ℓ is the value set for the ℓ-Completeness. The clustering stage starts by selecting k tuples to build
k clusters using k-means++. The idea of k-means++ is to choose a random consent c1 from C, calculate the distance from
each data point to the closest center we have already chosen, sample a point with a probability proportional to the square
of the distance already calculated and repeat the previous two steps until k centroids are selected. Once the initial k centers
are chosen, the k-means algorithm is applied: for each tuple c in the consent table C, the algorithm finds the cluster Pi
with the closest centroid to c . Then, we add c to its closest cluster and subsequently update the centroid of the clusters.

2.5.2. Adjustment stage
The above clustering algorithm returns a set of clusters out of which some may contain less than ℓ users. Furthermore,

it is unlikely that the consent policies of all the users in a given cluster are identical, which requires defining the Greatest
Common Policy (GCP) for the cluster. The GCP of the cluster characterizes the allowable set of tasks so as to avoid any
defect in consent (see Section 2.1). Note that GCP does not depend on the task semantics, but only on the consent table.

6
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Algorithm 1 Similarity clustering

Input: A consent table C, the value ℓ for ℓ-Completeness
Output: A set of clusters {P1, ...Pk}
Let k←

⌊n
ℓ

⌋
Let {P1, ..., Pk} a set of k empty clusters
Select k distinct tuples c1...ck ∈ C with k-means++
X ← {c1, ..., ck} ▷ X contains the initial k centroids
repeat

for each tuple c ∈ C do
Find ci ∈ X closest to c using Equation (1)
Pi ← Pi ∪ {c}

end for
X ← {centroid(Pi)}i≤k

until convergence return {P1, ..., Pk}

Definition 3 (Greatest Common Policy — GCP). Given a cluster Pi ⊂ C, we define the Greatest Common Policy within Pi as
the tuple GCP(Pi) = ⟨b1, b2, . . . , bm⟩ such that bi = 1 if for any tuple p in Pi we have p.bi = 1, and bi = 0 otherwise. Note
that we must ensure that |Pi| ≥ ℓ to guarantee ℓ-Completeness.

Algorithm 2 introduces the computation of the clustering adjustment. This includes checking the number of users in
each cluster. Multiple approaches can be used in case |Pi| < ℓ: (1) Distribute all the tuples of the cluster to the closest
clusters; (2) Merge closest small clusters with Pi until |Pi| ≥ ℓ; (3) Discard Cluster Pi. For efficiency and simplicity, we
implement Option 1.
Algorithm 2 Clusters adjustment

Input: P = {Pi}i≤k a set of k clusters
Output: {Pi′}i≤k′ a set of k′ ≤ k clusters with |Pi′| ≥ ℓ

for each cluster Pi ∈ P with |Pi| < ℓ do
for each tuple x ∈ Pi do

Find Pj with centroid(Pj) closest to x and |Pj| ≥ ℓ

Pj ← Pj ∪ {x}
Pi ← Pi \ {x}

end for
P ← P \ {Pi}

end for
return P

2.5.3. Selection stage
While the optimization phase (Section 2.4) filters out users contributions so as to respect the task profile ϕT

∆ of any
task T , Algorithms 1 &2 may still introduce some bias since it leads to use only a subset of the eligible data for the task.
Algorithm 3 overcomes such an impact. Given a set of clusters P created after proportional clustering/adjustment and a
set of task profiles {ϕT

∆}T∈T , for each task T , Algorithm 3 starts by merging the set of clusters P ∈ P with T ∈ GCP(P)
in a cluster ET . Then, it computes the profile ϕT

∆(ET ) on ET for that task. If the resulting profile is close enough to the
profile ϕT

∆, ET is considered as the input set for T that may be used to compute task result OT . Otherwise, we compute the
profile of each cluster in ET , sort them according their distance to ϕT

∆ and we remove those with the highest Earth Mover’s
Distance (EMD) [49] until finding a qualified cluster. More precisely, EMD serves quantifying the difference between data
distributions profile in the clusters and data distribution profile ϕT

∆, where the EMD between two distributions R and S is
defined as:

distance(R, S) =
1

m− 1

m−1∑
i=1

|

i∑
i=j

(sj − ri)|

As a result, Algorithm 3 selects, for each task, an input set that maximizes data reuse and conforms to the task profile.
More details and examples about our algorithms are presented in our recent work [36].

2.6. Compliance with practical ℓ-completeness

The Clustering Algorithm 1 and associated Adjustment Algorithm 2 build a partition of the users’ contributions such
that each partition is a cluster of size ≥ ℓ and the intersection of any two partitions is the empty set. The Selection
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Algorithm 3 Selection

Input: P: the set of clusters created after clustering/adjustment, {φT
∆}: the set of task profiles

Output: The set of input sets {ET } qualified for each task
for each T ∈ T do

ET ← ∪{P ∈ P, T ∈ GCP(P)}
qualified← false
while ! qualified do

φET ← compute_profileT (ET )
if φET ≃ φT

∆ then
qualified← true

else ▷ else remove the worst cluster from ET
Worst ← P ∈ ET s.t. P with the highest

EMD(compute_profileT (P), φT
∆)

ET = ET \Worst
end if

end while
end forreturn {ET }

Algorithm 3 potentially rejects certain clusters – as a whole – initially assigned to a task, in case they lead to a too high
deviation from the reference data distribution profile for the task. Since each task (re-)uses the union of a given set of
clusters, any composition of union, intersection and difference over the sets of users whose contribution is effectively
used in the different tasks is obviously either the empty set or a set containing one or more partitions (corresponding to
more than ℓ users by construction). Hence, the result complies with practical ℓ-Completeness (see Definition 2) by design.

3. Privacy-by-design architecture

3.1. Security model

As detailed previously, the central server of our MCS architecture (see Fig. 1): Collects the consents of the participants to
the recorded tasks as well as their contributions; Executes the tasks using the contributions – in accordance with consents
–; and Delivers the results to the corresponding requesters. To avoid defects in consents and thereby guarantee consent-
driven privacy-preservation, the server should: (i) Never expose personal information, i.e., raw contribution values or
information derived from these values, and (ii) Enforce the ℓ-Completeness property, even in the presence of attacks. We
first introduce the security assumption we make for the implementation of an MCS server that complies to these two
requirements, hence adhering to privacy-by-design principles.

In our previous work [36], the server is assumed fully trusted. This means that the entire server software stack
– including the OS, hypervisors and applications – is: fully protected from the outside, bug free, without security
vulnerability, and maintained by fully honest administrators and employees never causing any negligence nor error. Under
this assumption, the only information accessible to attackers is that remaining outside of this fully trusted environment:
tasks results exposed to the requesters, and data exchanged between the server, users and requesters. Task results never
reveal information the users did not consent to, provided the ℓ-Completeness algorithms and task processing are properly
implemented on the server side. Furthermore, data exchanges can be protected using existing anonymous communication
and cryptographic techniques (e.g., mix networks [50]). However, in practice, although appropriate legal and contractual
clauses may be adopted to protect the stakeholders in the event of non-compliant data disclosure or data use, it is
impossible to fully prevent data breaches due to negligence or malicious actors as shown by numerous recent examples
(e.g., Equifax6). Hence, we need to alleviate the strong trust assumption we place in the server in [36]. Two main security
models can then be considered:

1. Honest-but-curious (HBC) adversary (see e.g., [51]). Under honest-but-curious (aka semi-honest or passive) security
assumptions, attackers have potential – read – access to all data stored or manipulated on the server side, but
cannot actively corrupt code execution or running protocols. This is the weakest assumption apart from complete
trust in the server, since the server is assumed to honestly perform all computations. To avoid HBC attacks, all data
must be protected against ‘‘snooping’’ and thus never be stored or used in clear on the server side; furthermore,
it must be impossible to infer information about the processed data from the computation itself (typically through
execution flow).

6 https://en.wikipedia.org/wiki/2017_Equifax_data_breach.
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2. Malicious adversary. In addition to observing server-side execution, malicious intruders may also attempt to interfere
with execution, resulting in disclosure of data – and insiders may also unintentionally introduce bugs or make
mistakes that allow such interference. Such attacks cannot be ignored in the interest of both users (whose consent
must be respected) and requesters (which are also expected to avoid manipulating data without users consent, for
regulatory compliance reasons). Indeed, any interference with, e.g., the ℓ-Completeness algorithms would lead to
non consent-compliant results.

We thus consider the latter worst-case security model. We note that this does not imply that the server is malicious or
would deliberately attempt to violate the consent, and data confidentiality, of participants for secondary use of the data.
However, we clarify that because the server is honest, its purpose is to demonstrate to the participants (mobile users and
requesters) that any intruder attacker acting on the server side will not be able to: violate the confidentiality or integrity
of the data, or corrupt the user-consent compliance process. This also prevents leakage due to server vulnerabilities that
could be exploited by external attackers, as the worst case scenario is that an attacker takes control of the server.

To address the malicious adversary model, we leverage the technology of Trusted Execution Environments (TEE) [52]
(e.g., Intel Software Guard Extensions (SGX) [40], AMD SEV [53] or even ARM TrustZone [54]). This allows specific and
well-identified pieces of code to be executed inside secure (hardware) enclaves of the TEE, which provide hardware-based
data and code confidentiality, integrity and freshness guarantees against a malicious server (adversary with full control on
the server, including OS, hypervisor and software stack — see for example [55] in the case of Intel SGX). One of the main
issues in securing local processing in TEEs is to cope with different types of side-channel attacks [56]. Some side channels,
typically cache attacks [57], page level memory observation [58] or timing can be mitigated through either careful coding
of oblivious operators [59] or modification of the execution environment [60]. Other attacks [61–63] are on lower level
components of the TEE and are thus outside of the control of the user and should be dealt with by the TEE provider. A
precise study of such side channels is highly dependent of the particular TEE used, and is thus outside of the scope of this
paper. However, depending on the specific TEE, any mitigation should be readily applied to our architecture. In our work,
this is done by fixing the size of data exchanges between enclaves (using padding), and by resorting to only sequential
data access patterns in our algorithms so that it is relatively easy to code them in a way that is not affected by cache
attacks.

In order to achieve our stated goals, we make the following – classical – assumptions:

(i) We do not consider attacks on client-side devices (the scope of our study is the trust provided on the server side).
(ii) Users’ consents are provided faithfully, which implies a strong notion of identity for participants, provided through

a PKI infrastructure. This is needed to avoid cases where adversary participants provide a large number of fake
data/consents to single out a targeted user contribution among ℓ− 1 fake identities (our ℓ-Completeness definition
assumes data provided from different actual users).

(iii) Data exchanges between users and server-side enclaves are performed over secure channels, and users are guaran-
teed to communicate only with the correct enclaves, which is typically achieved through a combination of attestation
and secure channel creation [64].

(iv) The code implementing ℓ-Completeness can be certified beforehand (e.g., it is open source for community checking,
or was approved by a regulatory body, an association or a national privacy regulatory agency).

(v) The TEE enclaves available on the server side provide a proof that a specific piece of code has produced a specific
result (this is typically achieved through attestation [64]), and the data manipulated within an enclave is private,
even in the presence of an adversary controlling the server (e.g., the OS).

We then assume that the adversary has full control of what happens outside of the enclaves, and that data outside
enclaves can be maliciously manipulated (even though encrypted) by any server-side intruder seeking to disclose personal
information (i.e., raw contribution values or information derived from these values) to which participants have not
explicitly consented.

3.2. Design challenges

As discussed in the previous section, a TEE provides confidentiality and integrity guarantees against a powerful
adversary, through an isolated secure memory area (enclave) where the code and sensitive data can be safely processed.
Then, a straightforward design for a secure architecture supporting consent-driven multi-task assignment based on
ℓ-Completeness (see Fig. 3) is to have a single enclave that:

collects all inputs (users’ consents and data contributions), builds ℓ-complete clusters for tasks (cf. Algorithms 1–3),
executes tasks, and provides task results. While promising at first glance, this architecture suffers several shortcomings:

• Enclave limitations (memory, fault tolerance, stateless): Considering Intel SGX as a TEE example, it supports only a
limited memory space (∼94 MB) for applications running inside enclaves. Meanwhile, task assignment/execution
involves large data related to multiple users.
• Limited scalability: We need to extend the trust of a single TEE to multiple ones, and thus support a distributed

architecture with multiple enclaves to overcome the limits posed by a single-node architecture (single CPU). The
architecture should be easily extensible to support multiple enclaves for task execution in case of massive datasets.
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Fig. 4. Privacy-by-design MCS server architecture using enclaves.

• Limited size of the Trusted Computing Base (TCB): Our architecture should minimize the TCB inside enclaves to reduce
the size of the task code that run inside enclaves and protect application memory from unauthorized OS accesses.
• Meeting our security objectives: The deployment of a data processing module is not trivial; the secure execution of

each task is challenging since a given task has only access to ℓ-complete clusters. Keys to decrypt clusters need
to be protected on the system as well as securely distributed across enclaves. Thus, the execution must be split in
several units running in different enclaves. This introduces an additional security issue: How to protect the system,
by-design, in the presence of an attacker on the server side, able to observe or corrupt data and execution in order
to infer data and reuse contributions beyond users’ consents?

We overcome the above limitations by introducing a secure architecture with multiple enclaves; this ensures that the
code and data running inside enclaves are correct and not modified by an attacker. We believe that any vulnerability
in the TCB may allow an attacker to compromise the integrity of the system. Thus, the objective is to keep as small as
possible the size of the TCB within the enclaves. We also add a mechanism to protect the access to users’ data for task
execution by securely transferring and distributing keys to enclaves based on their rights. Each task-processing enclave
should have access to the corresponding ℓ-complete clusters.

3.3. Secure architecture design

The security of the proposed MCS server architecture is based on two pillars: (1) User consents and contributions are
handled in the clear only within secure enclaves, and (2) Control and data flows between components are controlled by
the enclaves themselves so that user contributions can only be used in consented tasks in the form of ℓ-Complete datasets.
Below we describe the components and their associated enclaves, and then how the flow of data between components
is secured.

3.3.1. Architecture components
Fig. 4 illustrates the secure architecture of the MCS server, which consists in the following core components, with

enclaves embedded to face malicious attackers (from left-to-right, top-to-bottom in the figure):

• Data Producer. It collects data contributed by users as part of active tasks. The component also manages the user
registry and associated consent policies represented in the consent table. Due to scalability issues and the sensitive
information processed, the component embeds a number of enclaves:

– Consent Enclave: Collects user consents to tasks and their revocation according to the task manifests. The Consent
Enclave updates the consent table accordingly, which is stored securely.

– Collect Enclaves: Collects user contributions to tasks. The enclave is responsible for authenticating users who
log-in (using the chosen method — see assumption (ii) in Section 3.1), collecting their contribution – the data
sensed by the user – and inserting it into the Secure Storage. In practice, allocating a single Collect Enclave for
a large number of users would not be scalable, as the enclave would potentially have to simultaneously open
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and maintain one secure communication channel per logged-in user. Therefore, we consider allocating multiple
Collect Enclaves.

– Shuffle Enclave: The introduction of multiple Collect Enclaves potentially leads to the disclosure of more
knowledge about the users when their contributed data is transferred to the Secure Storage. The Shuffle Enclave
prevents such disclosure by buffering and shuffling the contributions from the different Collect Enclaves until
they reach a sufficient size, before inserting them in the Secure Storage. The Shuffle Enclave is used to break
the correlation between the encrypted stored data and the collected data from users for a curious observer.
However, if time/order of events in the data are important, such timestamps would be part of the data and
shuffling them would not remove these timestamps.

• Certification Authority. It is an – external (e.g., trusted authority such as CNIL7 in France) – component that acts as a
task controller that manages and certifies tasks. In particular, it validates that the implementation of any submitted
task conforms to its Manifest (see Definition 1).
• Secure Storage. The component is responsible for storing the consent table, user data and certified tasks in encrypted

form. It also maintains a Reference Monitor, which is embedded in a dedicated enclave, used to interact with the Task
Execution component:

– Reference Monitor Enclave (Key Management Enclave): The role of the Reference Monitor Enclave is: (i) To encrypt
each cluster produced by the ℓ-complete Assignment Enclave using a different key, and (ii) To regulate the
dissemination of cluster keys to tasks (i.e., the Executing enclaves) according to the GCP (see Definition 3) of each
cluster (i.e., a cluster key κ is authorized to the Executing Enclave of task Ti iff Ti is in the GCP of that cluster).
Therefore, we guarantee that any task has access only to authorized ℓ-complete datasets during execution.

• Task Assignment. The component implements the three-phase multi-task assignment presented in Section 2 through
the following enclave:

– ℓ-Complete Assignment Enclave: At the end of the ∆ time period, the enclave takes as input all consents and
data contributions collected over that period and produces a set of clusters that are qualified for each task.

• Task Execution. The component creates one dedicated enclave per task:

– Executing Enclaves: Each of them evaluates a given task over a ℓ-complete dataset collected during a ∆ period –
retrieved from the Reference Monitor Enclave – and returns the encrypted results to the relevant data requesters.

3.3.2. Secure data flow enforcement
The flow of data between the different components must be controlled end-to-end – leveraging the attestation

capabilities of TEEs – so that user contributions can only feed consented tasks in the form of ℓ-complete datasets, with
the results of tasks only accessible to their respective requestors. This is primarily established by requiring that: (1) At
login time, users verify that the Collect Enclave they are connecting to is authentic, and submit their contributions with
the guarantee that they are indeed being processed by a legitimate entry point in our architecture, or drop out; (2) At
runtime, the enclaves check their predecessors and successors against the expected data flow, and open secure channels
to exchange data along that data flow – the Reference Monitor Enclave additionally enforces consent policies (see previous
section) –, or abort; and (3) After the task has been executed, the Executing Enclave provides the results encrypted with a
session key that is itself encrypted with the public key of the target requester, so that only that requester can access the
result.

More precisely, the proposed server architecture enforces the above data flow through the following treatment of any
task (see Fig. 5):

The process starts with task certification. A Manifest together with the task are submitted to the Certification Authority,
which assesses that the submitted task conforms to its Manifest. Once certified, the task is added to the list of certified
tasks in the Secure Storage, with the public key of the corresponding data (task) requester. The private key is used to
decrypt the task execution result. This ensures that the tasks consented to by participants are indeed the tasks executed
on the server, even if a malicious adversary controls the server. The list of certified tasks may be downloaded by users
willing to contribute to tasks. Users then connect 1⃝ to the Consent Enclave to give their consents based on the details
of the Manifest. Participants download and install the sensing task on their smartphones to contribute their individual
observations, by connecting to a Collect Enclave 2⃝. Both enclaves insert the contributed data (consents and uploaded
sensed data) 3⃝ into consent and users’ data tables. The Task Assignment enclave 4⃝ takes as input the content – inserted
over period ∆ – of these two tables, and computes the set of qualified clusters that maximizes data reuse, conforms to the
task profiles and ℓ-Completeness definition (cf. Algorithms 1–3). The resulting clusters are inserted into the secure storage.
The Task Execution component creates the set of Executing Enclaves (from the list of certified tasks), which authenticate
to the Reference Monitor Enclave to retrieve the clusters keys they are granted 5⃝, decrypt the corresponding clusters

7 https://www.cnil.fr/.
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Fig. 5. Privacy-by-design MCS secure data flow.

Fig. 6. Implementation with SGX.

and evaluate the task to produce the final results encrypted for the data requesters. The Task Assignment and Executing
Enclaves can be freed (or killed) once the tasks are no longer relevant.

The next section introduces a prototype implementation of the proposed architecture, with an evaluation of the
performance assessing the impact of the main parameters.

4. Experiment-based evaluation

4.1. Prototype implementation

We use SGX enclaves [40] for our prototype implementation. Other TEEs are eligible but they have several limitations,
e.g.: ARM TrustZone [54] does not integrate any remote attestation mechanism, AMD’s TEE [53] is limited in terms
of security guarantees since integrity protection cannot be ensured. SGX provides strong confidentiality and integrity
guarantees against malicious adversaries with privileged root access. It guarantees that the code and data embedded in
the enclave are protected from untrusted applications outside the enclave. It offers a remote attestation mechanism that
allows an enclave to attest its identity to another entity outside the platform. The system components are implemented
in Python, and we leverage the SCONE platform [65] (Secure CONtainer Environment), a shielded execution framework
to enable unmodified applications to run inside SGX enclaves (see Fig. 6).

Using SCONE, the input data and the computation (Python code) are encrypted before being uploaded in the system.
They are decrypted inside enclaves using keys that are transparently obtained from the SCONE CAS (Configuration and
Attestation Service). As shown in Fig. 6, we create a secure container image based on SCONE. The application is executed
within a Docker container, the enclave code is verified by SGX when the enclave is created. We rely on SCONE to protect
the File system, it encrypts specified files and creates a file system protection file that stores the message authentication
codes for file chunks and the keys used for encryption.

The experiments reported next are run on a server with Intel Xeon E-2276G 6-core CPUs with 12 MB cache and SGX
1-FLC support, 64 GB RAM. The machine runs Ubuntu Linux 18.04 (kernel 4.15.0-142) with SGX DCAP 1.41.

4.2. Performance evaluation of task assignment

The following assesses the overhead of security (i.e., using SGX hardware) on the Task Assignment component,
which runs the most complex algorithms (cf. Algorithms 1–3, not considering the application-specific tasks). For users’
contributions, we used a dataset made available to us by the authors of [66], which provides the users’ activities, positions
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Fig. 7. Execution time wrt Number of participants.

Fig. 8. Execution time wrt Number of tasks.

and environmental noise measurements collected by their crowdsensing app. For the consent table, we used a Bernoulli
distribution (with a probability α = 0.6) to generate the consents of the participants (note that this is a worst case for
our algorithm, with higher average distance between policies). For more precision, each execution is repeated 10 times
with a set of random users, the result obtained for each evaluation represents the average of the different executions.

4.2.1. Impact of the number of participants
Fig. 7 shows the performance overhead of executing our task assignment module with hardware and native (i.e., no-

SGX) modes while varying the number of participants (ℓ= 10 and number of tasks = 12). The total cost increases with
the number of participants for both executions. The SGX hardware mode incurs an overhead of ∽ 30% because it
requires handling encryption and paging operations. Indeed, the performance cost of the reads and writes increases as
the application allocates memory that is larger than the EPC size (∽94 MB), which may be reduced by reducing as much
as possible the required heap size.

As a result, the amount of the heap size (i.e., the value of the parameter that controls how much heap memory
is allowed for the application) does not significantly affect performance (see Fig. 7). In general, applications may gain
performance when higher memory is allocated. However, this is not the case for applications using SGX enclaves because
of the limited EPC size where the use of more memory leads to more EPC swapping operations.

4.2.2. Impact of the number of tasks
As Fig. 8 illustrates, we observe a linear increase of the execution time when increasing the number of tasks (ℓ =10).

The SGX hardware mode is slower compared to the native execution due to the fact that the clustering algorithm requires
more memory and the EPC size is limited. However, we believe that Intel may release in the future new generation of its
hardware with larger EPC sizes. This could help us to reduce the performance overhead and improve the cost of our task
assignment process.

4.2.3. Impact of ℓ

Fig. 9 reports the total execution time while increasing the value of ℓ (Number of tasks = 12). The execution using
the SGX hardware mode is higher than the native execution. However, we can see that the difference diminishes when
we increase the value of ℓ. Note that for ℓ = 50, the cost of execution using SGX is very close to the cost using a native
execution. The reason is that the execution time decreases when we decrease the number of clusters. Increasing the ℓ

value leads to decreasing the number of clusters generated by the k-means algorithm. Thus, the ℓ value must be adapted
to the number of participants to avoid having a large number of clusters. Recent studies have demonstrated that it is
possible to obtain the optimal k value (i.e. the optimal ℓ value) for the k-means algorithm. For example, Franti et al. [67]
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Fig. 9. Execution time wrt ℓ.

Fig. 10. Contributions loss wrt ℓ.

demonstrate that the CI-value of k-means increases linearly with k, where the CI-value defines the cluster centroids that
are wrongly located. They also show that the performance of k-means degrades as the CI-value increases.

Following, estimating an optimal ℓopt value of ℓ for our clustering algorithm first requires to provide an estimated
range of ℓopt as [ℓmin, ℓmax]. The values of ℓmin and ℓmax are estimated based on the acceptable range of the contributions
loss, where Eq. (2) defines the ratio of contributions loss within a purely consent-driven system8:

Closs({Ti}i≤m) =
|{c.bi ∈ C, i ≤ m, c.bi = 1,GCP(c).bi = 0}|

|{c.bi ∈ C, c.bi = 1}|
(2)

The range of the contributions loss is then defined by the system, it represents the number of contributions that can
be discarded by the adjustment stage divided by the total number of contributions. Fig. 10 reports the total contributions
loss according to the value of ℓ with 12 tasks. For example, for the dataset composed of 5000 participants, if we consider
a range of contributions loss as [10%, 15%], an estimated range of ℓopt is [10, 20].

The second step to estimate ℓopt is to consider the performance of the k-means algorithm in determining the optimal
number of clusters. For this, we may leverage approaches that allow determining the optimal k value of k-means such as,
e.g., the Elbow Method [68]. The idea is to compute the within-cluster-sum of squared errors (WSS) for different values of
k ∈ [kmin, kmax], and choose the k for which the WSS starts to diminish. The use of such type of methods allows computing
the kopt (i.e., ℓopt ) in order to improve the performance of our clustering algorithm in terms of both contributions loss and
execution time.

Summarizing, the reported experiments show that the use of SCONE and the current Intel SGX capacity, performing
securely clustering/task assignment inside Intel SGX, is practical. It incurs an overhead of ∽30%, but we believe that this
is acceptable since the algorithms are executed only once over a single time period ∆, while the execution of tasks is
repeated at each ∆. The overhead may also lower with future version of Intel SGX hardware with larger EPC sizes.

4.3. Performance evaluation of task execution

We now evaluate the performance of our Task Execution component using one Executing Enclave. We analyze the
effectiveness of our algorithm using the same dataset (Section 4.2) which provides the users’ activities, positions and

8 Non consent-driven approaches are out of the scope of this paper.

14



M. Brahem, G. Scerri, N. Anciaux et al. Pervasive and Mobile Computing 83 (2022) 101614

Fig. 11. Utility loss per activity wrt # of clusters.

environmental noise measurements. We further carry out the analysis considering an illustrative task that computes the
average daily exposure to noise according to the user’s activity (i.e., Stationary, Walking, In-vehicle, Tilting, On-bicycle).

4.3.1. Utility loss
For any result OTi obtained for a task Ti, we evaluate the utility loss as follows:

Uloss(Ti) =
fi({SU |CU ∈ Pi,GCP(Pi).bi = 1})

fi({SU |CU .bi = 1})
(3)

with SU data contributed by a set of users U . In the case of a multi-dimensional result (e.g., noise values aggregated by
activity), we evaluate the value of ULoss for each dimension.

Fig. 11 analyzes the impact of the clustering-based algorithm on the utility loss (see Eq. (3)) by comparing the execution
of the task on the clusters (with clustering) with the execution on the original data (without clustering), according to the
number of clusters |P| ≤ k with k =

⌊n
ℓ

⌋
(see Algorithm 1). Specifically, it shows the information loss when measuring

the noise pollution level. We compare the execution on the overall data vs a qualified cluster (i.e., the input set produced
with Algorithm 3 for that task). We see that the information loss remains negligible with the increase in the number
of clusters. The reason is that the cluster follows the global distribution of data; therefore, the difference between the
distribution of data in the cluster and the original data is low, which results in a low information loss. The results in
particular highlight the effectiveness of the selection stage to achieve higher utility and less information loss compared
to base clustering (see [36] for more detail).

4.3.2. Execution time
Fig. 12 shows that the execution time (in milliseconds) increases almost linearly with the increase in the number of

participants. The hardware mode is slightly slower compared to the native version. Our architecture allows protecting task
processing against attackers with privileged access by securely executing tasks inside SGX enclaves. All data (consent data,
user’s data) and Python code (task query) are only decrypted inside enclaves.

Based on the experiments, we can conclude that our system combines strong security guarantees (integrity and
confidentiality) using SGX, and offers acceptable performance overhead compared to a native execution.

We performed additional experiments to evaluate the clustering algorithm by varying the value of ℓ, the number of
tasks as well as the number of participants in our recent work [36]. The objective of these experiments is to evaluate the
efficiency of our clustering algorithm compared to other approaches in terms of contributions loss.

5. Related work

5.1. Multi-task allocation in participatory sensing systems

The goal of multi-task allocation is to minimize a total cost function while guaranteeing data quality for multiple
tasks. In [69], the objective is to select the minimum subset of participants that satisfies quality-of-information metrics
(i.e., granularity and quantity) under a total budget constraint. Zhang et al. [70] introduce a strategy to predict the
mobility of participants so as to select the minimum number of participants while ensuring the best spatio-temporal
coverage. Li et al. [71] also aim at minimizing the number of participants while meeting a predefined level of coverage.
TaskMe [72], a framework for multi-task allocation, deals with (1) maximizing the number of accomplished tasks when few
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Fig. 12. Task execution time (ms) wrt Number of participants.

participants are available; and (2) the opposite problem with many participants and few tasks. PSAllocator [24] addresses
the multi-task allocation problem from another perspective, that is, maximizing the overall system utility under sensing
capability constraints. This includes the work in [25] that aims at maximizing data utility according to participant-side
factors (e.g., participant bandwidth, participant availability) when assigning tasks. Zhu et al. [73] introduce a greedy-based
approach to maximize the number of accomplished tasks under the sensing capacity and time constraints. In general,
existing solutions to the multi-task assignment mainly focus on optimizing the allocation of tasks without taking into
account the consents of users. Our work thus distinguishes itself by aiming at maximizing data reuse while taking into
account users’ consents, which is essential when dealing with the collection of users’ data as with crowdsensing systems.
In addition, by considering the distribution of data, the overall system utility is optimized.

5.2. Privacy-preserving crowdsensing sensing

Due to the collection of data from individuals, often including sensitive information like location, privacy preservation
in crowdsensing systems is the focus of various research. Part of the contributions focuses on leveraging Privacy
Enhancing Technology (PET) to implement privacy-preserving communication channels [26,27]. In a complementary
way, PET is exploited for the obfuscation of the crowdsensed data [15,16], which leads to alter the accuracy of the
data analyses. Such a drawback is addressed by the conjunct optimization of data utility and privacy preservation [17],
which primarily result in trading privacy for rewards through supporting auction-based mechanisms [18–20]. Other
work investigates the design of privacy-preserving architectures for crowdsensing systems. The SPPEAR architecture, in
particular, introduces a cryptography-based protocol for managing interactions between users and the data requester – the
latter being additionally responsible for the execution of the task – to ensure accountability of the system entities [74]. The
PEPSI infrastructure also introduces cryptography-based protocols to protect the privacy of both mobile nodes and data
requesters during data report and query execution [28]. The work of [29] also addresses the trustworthiness of the data
providers (mobile users) for which it introduces trustworthy ‘‘mobile security agents’’ that allow assessing the contribution
of participants. The trustworthiness of the data requester is investigated in [30], which aims at overcoming an attacker
masquerading a legitimate data requester (task provider), using cryptography protocols. Our work is complementary
to the above by focusing on privacy-preserving task assignment in the context of multi-tasking crowdsensing, further
overcoming the potential malicious behavior of the crowdsensing server.

5.3. Server side privacy-preserving data management

Privacy preserving data management is a widely studied topic. We focus here on server side privacy preserving data
management using TEEs. There are three main lines of work to be considered . The first pertains to securely storing and
addressing data using TEEs. This range from academic work like EnclaveDB [75] proposing full fledged data management
systems within enclaves, to work tackling more specific problems like indexing and storing data [76]. Commercial
solutions are also emerging for such problems, e.g., edgelessDB.9 These offer a number of potential implementations
of our secure storage component (see Section 3.3). The second line of work focuses on performing specific data oriented
computations using enclaves. These are not directly related to our architectural design, but provide a number of potential
implementation avenues for tasks. We can further distinguish two main subtopics. First, implementation of specific data
operators within an enclave, typically with the aim of closing side channels (e.g., [59]), provides a number of oblivious
operators; [77] introduces oblivious operators for computing on encrypted data. Second, a number of work focuses on

9 www.edgeless.systems.
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distributing data computations across enclaves, mostly using existing frameworks like map-reduce [78,79] or SPARK [80].
These could be used to implement tasks that process large amounts of data in a distributed manner. Finally, the third line
of work to be considered, which is the most closely related to our architecture solution, are studies that concentrate on
chaining different enclaves performing different processing. These provide precise mechanisms for chaining attestations
that can be used in our architecture. In particular, [81] provides a way of executing a sequence of tasks on private data,
and [82] provides a way of executing a number of tasks within enclaves, chaining attestations and providing overall
guarantees to the end user. Both of these approaches provide ways of ensuring integrity of the computation in our
architecture.

5.4. Consent in computing platforms

To the best of our knowledge and despite the growing awareness about privacy and consent in multiple fields, the
concept of consent has never been considered in the existing literature about mobile crowdsensing systems. Yet, Luger
et al. [83] alert multidisciplinary experts about ‘‘a crisis of consent for ubiquitous computing’’. They call the designers to
balance their design objectives against a series of consent considerations. Jones [35] discusses the importance of consent in
computing, explaining the moral magic of consent that renders permissible an otherwise impermissible action. In [84,85],
the authors study the role of consent in privacy policies for social media users. In the case of Facebook, they consider that
consent is flawed and claim the need for improvement to create more transparency about users’ personal data. Recently,
Okoyomon et al. [86] compare the privacy policies of Google Play Store apps with their behaviors and highlight the level of
the defect in consent and lack of prioritizing user privacy. In light of this, our work introduces a consent-driven approach
to multi-task allocation in participatory sensing systems. Our solution specifically maximizes the number of tasks assigned
to participants according to their consents while minimizing the utility loss.

6. Conclusion

We have introduced a solution to privacy-preserving multi-task allocation in mobile crowdsensing systems that fosters
data reuse while adhering to privacy-by-design principles.

We leverage the ℓ-completeness consent-driven property for multi-task allocation so as to allow the reuse of
crowdsensed contributions across eligible tasks while strictly adhering to the consents of users. Indeed, respecting
consent is an essential property of crowdsensing systems to guarantee privacy to their users. This leads us to claim that
consent-based properties, such as ℓ-completeness, should be an essential part of standards oriented towards privacy in
crowdsensing systems.

We further extend the security properties of consent-based privacy preserving multi-task allocation by considering
the existence of a malicious adversary for the mobile crowdsensing server. We specifically introduce a server architecture
that ensures the integrity and confidentiality of the proposed solution through the use of trusted execution environments
(e.g., Intel SGX enclaves). That is, the server architecture ensures that no user’s contribution can ever be exposed in clear
text outside secure enclaves and apart from the tasks results produced. Evaluation using a prototype implementation and
a dataset from a deployed crowdsensing app shows the relevance of the supporting algorithms. Experiments also show
that the use of enclaves incurs a reasonable overhead.

Our future work concentrates on addressing a decentralized architecture involving processing on the client side. With
the generalization of TEEs in edge/users devices (e.g., Intel SGX is becoming omnipresent on every PC and tablets, ARM’s
TrustZone on smartphones...), we can expect protecting code and data on the user side. TEEs hence becomes a game
changer for the organization of secure and decentralized computations among data scattered on multiple users devices,
with a better balance of responsibilities in the processing between central authorities and the participants. A next step
in our work is to decentralize part of the processing on the user side, ensuring that each participant is equipped with
an enclave. Computation could indeed be optimized by organizing the distribution of the processing among groups of
participants [8,87], with similar consent policies.
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Appendix A. List of acronyms and abbreviations

AMD SEV AMD Secure Encrypted Virtualization

CAS Configuration & Attestation Service

CASD Secure Access Data Center
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CCPA California Consumer Privacy Act

CNIL Commission Nationale de l’Informatique et des Libertés — National Commission for Information Tech-
nology and Civil Liberties

EMD Earth Mover’s Distance

EPC Enclave Page Cache

GCP Greatest Common Policy

GDPR General Data Protection Regulation Privacy Act

HBC Honest-but-curious

INSEE French National Institute of Statistics and Economic Studies

IoT Internet Of Things

MCS Multi-tasking Crowdsensing System

PET Privacy-Enhancing Technologies

PKI Public Key Infrastructure

SCONE Secure CONtainer Environment

SGX (Intel) Software Guard eXtensions

TCB Trusted Computing Base

TEE Trusted Execution Environments

Appendix B. List of symbols

T A set of tasks

T A sensing & analysis task

M(T ) Manifest of T

a Sensing function of T executed on the mobile client/data provider

f Function (code) of T executed on the MCS server

S Type of contributions to T

∆ A time period

OT The result of T

ℓ The ℓ-completeness value — The minimum number of participants to a task

u A user in the MCS

Ui A set of users consenting to task Ti

SU Data contributed by the set of users U

U Set of registered users

K Knowledge that may be disclosed from a set of tasks

bi The consent of a user to task Ti

Cu Tuple of consents bi

C Table of consents

k The number of clusters for k-means

Pi A cluster of C
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P Set of clusters

ϕT
0 Reference profile of T

ϕT
∆ Profile of T during ∆

GCP(Pi) Greatest Common Policy within a cluster Pi

ET Qualified cluster for T

Closs(T ) Contributions loss of T

Uloss(T ) Utility loss of T
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Multi-tasking Crowdensing System

!
Defect in consent for a user u !

u consents to T1 but not to T2

but noise measure of u is revealed

New method to avoid defects in consents 

and favor data reuse: l-completeness

Privacy-by design implementation on 

Trusted Execution Environment 

Validation using SCONE/Intel SGX:

Efficient using large datasets

Mobile users Data requesters

Task T1: Avg noise around 

construction site in Paris 
Task T2: Noise measures 

by citizens in Paris along 

their journey

Server

user u

task T1

task T2

task T1 task T2

consents to T1

but not to T2

…

S
U1

S
U12

S
U2

T1

T2

T1

T2

T1

T2

strict reuse
(def. 2)

no reuse

practical reuse
(def. 3)

T1 T2
T2

T1

…
…

U1

users consenting 
to T1 but not to T2

U12

users consenting 
to T1 and T2

U2

users consenting 
to T2 but not to T1

l-complete users-to-tasks assignment:

all the intersections and differences 

between sets of users assigned to tasks 

contain at least n users or none

3-stages clustering algorithms 

for users-to-tasks assignments

① Clustering stage: 

cluster users to maximize the number of 

common consented tasks per cluster

② Adjustement stage: 
adjust clusters with less than l users 

based on clusters Greatest Common Policy

③ Selection stage
select clusters for tasks to maximize data reuse

Privacy vs. data reuse: 

the problem of defects in consent

Consentconsent

collect

collect

collect

1

2

Consent

Data flow

Consent
l-complete 

assignment

T1

T2

Mobile users Data requesters

C
o
n
se

n
t

sh
u
ff

le

…

secure store

clusters




