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A multi-patch source-sink model with and without intraspecific competition in the sink patches is considered. First, we study the dynamics of the model when the matrix of migration is irreducible and reducible. We show that, there is a threshold number of source patches such that the population potentially becomes extinct below the threshold and established above the threshold. Next, used the theory of perturbation singular and theorem of Tikhonov, in the case of perfect mixing, i.e. when the diffusion rate tends to infinity, we calculate the equilibrium of the model and we give a good approximations of the solutions in this case. Second, we determine, in some particular cases, the conditions under which fragmentation and the existence of sinks patches can lead to a total equilibrium population greater or smaller than the sum of the carrying capacities of the source patches. Finally, we study the effect of the rapid growth source population and rapid death sink population on the dynamics of the total equilibrium population and on the coexistence of the species.

Introduction

Population dynamics is a wide field of mathematics, which contains many problems, for example fragmentation of population and the effect of migration in the general dynamics of population. Bibliographies can be found in the work of Levin [START_REF] Levin | Dispersion and population interactions[END_REF][START_REF] Levin | Spatial patterning and the structure of ecological communities[END_REF] and Holt [START_REF] Holt | Population dynamics in two patch environments: some anomalous consequences of an optimal habitat distribution[END_REF].

There are ecological situations that motivate the representation of space as a finite set of patches connected by migrations, for instance an archipelago with bird population and predators. It is an example of insular bio-geography. A reference work on mathematical models is the book of Levin, Powell and Steele [START_REF]Patch Dynamics[END_REF], whereas Hanski and Gilpin [START_REF] Hanski | Metapopulation Biology: Ecology, Genetics, and Evolution[END_REF] give a more ecological account of the subject. The standard question in this type of biomathematical problems, is to study the effect of migration on the general population dynamics, and the consequences of fragmentation on the persistence or extinction of the population.

In 2019, Wu et al. [START_REF] Wu | Dispersal asymmetry in a twopatch system with source-sink populations[END_REF] studied the following Two-patch Source-Sink model:

       dx 1 dt = r 1 x 1 1 - x 1 K 1 + D(x 2 -sx 1 ), dx 2 dt = r 2 x 2 -1 - x 2 K 2 + D(sx 1 -x 2 ), (1) 
where x 1 and x 2 represent population densities of the species in patch 1 and 2, respectively. The parameters K i and r i are positives. Parameter D represents the dispersal intensity while the parameter s reflects the dispersal asymmetry. The authors show that the dispersal asymmetry can lead to either an increased total size of the species population in two patches, a decreased total size with persistence in the patches, or even extinction in both patches. They show also that for a large growth rate of the species in the source and a fixed dispersal intensity:

• If the asymmetry is small, the population would persist in both patches and reach a density higher than that without dispersal, in which the population approaches its maximal density at an appropriate asymmetry.

• If the asymmetry is intermediate, the population persists in both patches but reaches a density less than that without dispersal.

• If the asymmetry is large, the population goes to extinction in both patches, and asymmetric dispersal is more favorable than symmetric dispersal under certain conditions.

Arino et al. [START_REF] Arino | Number of Source Patches Required for Population Persistence in a Source-Sink Metapopulation with Explicit Movement[END_REF] also studied a source-sink model of n patches, where the source patch follows a logistic growth rate, and the sink patch with exponential decay, i.e the model

     dx i dt = r i x i 1 - x i K i + D ∑ n j=1
, j =i γ i j x j , i = 1, . . . , s, dx i dt = -r i x i + D ∑ n j=1, j =i γ i j x j , i = s + 1, . . . , n,

where x i represent population densities of the species in the patch i. The parameter D represents the dispersion rate of the population, γ i j ≥ 0 denote the flux between patches j and i for i = j. We denote Γ the matrix Γ = (γ i j ) n×n . For the model [START_REF] Arditi | Asymmetric dispersal in the multi-patch logistic equation[END_REF], the authors proved the existence of a threshold number of source patches such that the population potentially becomes extinct below the threshold and established above the threshold.

In [START_REF] Elbetch | The multi-patch logistic equation[END_REF][START_REF] Elbetch | The multi-patch logistic equation with asymmetric migration[END_REF], Elbetch et al. have answered in the particular case of the n-Source 0-Sink patch model (i.e the system (2) for n = s), which rewritten as:

dx i dt = r i x i 1 - x i K i + D n ∑ j=1, j =i γ i j x j , i = 1, . . . , n, (3) 
to the following important question:

Question 1.1 Is it possible, depending on the migration rate D, that the total equilibrium population X * T = ∑ i x * i , where (x * 1 , . . . , x * n ) the positive equilibrium of (3) be larger than the sum of the capacities ∑ i K i ?

Note that, the system (3) is studied also by Elbetch et al. [START_REF] Elbetch | The multi-patch logistic equation[END_REF] and Takeuchi [START_REF] Takeuchi | Cooperative systems theory and global stability of diffusion models[END_REF] in the case when the matrix Γ is symmetric. We recall that, when the matrix of migration Γ is irreducible, System (3) admits a unique positive equilibrium which is globally asymptotically stable (GAS), see [START_REF] Arino | Diseases in metapopulations[END_REF]Theorem 2.2], [START_REF] Arino | Number of Source Patches Required for Population Persistence in a Source-Sink Metapopulation with Explicit Movement[END_REF]Theorem 1] or [START_REF] Elbetch | The multi-patch logistic equation[END_REF]Theorem 6.1], when D → ∞, this equilibrium tend to

∑ i δ i r i ∑ i δ 2 i α i (δ 1 , . . . , δ n ),
where α i = r i K i and (δ 1 , . . . , δ n ) T the vector which generate the vector space ker Γ. The question 1.1 is of ecological importance since the answer gives the conditions under which dispersal is either beneficial or detrimental to total equilibrium population. Note that, this least question has been studied by many researches ( see [START_REF] Arditi | In dispersal always beneficial to carrying capacity? New insights from the multi-patch logistic equation[END_REF][START_REF] Arditi | Asymmetric dispersal in the multi-patch logistic equation[END_REF][START_REF] Cosner | The effects of human movement on the persistence of vector-borne diseases[END_REF][START_REF] Deangelis | Persistence and stability of seeddispersal species in a patchy environment[END_REF][START_REF] Deangelis | Dispersal and heterogeneity: single species[END_REF][START_REF] Deangelis | Effects of diffusion on total biomass in heterogeneous continuous and discrete-patch systems[END_REF][START_REF] Deangelis | Effects of dispersal in a non-uniform environment on population dynamics and competition: a patch model approach[END_REF][START_REF] Elbetch | The multi-patch logistic equation[END_REF][START_REF] Elbetch | The multi-patch logistic equation with asymmetric migration[END_REF][START_REF] Elbetch | Effect of dispersal in Two-patch environment with Richards growth on population dynamics[END_REF][START_REF] Freedman | Mathematical Models of Population Interactions with Dispersal II: Differential Survival in a Change of Habitat[END_REF][START_REF] Freedman | Mathematical Models of Population Interactions with Dispersal I: Stabilty of two habitats with and without a predator[END_REF][START_REF] Gao | How does dispersal affect the infection size?[END_REF][START_REF] Gao | Fast diffusion inhibits disease outbreaks[END_REF][START_REF] Zhang | Effects of dispersal on total biomass in a patchy, heterogeneous system: analysis and experiment[END_REF], [START_REF] Elbetch | Nonlinear diffusion in the multi-patch logistic model[END_REF] for effect of nonlinear diffusion on the total biomass, and [START_REF] Gao | A multipatch malaria model with logistic growth[END_REF][START_REF] Guo | Global stability of the endemic equilibrium of multigroup SIR epidemic models[END_REF] for susceptible-infectedsusceptible (SIS) patch-model). Elbetch et al. [START_REF] Elbetch | The multi-patch logistic equation[END_REF] proved that, if all the patches do not differ with respect to the intrinsic growth rate (i.e., r 1 = . . . = r n ), then the effect of migration is always detrimental. In the case when (K 1 , . . . , K n ) T ∈ ker Γ ( if the matrix Γ is symmetric, the condition (K 1 , . . . , K n ) T ∈ ker Γ means that the patches do not differ with respect to the carrying capacity), migration has no effect on the total equilibrium population. An example when the effect of migration is always beneficial, is in the case when Γ is symmetric and all the patches do not differ with respect to the parameter α = r/K quantifying intraspecific competition (i.e., α 1 = . . . , α n ) ( see also [START_REF] Elbetch | The multi-patch logistic equation with asymmetric migration[END_REF]Prop. 4.2] for another example when Γ is non symmetric).

It was shown by Arditi et al. [1, Proposition 2, page 54], for Two-Source, 0-Sink patch model, that only three situations can occur: the case where the total equilibrium population is always greater than the sum of carrying capacities, the case where it is always smaller, and a third case, where the effect of migration is beneficial for lower values of the migration coefficient D and detrimental for the higher values. More precisely, it was shown in [START_REF] Arditi | In dispersal always beneficial to carrying capacity? New insights from the multi-patch logistic equation[END_REF] that, if n = 2 in (3), the following trichotomy holds

• If X * T (+∞, ε) > K 1 + K 2 then X * T (D) > K 1 + K 2 for all β > 0 and ε > 0. • If dX * T dD (0) > 0 and X * T (+∞) < K 1 +K 2 , then there exists D 0 (ε) > 0 such that X * T (D) > K 1 + K 2 for 0 < D < D 0 , X * T (D) < K 1 + K 2 for D > D 0 and X * T (D 0 ) = K 1 + K 2 .
• If

dX * T dD (0) < 0, then X * T (D) < K 1 + K 2 for all D > 0.
Therefore, the condition X * T (D) = K 1 + K 2 holds only for D = 0 and at most for one positive value D = D 0 . The value D 0 exists if and only if d dD X * T (0) > 0 and

X * T (+∞) < K 1 + K 2 .
In [11, Section 5.2], Elbetch et al. have considered the model (3) for n = 3 with Γ is symmetric, and shown by numerical simulations the following situations, which do not exist in the two-patch model:

• The case where

dX * T dD (0) < 0 and X * T (+∞) > K 1 + K 2 + K 3 .
• The case where

dX * T dD (0) > 0 and X * T (+∞) > K 1 + K 2 + K 3 and there exist values of D for which X * T (D) < K 1 + K 2 + K 3 .
• The case where

dX * T dD (0) < 0 and X * T (+∞) < K 1 + K 2 + K 3 and there exist values of D for which X * T (D) > K 1 + K 2 + K 3 .
Therefore the equality X * T (D) = K 1 + K 2 + K 3 can occur for two positive values of D, not only for a unique positive value as in the two-patch case.

In [12, Section 6], Elbetch et al. have reconsidered the three-patch model with Γ is not symmetric. The novelty when Γ is not symmetric is the existence of three positive values of migration rate solution of the following equation:

Total equilibrium population = Sum of three carrying capacities, i.e. the following situation hold:

• The case where dX * T dD (0) > 0 and X * T (+∞) < K 1 + K 2 + K 3 , and there exists three values 0 < D 1 < D 2 < D 3 for which we have:

X * T (D) = > K 1 + K 2 + K 3 for D ∈]0, D 1 [∪]D 2 , D 3 [, < K 1 + K 2 + K 3 for D ∈]D 1 , D 2 [∪]D 3 , ∞[.
For more details and the proof of the previous numerical results, see the recent work of Elbetch [START_REF] Elbetch | Effects of rapid population growth on total biomass in Multi-patch environment[END_REF], where it is studied the model (3) under the assumption that some growth rates are much larger than the other.

Recently, Yu et al. [START_REF] Yu | Effect of diffusion on a consumer-resource system with source-sink patches Discrete and Continuous Dynamical System series B[END_REF] considered a consumer-resource patch model, where the consumer moves between multiple source-sink patches with both resource and toxicant given by the following system:

       dx i dt = N 0i -µ i x i - r i x i y i Γ i (k i + x i ) , i = 1, . . . , n, dy i dt = y i r i x i k i + x i -m i -g i y i -D s i y i - 1 2 s i-1 y i-1 - 1 2 s i+1 + y i+1 , (4) 
where i = i mod n, and "mod" means modula [START_REF] Zhang | Effect of stressors on the carrying capacity of spatially-distributed metapopulations[END_REF]. For example, y 0 = y n and y n+1 = y 1 . Variable x i represents the nutrient concentration and y i is the consumer's population density in patch i. Parameter N 0i represents the nutrient input, µ i is the dilution rate of nutrient, Γ i is the yield, or fraction of nutrient per unit biomass. Parameter r i represents the consumer's maximal growth rate with infinite resource, k i is the half saturation coefficient, m i is the mortality rate, and g i is the density-dependent loss rate. Parameter D represents the diffusion rate, while s i is the asymmetry in diffusion. Note that, when s i = 1 for all i, the diffusion is symmetric. Yu et al. [START_REF] Yu | Effect of diffusion on a consumer-resource system with source-sink patches Discrete and Continuous Dynamical System series B[END_REF] showed the global stability of positive equilibria in the system (4). They have shown also that diffusion could make the consumer persist in sinks, even make it reach total population abundance larger than if non-diffusing. It is also shown that under certain conditions, diffusion could make the total abundance less than if non-diffusing, even make the consumer go into extinction in all patches. An important result proven by Yu et al. [START_REF] Yu | Effect of diffusion on a consumer-resource system with source-sink patches Discrete and Continuous Dynamical System series B[END_REF] is that when toxicants are distributed homogeneously, asymmetric diffusion always makes the total abundance less than if nondiffusing. For general information on the effect of asymmetric diffusion, toxicant distribution, and geographic pattern of patches on the total population abundance of the consumer, and also in the continuous and discrete cases of (4), the reader is referred to the work of Yu et al. [START_REF] Yu | Effect of diffusion on a consumer-resource system with source-sink patches Discrete and Continuous Dynamical System series B[END_REF] and Zhang et al. [START_REF] Zhang | Effect of stressors on the carrying capacity of spatially-distributed metapopulations[END_REF].

Our aim of the present paper, is to study the effect of the migration on the total population with the assumption that some patches among the n patches are sinks. Thus we generalize some results of [START_REF] Elbetch | The multi-patch logistic equation[END_REF][START_REF] Elbetch | The multi-patch logistic equation with asymmetric migration[END_REF] for n-Source, 0-Sink patch model to s-Source, (n-s)-Sink patch model and also we extend the results proved by Wu et al. [START_REF] Wu | Dispersal asymmetry in a twopatch system with source-sink populations[END_REF] for One-Source, One-Sink patch model.

The paper is organized as follows. In Section 2, some proprieties of One-Source, One-Sink patch model [START_REF] Arditi | In dispersal always beneficial to carrying capacity? New insights from the multi-patch logistic equation[END_REF] have been recalled as a function of the two parameters γ 1 and γ 2 . Two-patch model with the growth (resp. death) rate is much larger than the death (resp. growth) rate is considered. In both last cases, we compare the total equilibrium population with the capacity. In Section 3, Multi-patch Source-Sink model with intraspecific competition in the sink patches is being described. We prove that there exists a threshold number of source patches such that the population becomes extinct below the threshold and established above the threshold. The behavior of the model for large migration rate is studied. Total population abundance is analyzed also in some homogeneous and heterogeneous particular case. The following both cases: death rates are much larger than the growth rates and growth rates are much larger than the death rates are considered. In Section 4, Multi-patch Source-Sink model without intraspecific competition in the sink patches is considered. In Appendix A, we give some properties of the total equilibrium population. In Appendix B, we give some background concepts and preliminaries results which used in the analysis of the global stability of our model.

Some preliminaries results in the two-patch model with source-sink populations

In this section, we consider the 2-patch system with source-sink dynamics given by:

       dx 1 dt = a 1 x 1 1 - x 1 L 1 + D (γ 2 x 2 -γ 1 x 1 ) , dx 2 dt = a 2 x 2 -1 - x 2 L 2 + D (γ 1 x 1 -γ 2 x 2 ) , (5) 
where x 1 and x 2 represent population densities of the species in patch 1 and 2, respectively. Patch 1 is assumed to be the source but patch 2 is the sink, i.e a 1 , a 2 > 0. The parameters α i := a i /L i are the intraspecific competition degree. Parameter D represents the dispersal intensity. We denote γ 2 the migration rate from source patch 2 to the sink patch 1 and γ 1 from sink patch 1 to source patch 2, the dispersal is symmetric if γ 1 = γ 2 . This system is studied in [START_REF] Wu | Dispersal asymmetry in a twopatch system with source-sink populations[END_REF]. We propose here to recall some essential results of [START_REF] Wu | Dispersal asymmetry in a twopatch system with source-sink populations[END_REF]. First of all, let's start by recalling the global dynamics of the system (5).

Global dynamics

We consider the following regions in the set of parameters γ 1 and γ 2 , denoted D 0 , D 1 and D 2 depicted in Figure 1 and defined by:

               D 0 = (γ 1 , γ 2 ) : γ 2 ≥ a 2 a 1 γ 1 , D 1 = (γ 1 , γ 2 ) : a 2 a 1 γ 1 < γ 2 < a 2 D a 1 a 2 + Da 1 γ 1 , D 2 = (γ 1 , γ 2 ) : γ 2 ≥ a 2 D a 1 a 2 + Da 1 γ 1 . (6) 
The global dynamic of the system (5) is shown as follows.

0

D 1 D 0 D 2 γ 2 = a 2 a 1 γ 1 γ 1 γ 2 γ 2 = Da 2 a 1 a 2 +Da 1
Figure 1: Global stability of the model [START_REF] Cosner | The effects of human movement on the persistence of vector-borne diseases[END_REF]. In D 0 and D 1 the system admits unique equilibrium E * (D) which is GAS. In the region D 2 , the system admits the origin as unique equilibrium which is GAS.

Theorem 2.1 (Prop. 5.5 in [START_REF] Wu | Dispersal asymmetry in a twopatch system with source-sink populations[END_REF]) Consider the model [START_REF] Cosner | The effects of human movement on the persistence of vector-borne diseases[END_REF]. Then, if (γ 1 , γ 2 ) ∈ D 0 ∪ D 1 , the system (5) admits unique equilibrium in R 2 \{0} denoted E * (D), which is GAS, and if (γ 1 , γ 2 ) ∈ D 2 , then the origin is GAS.

Total population abundance

In this section, we recall the comparison given in [START_REF] Wu | Dispersal asymmetry in a twopatch system with source-sink populations[END_REF]Proposition 5.11], between the total equilibrium population

X * T (D) = x * 1 (D) + x * 2 (D), E * (D) = (x * 1 (D), x * 2 (D)),
of (5) and L 1 , by analyzing the stable positive equilibrium E * (D). Note that, when there is no dispersal (i.e., D = 0), the total equilibrium population is X * T (0) = L 1 . We consider the regions in the set of the parameters γ 1 and γ 2 , denoted L 0 , L 1 , L 2 , L 3 and J 4 , depicted in Figure 2 and defined by:

                           If a 2 ≥ a 1 then      L 0 = (γ 1 , γ 2 ) : γ 2 γ 1 < a 2 a 1 , L 1 = (γ 1 , γ 2 ) : γ 2 γ 1 ≥ a 2 a 1 . If a 2 < a 1 then            L 2 = (γ 1 , γ 2 ) : γ 2 γ 1 ≤ a 2 a 1 , L 3 = (γ 1 , γ 2 ) : a 2 a 1 < γ 2 γ 1 < L 2 (a 1 -a 2 ) a 2 (L 1 +L 2 ) , L 4 = (γ 1 , γ 2 ) : γ 2 γ 1 ≥ L 2 (a 1 -a 2 ) a 2 (L 1 +L 2 ) . (7) 
Case a 2 ≥ a 1 .

0

L 1 L 0 γ 1 γ 2 γ 2 γ 1 = a 2 a 1 Case a 2 < a 1 . 0 L 4 L 3 L 2 γ 1 γ 2 γ 2 γ 1 = L 2 (a 1 -a 2 ) a 1 (L 1 +L 2 ) γ 2 γ 1 = a 2 a 1
Figure 2: Qualitative properties of source-sink model [START_REF] Cosner | The effects of human movement on the persistence of vector-borne diseases[END_REF]. In L 0 and L 1 the effect is detrimental with extinction in two patches for L 0 and persistence for L 1 . In L 2 and L 3 , the effect is beneficial for D < D 0 and detrimental for D > D 0 with persistence of the population in the region L 2 and extinction in the region L 3 . In L 4 , patchiness has a beneficial effect on the total equilibrium population.

Theorem 2.2 The total equilibrium population of (5) satisfies the following properties 1. If a 2 ≥ a 1 , let L 0 and L 1 be defined by [START_REF] Deangelis | Persistence and stability of seeddispersal species in a patchy environment[END_REF]. Then we have:

• if (γ 1 , γ 2 ) ∈ L 0 then X * T (D) ≤ L 1 for all D ≥ 0. More precisely, there is D * = γ 2 a 1 a 2 γ 1 a 2 -γ 2 a 1 , such that: 0 < X * T (D) ≤ L 1 If D < D * , X * T (D) = 0 If D ≥ D * . ( 8 
) • if (γ 1 , γ 2 ) ∈ L 1 then 0 < X * T (D) ≤ L 1 for all D ≥ 0.
2. If a 2 < a 1 , let L 2 , L 3 and L 4 be defined by [START_REF] Deangelis | Persistence and stability of seeddispersal species in a patchy environment[END_REF]. Then we have:

• if (γ 1 , γ 2 ) ∈ L 2 then X * T (D) > L 1 for D < D 0 and X * T (D) < L 1 for all D > D 0 . where D 0 = (a 1 -a 2 ) (L 1 + L 2 ) (γ 2 (a 2 -a 1 ) + γ 1 α 1 (L 1 + L 2 )) (α 1 -1 + α 2 -1 )
, with α i = a i /L i . (9)

Moreover, there is D * ≥ D 0 such that X * T (D) = 0 for all D ≥ D * . • if (γ 1 , γ 2 ) ∈ L 3 then we have X * T (D) ≥ L 1 If D ≤ D * , 0 < X * T (D) < L 1 If D > D * . ( 10 
) • if (γ 1 , γ 2 ) ∈ L 4 , then X * T (D) ≥ L 1 for all D ≥ 0.
Proof 1 The all results were established by Wu at al. [START_REF] Wu | Dispersal asymmetry in a twopatch system with source-sink populations[END_REF]Proposition 5.11]. Note that, the explicit expression (9) of D 0 was not given in [START_REF] Wu | Dispersal asymmetry in a twopatch system with source-sink populations[END_REF].

In biological terms, the results of the previous theorem for One-Source One-Sink patch shows that, the dispersal asymmetry can lead to an increased total size of the species in two patches, a decreased total size with persistence in the patches, and even extinction in both patches. Comparing these results with that of Arditi et al. [START_REF] Arditi | In dispersal always beneficial to carrying capacity? New insights from the multi-patch logistic equation[END_REF][START_REF] Arditi | Asymmetric dispersal in the multi-patch logistic equation[END_REF] for One-source Onesource patch model, we deduce that the existence of a sink patch among the two patches, can cause an extinction of the total population in the two patches.

In the case of perfect mixing (i.e D → ∞), we have the following result [38, Proposition 5.10]:

Proposition 2.1 We have: X * T (∞) := lim D→∞ X * T (D) =    (γ 1 + γ 2 ) γ 2 a 1 -γ 1 a 2 γ 2 2 a 1 /L 1 + γ 2 1 a 2 /L 2 i f γ 1 /γ 2 < a 1 /a 2 , 0 otherwise. (11) 
Wu et al. [START_REF] Wu | Dispersal asymmetry in a twopatch system with source-sink populations[END_REF] proved that large dispersal intensity (i.e., D → ∞), the intermediate asymmetry γ 1 /γ 2 can lead to population density higher than that without dispersal, and extremely small asymmetry is still favorable, while extremely large asymmetry is unfavorable: (i) When the dispersal asymmetry is small, the species can approach a density larger than that without dispersal, while it reaches its maximum value at an intermediate asymmetry γ 1 γ 2 = a 1 -a 2 2α 2 (L 1 +L 2 ) . (ii) When γ 1 /γ 2 is extremely large, the species goes to extinction in both patches. Mathematically speaking, we can rewrite the following result [START_REF] Wu | Dispersal asymmetry in a twopatch system with source-sink populations[END_REF]Proposition 5.10]: Proposition 2.2 [38, Proposition 5.10] Assume that γ 1 γ 2 < a 1 a 2 . Consider the total equilibrium population for D → ∞ given in [START_REF] Elbetch | The multi-patch logistic equation[END_REF]. We have:

X * T (+∞)        > L 1 i f γ 1 γ 2 < a 1 -a 2 α 2 (L 1 +L 2 ) , = L 1 i f γ 1 γ 2 = a 1 -a 2 α 2 (L 1 +L 2 ) , < L 1 i f γ 1 γ 2 > a 1 -a 2 α 2 (L 1 +L 2 ) . (12) 
Moreover, X * T (+∞) approaches its maximum value

γ 2 2 a 2 L 1 L 1 + L 2 4(γ 2 2 a 1 L 2 + γ 2 1 a 2 L 1 ) a 1 -a 2 α 2 (L 1 + L 2 ) 2 at γ 1 γ 2 = a 1 -a 2 2α 2 (L 1 +L 2 ) .
In the remainder of this section, we present our first result in this work. More precisely, we study the effect of the rapid growth source population and rapid death sink population on the dynamics of the total equilibrium population and on the coexistence of the species. Note that, these situations were not examined in [START_REF] Arino | Number of Source Patches Required for Population Persistence in a Source-Sink Metapopulation with Explicit Movement[END_REF][START_REF] Wu | Dispersal asymmetry in a twopatch system with source-sink populations[END_REF]. Here, we study the total equilibrium population as a function of the migration rate in the case where the growth (resp. death) rate is much larger than the death (resp. growth) rate. In particular, we explicitly calculate the total equilibrium in the both situations, its derivative in the absence of the migration, its limit for large migration rate and we compare the total equilibrium population with the carrying capacity of the source patch. First, we start by the following situation:

The death rate is much larger than the growth rate

In this part, we consider the two-patch model ( 5) and we assume that the death rate a 2 is much larger than the growth rate a 1 . On can write the model in the following way:

       dx 1 dt = a 1 x 1 1 - x 1 L 1 + D (γ 2 x 2 -γ 1 x 1 ) , dx 2 dt = a 2 ε x 2 -1 - x 2 L 2 + D (γ 1 x 1 -γ 2 x 2 ) , (13) 
where ε is assumed to be a small positive number. First, we have the following result:

Theorem 2.3 Let (x 1 (t, ε), x 2 (t, ε
)) be the solution of the system (13) with initial condition

(x 0 1 , x 0 2 ) satisfying x 0 i ≥ 0 for i = 1, 2. Let z(t) be the solution of the differential equation dx 1 dt = a 1 x 1 1 - x 1 L 1 -Dγ 1 x 1 =: ϕ(x 1 ), (14) 
with initial condition z(0) = x 0 1 . Then, when ε → 0, we have

x 1 (t, ε) = z(t) + o ε (1), uniformly for t ∈ [0, +∞) (15) 
and, for any t 0 > 0, we have

x 2 (t, ε) = o ε (1), uniformly for t ∈ [t 0 , +∞). ( 16 
)
Proof 2 When ε → 0, the system (13) is a slow-fast system, with one slow variable, x 1 , and one fast variable, x 2 . Tikhonov's theorem [START_REF] Lobry | On Tykhonov's theorem for convergence of solutions of slow and fast systems[END_REF][START_REF] Tikhonov | Systems of differential equations containing small parameters in the derivatives[END_REF][START_REF] Wasow | Asymptotic Expansions for Ordinary Differential Equations[END_REF] prompts us to consider the dynamics of the fast variables in the time scale τ = 1 D t. One obtains

dx 2 dτ = a 2 x 2 -1 - x 2 L 2 + εD(γ 1 x 1 -γ 2 x 2 ). (17) 
In the limit ε → 0, we find the fast dynamics

dx 2 dτ = a 2 x 2 -1 - x 2 L 2 . ( 18 
)
The slow manifold is given by the equilibrium of the system (18), i.e x 2 = 0, which is GAS in the positive axis. When ε goes to zero, Tikhonov's theorem ensures that after a fast transition toward the slow manifold, the solutions of (13) converge to the solutions of the reduced model [START_REF] Elbetch | Nonlinear diffusion in the multi-patch logistic model[END_REF], obtained by replacing x 2 = 0 into the dynamics of the slow variable.

If a 1 -Dγ 1 ≤ 0, then, the differential equation ( 14) admits x * 1 (D, 0 + ) = 0 for all D, as equilibrium, which is GAS. If a 1 -Dγ 1 > 0, then, the differential equation ( 14) admits as a positive equilibrium

x * 1 (D, 0 + ) := L 1 (a 1 -Dγ 1 ) a 1 . ( 19 
)
As ϕ(x 1 ) > 0 for all 0 ≤ x 1 < x * 1 (D, 0 + ) and ϕ(x 1 ) < 0 for all x 1 > x * 1 (D, 0 + ) then, the equilibrium x * 1 (D, 0 + ) is GAS in the positive axis, so, the approximation given by Tikhonov's theorem holds for all t ≥ 0 for the slow variable and for all t ≥ t 0 > 0 for the fast variable, where t 0 is as small as we want. Therefore, let z(t) be the solution of the reduced model ( 14) of initial condition z(0) = x 0 1 , then, when ε → 0, we have the approximations [START_REF] Elbetch | Effects of rapid population growth on total biomass in Multi-patch environment[END_REF] and [START_REF] Freedman | Mathematical Models of Population Interactions with Dispersal II: Differential Survival in a Change of Habitat[END_REF].

We have the following result which gives the conditions for which patchiness is beneficial or detrimental in model ( 13) when ε goes to zero.

Corollary 2.1 Consider the total equilibrium population x * 1 (D, 0 + ) of the model (13) when ε → 0, given by [START_REF] Gao | How does dispersal affect the infection size?[END_REF].

Then, 0 < x * 1 (D, 0 + ) < L 1 for D < γ 1 a 1 , and x * 1 (D, 0 + ) = 0 for D ≥ γ 1 a 1 .

The growth rate is much larger than the death rate

In this part, we consider the two-patch model ( 5) and we assume that the growth rate a 1 is much larger than the death rate a 2 . On can write the model in the following way:

       dx 1 dt = a 1 ε x 1 1 - x 1 L 1 + D (γ 2 x 2 -γ 1 x 1 ) , dx 2 dt = a 2 x 2 -1 - x 2 L 2 + D (γ 1 x 1 -γ 2 x 2 ) , (20) 
where ε is assumed to be a small positive number. We prove the following result:

Theorem 2.4 Let (x 1 (t, ε), x 2 (t, ε)) be the solution of the system (20) with initial con- dition (x 0 1 , x 0 2 ) satisfying x 0 i ≥ 0 for i = 1, 2. Let z(t) be the solution of the differential equation dx 2 dt = a 2 x 2 -1 - x 2 L 2 + D(γ 1 L 1 -γ 2 x 2 ) =: ψ(x 2 ), (21) 
with initial condition z(0) = x 0 2 . Then, when ε → 0, we have

x 2 (t, ε) = z(t) + o ε (1), uniformly for t ∈ [0, +∞) (22) 
and, for any t 0 > 0, we have

x 1 (t, ε) = L 1 + o ε (1), uniformly for t ∈ [t 0 , +∞). ( 23 
)
Proof 3 When ε → 0, the system (20) is a slow-fast system, with one slow variable, x 2 , and one fast variable, x 1 . Tikhonov's theorem [START_REF] Lobry | On Tykhonov's theorem for convergence of solutions of slow and fast systems[END_REF][START_REF] Tikhonov | Systems of differential equations containing small parameters in the derivatives[END_REF][START_REF] Wasow | Asymptotic Expansions for Ordinary Differential Equations[END_REF] prompts us to consider the dynamics of the fast variables in the time scale τ = 1 D t. One obtains

dx 1 dτ = a 1 x 1 1 - x 1 L 1 + εD(-γ 1 x 1 + γ 2 x 2 ). (24) 
In the limit ε → 0, we find the fast dynamics

dx 1 dτ = a 1 x 1 1 - x 1 L 1 . ( 25 
)
The slow manifold is given by the equilibrium of the system (18), i.e x 1 = L 1 , which is GAS in the positive axis. When ε goes to zero, Tikhonov's theorem ensures that after a fast transition toward the slow manifold, the solutions of (20) converge to the solutions of the reduced model [START_REF] Gao | A multipatch malaria model with logistic growth[END_REF], obtained by replacing x 1 = L 1 into the dynamics of the slow variable.

The differential equation ( 14) admits as a positive equilibrium

x * 1 (D, 0 + ) := - L 2 2 - DL 2 2a 2 γ 2 + 1 2a 2 L 2 2 γ 2 2 D 2 + (2a 2 L 2 2 γ 2 + 4a 2 L 2 L 1 γ 1 )D + a 2 2 L 2 2 . ( 26 
)
As ψ(x 1 ) > 0 for all 0 ≤ x 1 < x * 1 (D, 0 + ) and ψ(x 1 ) < 0 for all x 1 > x * 1 (D, 0 + ) then, the equilibrium x * 1 (D, 0 + ) is GAS in the positive axis, so, the approximation given by Tikhonov's theorem holds for all t ≥ 0 for the slow variable and for all t ≥ t 0 > 0 for the fast variable, where t 0 is as small as we want. Therefore, let z(t) be the solution of the reduced model (21) of initial condition z(0) = x 0 1 , then, when ε → 0, we have the approximations [START_REF] Guo | Global stability of the endemic equilibrium of multigroup SIR epidemic models[END_REF] and [START_REF] Gantmacher | The Theory of Matrices[END_REF].

As a corollary of the previous theorem, we have the following result which give the limit of the total equilibrium population X * T (D, ε) of the model ( 20) when ε goes to zero: Corollary 2.2 We have:

X * T (D, 0 + ) := L 1 - L 2 2 - DL 2 2a 2 γ 2 + 1 2a 2 L 2 2 γ 2 2 D 2 + (2a 2 L 2 2 γ 2 + 4a 2 L 2 L 1 γ 1 )D + a 2 2 L 2 2 . (27) 
In the following proposition, we calculate the derivative of X * T (D, 0 + ) at D = 0 and the formula of perfect mixing (i.e when D → ∞) of the total equilibrium population defined by ( 27).

Proposition 2.3 Consider the total equilibrium population [START_REF] Horn | Matrix analysis[END_REF]. Then,

dX * T dD (0, 0 + ) = γ 1 L 1 a 2 , (28) 
and X * T (+∞, 0 + ) =

γ 1 + γ 2 γ 2 L 1 . (29) 
Proof 4 The derivative of the total equilibrium population X * T (D, 0 + ) defined by [START_REF] Horn | Matrix analysis[END_REF] with respect to D is:

dX * T dD (D, 0 + ) = - L 2 γ 2 2a 2 + 1/4 2 a 2 L 2 2 γ 2 + 2 DL 2 2 γ 2 2 + 4 a 2 L 2 γ 1 L 1 a 2 a 2 2 L 2 2 + 2 a 2 L 2 2 Dγ 2 + D 2 L 2 2 γ 2 2 + 4 a 2 DL 2 γ 1 L 1 . (30) 
In particular, the derivative of the total equilibrium population at D = 0 is given by the formula [START_REF]Patch Dynamics[END_REF].

By taking the limit of (27) when D → ∞, we get that the total equilibrium population X * T (D, 0 + ) tend to [START_REF] Lobry | On Tykhonov's theorem for convergence of solutions of slow and fast systems[END_REF].

We have the following result which gives the conditions for which patchiness is beneficial or detrimental in model [START_REF] Gao | Fast diffusion inhibits disease outbreaks[END_REF] when ε goes to zero.

Theorem 2.5 Consider the total equilibrium population X * T (D, 0 + ) given by [START_REF] Horn | Matrix analysis[END_REF]. Then, X * T (D, 0 + ) ≥ L 1 , for all D ≥ 0.

Proof 5 First, we try to solve the equation X * T (D, 0 + ) = L 1 with respect to D, the solutions of this last equation give the points of intersection between the curve of the total equilibrium population D → X * T (D, 0 + ) and the straight line D → L 1 . For any D ≥ 0, we have

X * T (D, 0 + ) = L 1 ⇐⇒ 1 2a 2 L 2 2 γ 2 2 D 2 + (2a 2 L 2 2 γ 2 + 4a 2 L 2 L 1 γ 1 )D + a 2 2 L 2 2 = L 2 2 + DL 2 2a 2 γ 2 ⇐⇒ L 2 2 γ 2 2 D 2 + (2a 2 L 2 2 γ 2 + 4a 2 L 2 L 1 γ 1 )D + a 2 2 L 2 2 = a 2 L 2 + γ 2 DL 2 ⇐⇒4a 2 γ 1 L 1 L 2 D = 0 ⇐⇒D = 0.
So, since dX * T dD (0, 0 + ) > 0, the curve of the total equilibrium population intersects the straight line D → L 1 + L 2 in a unique point which is (0, L 1 ). Therefore, X * T (D, 0 + ) ≥ L 1 , for all D ≥ 0.

Biologically speaking, from Sections 2.4 and 2.3, we conclude that, the rapid increase in the source population results in persistence in the both patches with increased total size population, and the rapid sink population results in extinction in both patches.

3 Multi-patch Source-sink model with intraspecific competition in the sink patches

In this section, we consider the model of n patches, with s source patches and ns sink patches given by:

dx i dt = x i (a i -α i x i ) + D n ∑ j=1, j =i (γ i j x j -γ ji x i ), i = 1, . . . , n, (31) 
where x i represent population densities of the species in the patch i. Without loss of generality, the s first patches are assumed to be the source (i.e a i > 0 for all i = 1, . . . , s) and the other ns patches, assumed to bet the sink (i.e a i < 0 for all i = s + 1, . . . , n). The parameter α i is positive for all i and represent the intraspecific competition for the i-th patch. The parameter D represents the dispersion rate of the population, γ i j ≥ 0 denote the flux between patches j and i for i = j. If γ i j = 0 then non direct flux from j to i and if γ i j > 0 there is a flux of migration from patch j to patch i. We assume that, there exists intraspecific competition in ns sink patches, i.e α i > 0 for all i = s + 1, . . . , n. If we denote:

a i = r i if i = 1, . . . , s, -r i if i = s + 1, . . . , n,
where r i > 0 for all i, and K i = r i /α i for all i = 1, . . . , n, then the system (31) can be written as:

       dx i dt = r i x i 1 - x i K i + D ∑ n j=1, j =i (γ i j x j -γ ji x i ), i = 1, . . . , s, dx i dt = r i x i -1 - x i K i + D ∑ n j=1, j =i (γ i j x j -γ ji x i ), i = s + 1, . . . , n, (32) 
where the parameters r i > 0 is the both growth rate in the case of source (i.e i ≤ s) patches and the death rate in the case of sink (i.e s + 1 ≤ i ≤ n), K i > 0 is the carrying capacity of source patches. The system (32) can be written:

       dx i dt = r i x i 1 - x i K i + D ∑ n j=1, j =i γ i j x j , i = 1, . . . , s, dx i dt = r i x i -1 - x i K i + D ∑ n j=1, j =i γ i j x j , i = s + 1, . . . , n, (33) 
where the term γ ii accounts for the flux out of patch i and takes the form:

γ ii = - n ∑ j=1, j =i γ ji . (34) 
We denote by Γ the matrix Γ := (γ i j ) n×n . We call Γ the movement matrix of the system [START_REF] Lu | Global asymptotic behavior in single-species discrete diffusion systems[END_REF]. Its columns sum to 0 since the diagonal elements γ ii are defined by [START_REF] Poggiale | Global production increased spatial heterogeneity in a population dynamics model[END_REF] in such a way that each row sums to 0 and Γ is cooperative matrix. If Γ is irreducible, then 0 is a simple eigenvalue of Γ and all non-zero eigenvalues of Γ have negative real part, i.e., the stability modulus of a matrix Γ equal to zero. Moreover, the kernel of the matrix Γ is generated by a positive vector (see Lemma 2 in [START_REF] Arino | Number of Source Patches Required for Population Persistence in a Source-Sink Metapopulation with Explicit Movement[END_REF]). In all of this paper, we denote by δ := (δ 1 , . . . , δ n ) T this positive vector. Note that, if the matrix Γ is symmetric, then ker Γ is generated by δ = (1, . . . , 1) T . The matrix

Γ 0 := Γ -diag(γ 11 , . . . , γ nn ) (35) 
which is the same as the matrix Γ, except that the diagonal elements are 0, is called the connectivity matrix. It is the adjacency matrix of the weighted directed graph G , which has exactly n vertices (the patches), and there is an arrow from patch j to patch i precisely when γ i j > 0, with weight γ i j assigned to the arrow. ii is the cofactor of the i-th diagonal entry of Γ, and sgn(Γ * ii ) = (-1) n-1 . For two patches we have δ = (γ 12 , γ 21 ) T , and for three patches we have δ = (δ 1 , δ 2 , δ 3 ) T , where

   δ 1 = γ 12 γ 13 + γ 12 γ 23 + γ 32 γ 13 , δ 2 = γ 21 γ 13 + γ 21 γ 23 + γ 31 γ 23 , δ 3 = γ 21 γ 32 + γ 31 γ 12 + γ 31 γ 32 . (36) 
In Lemma 2.1 of Guo et al [START_REF] Guo | Global stability of the endemic equilibrium of multigroup SIR epidemic models[END_REF] gives explicit formulas of the components of the vector δ , with respect of the coefficients of Γ as follow:

δ k = ∑ T ∈T k ∏ (i, j)∈E(T ) γ i j , k = 1, . . . , n, (37) 
where T k is the set of all directed trees of n vertices rooted at the k-th vertex, and E(T ) denotes the set of arcs in a directed tree T .

The system (32) can be also rewritten in matrix form as follow:

   Ẋs = diag r 1 -r 1 K 1 x 1 , • • • , r s -r s K s x s X s + D (Γ ss X s + Γ sp X p ) , Ẋp = diag -r s+1 -r s+1 K s+1 x s+1 , • • • , -r n -r n K n x n X p + D (Γ ps X s + Γ pp X p ) , (38) 
where X s = (x 1 , . . . , x s ) T , X p = (x s+1 , . . . , x p ) T and the matrix Γ ss , Γ pp , Γ sp , Γ ps describe the flux within and between source and sink patches. They are obtained by writing the matrix Γ in block form as

Γ = Γ ss Γ sp Γ ps Γ pp . (39) 
The model [START_REF] Lu | Global asymptotic behavior in single-species discrete diffusion systems[END_REF] studied in [START_REF] Wu | Dispersal asymmetry in a twopatch system with source-sink populations[END_REF] for two patches, i.e n = 2 and s = 1. The same model studied in [START_REF] Arino | Number of Source Patches Required for Population Persistence in a Source-Sink Metapopulation with Explicit Movement[END_REF] for n patches where the sink population flow at the death rate: ẋi = -r i x i for all s + 1 ≤ i ≤ n.

Global dynamics

In this part, our goal is to study the dynamics of the system [START_REF] Lu | Global asymptotic behavior in single-species discrete diffusion systems[END_REF]. Note that, in the absence of migration, i.e. the case where D = 0, the system (32) admits (K 1 , . . . , K s , 0, . . . , 0) as a non trivial equilibrium point, which furthermore is GAS, and the origin as trivial equilibrium which is unstable. The problem is whether or not, the equilibrium continues to exist and GAS for any D > 0. The Jacobian matrix of the system (32) evaluated at x = 0 is given by:

J s (0) = diag(r 1 , . . . , r s , -r s+1 , . . . , -r n ) + DΓ, (40) 
which is the same as the matrix obtained by Arino et al. [START_REF] Arino | Number of Source Patches Required for Population Persistence in a Source-Sink Metapopulation with Explicit Movement[END_REF]Equation 7] for the model ( 2). The matrix J s (0) is cooperative. We have the following result:

Lemma 3.1 Consider the matrix J s (0). Then, if s = 0, S(J 0 (0)) < 0, and if s = n, S(J n (0)) > 0.

Proof 6 If s = 0, then the matrix J 0 (0) becomes

J 0 (0) = diag(-r 1 , . . . , -r n ) + DΓ. ( 41 
)
Let u = (1, • • • , 1) T . We have

J 0 (0) T u = (-r 1 , • • • , -r n ) T ≤ λ u, where λ = max{-r 1 , • • • , -r n } < 0.
Therefore, since J 0 (0) is a cooperative matrix, according to Lemma B.4, we have S(J 0 (0)) = S(J 0 (0) T ) ≤ λ < 0.

If s = n, then the matrix J n (0) becomes

J n (0) = diag(r 1 , . . . , r n ) + DΓ. ( 42 
) Let u = (1, • • • , 1) T . We have J n (0) T u = (r 1 , • • • , r n ) T ≥ λ u, where λ = min{r 1 , • • • , r n } > 0.
Therefore, since J n (0) is a cooperative matrix, according to Lemma B.4, we have

S(J n (0)) = S(J n (0) T ) ≥ λ < 0.
This completes the proof of the lemma.

We have also the following result:

Lemma 3.2
The stability modulus of the matrix J s (0) is a non-decreasing function of s. Moreover, if the matrix of movement Γ is irreducible, then J s (0) is an increasing function of s.

Proof 7 See proof of Proposition 6 in [START_REF] Arino | Number of Source Patches Required for Population Persistence in a Source-Sink Metapopulation with Explicit Movement[END_REF].

The dynamics of the system (32) in the case where Γ is reducible, is given as follow:

Theorem 3.3 Consider the system [START_REF] Lu | Global asymptotic behavior in single-species discrete diffusion systems[END_REF]. Assume that Γ is irreducible. Then, there exists a unique interval I ⊂]0, n[⊂ R, such that:

• If s < min I , then the origin is LAS, and

• if s > max I , then the origin is unstable.

Proof 8 Since S(J 0 (0)) < 0, and S(J n (0)) > 0 by Lemma 3.1. Moreover, the function s → S(J s (0)) is non-decreasing by Lemma 3.2 and continues (See [27, Theorem 2.4.9.2]). So by the intermediate value theorem, there exists an interval I , possibly reduced to a single point, such that S(J s (0)) = 0 for all sinI . Criteria for local asymptotic stability and instability of equilibria gives the completes proof of the theorem.

Our goal in the remainder of this section is to study the dynamics of the model (32) in the case when the matrix Γ is irreducible. First, it is clear that the solutions of ( 32) exist for all t ≥ 0 and remain non negative for non negative initial conditions. Thus, the positive cone R n + is invariant under the flow of the system (32). To establish the boundedness of solutions, we have the following result: Proposition 3.1 For any non negative initial condition, the solutions of the system (32) remain non negative and positively bounded. Moreover, the set

Λ = (x 1 , . . . , x n ) ∈ R n : 0 ≤ n ∑ i=1 x i ≤ ξ * 2 ξ * 1 ( 43 
)
is positively invariant and is a global attractor for [START_REF] Lu | Global asymptotic behavior in single-species discrete diffusion systems[END_REF], where ξ * 1 = min 1≤i≤n r i and ξ * 2 = ∑ s s=1 r i K i . Proof 9 To show that all solutions are bounded, we consider the quantity defined by X T (t) = ∑ n i=1 x i (t). So, we have

ẊT (t) = s ∑ i=1 r i x i (t) 1 - x i (t) K i + n ∑ i=s+1 r i x i (t) -1 - x i (t) K i . ( 44 
)
For all r i , K i ∈ R * + , we have the following inequality:

r i x i 1 -x i K i ≤ r i (K i -x i ), i = 1, . . . , s, r i x i -1 -x i K i ≤ -r i x i , i = s + 1, . . . , n. (45) 
Substituting Equation (45) into (44), we get

ẊT (t) ≤ -ξ * 1 X T (t) + ξ * 2 ∀t ≥ 0, ( 46 
)
which gives

X T (t) ≤ X T (0) - ξ * 2 ξ * 1 e -ξ * 1 t + ξ * 2 ξ * 1 , for all t ≥ 0. ( 47 
)
Hence,

X T (t) ≤ max X T (0), ξ * 2 ξ * 1 , for all t ≥ 0. ( 48 
)
Therefore, the solutions of system (32) are positively bounded and defined for all t ≥ 0.

From (47) it can be deduced that the set Λ is positively invariant and it is a global attractor for the system (32).

We have the result:

Theorem 3.4 Consider the system [START_REF] Lu | Global asymptotic behavior in single-species discrete diffusion systems[END_REF]. Assume that the matrix Γ (or equivalently, the connectivity matrix Γ 0 ) is irreducible, then, thre exists a unique point I * ∈]0, n[, such that:

• If s < I * , then the origin is GAS, and

• if s > I * , then the model has a unique equilibrium point E * (D), which is GAS in the interior of the positive cone R n \ {0}.

Proof 10 If the matrix Γ is irreducible, then the interval I reduced to a single point I * , such that: if s < I * , then S(J s (0)) < 0, and if s > I * , then S(J s (0)) > 0. According to [32, Theorem 1], if S(J s (0)) < 0, the origin is GAS. If S(J s (0)) > 0, then, the model (32) is persistent for any D > 0, that is, any solution x(t) satisfies lim t→∞ in f x i (t) > 0, for all i, and furthermore, since all the solutions to (32) are bounded, there exists a positive equilibrium point. We note (x * 1 (D), . . . , x * n (D)) an equilibrium of [START_REF] Lu | Global asymptotic behavior in single-species discrete diffusion systems[END_REF]. Now, define the map:

ϒ i :]0, +∞[→ R, ϒ i (ξ ) = Ψ i (ξ E * (D))
, where Ψ = (Ψ 1 , . . . , Ψ n ) denote the vector field associated to [START_REF] Lu | Global asymptotic behavior in single-species discrete diffusion systems[END_REF]. We have,

ϒ i (ξ ) = r i K i (x * i (D)) 2 ξ (1 -ξ ), i = 1, . . . , n.
Therefore, according to Theorem B.6, we conclude the proof of theorem.

As a corollary of the previous theorem we obtain the following result which proven in [START_REF] Elbetch | The multi-patch logistic equation[END_REF]Theorem 6.1]:

Corollary 3.1 If s = n, the model (32) has a unique equilibrium point in the interior of the positive cone, which is GAS.

Remark 3.2

The assumption that the matrix Γ is irreducible, implies that the species can reach any i-th patch from any j-patch. For One-Source, One-Sink patch model, the matrix Γ is irreducible if and only if γ 12 and γ 21 are positives. For Three-patch model, under the irreducibility hypothesis on the matrix Γ, there are five possible cases, modulo permutation of the three patches, see Figures 3 and4.

1 2 3 1 2 3 G 1 G 2
Figure 3: The two graphs G 1 and G 2 for which the migration matrix may be symmetric, if

γ i j = γ ji .
For the remaining cases, the graphs G 3 , G 4 and G 5 , cannot be symmetrical:

In all of this work, we denote E * (D) the unique equilibrium in the interior of the positive cone of the system (32) if it exists, and X * T (D), the total equilibrium population:

X * T (D) = n ∑ i=1 x * i (D), E * (D) = (x * 1 (D), . . . , x * n (D)). ( 49 
) 1 2 3 1 2 3 1 2 3 G 3 G 4 G 5
Figure 4: The three graphs G 3 , G 4 and G 5 for which the migration matrix cannot be symmetric.

The behavior of the model for large migration rate

In this section, our aim is to study the behavior of the system (32) for large migration rate, i.e. when D → ∞. We use the theory of singular perturbations and Tikhonov's theorem [START_REF] Lobry | On Tykhonov's theorem for convergence of solutions of slow and fast systems[END_REF][START_REF] Tikhonov | Systems of differential equations containing small parameters in the derivatives[END_REF][START_REF] Wasow | Asymptotic Expansions for Ordinary Differential Equations[END_REF] to obtain a better understanding of the behavior of the system in the case of perfect mixing. We have the following result:

Theorem 3.5 Let (x 1 (t, D), . . . , x n (t, D)) be the solution of the system (32) with initial condition

(x 0 1 , • • • , x 0 n ) satisfying x 0 i ≥ 0 for i = 1 • • • n. Let Y (t) be the solution of the equation dX dt = rX 1 - X (∑ n i=1 δ i ) K , (50) where r 
= ∑ s i=1 δ i r i -∑ n i=s+1 δ i r i ∑ n i=1 δ i , K = ∑ s i=1 δ i r i -∑ n i=s+1 δ i r i ∑ n i=1 δ 2 i α i and α i = r i /K i . (51) 
Then, when D → ∞, we have

n ∑ i=1 x i (t, D) = Y (t) + o D (1) uniformly for t ∈ [0, +∞) (52) 
and, for any t 0 > 0, we have

x i (t, D) = δ i ∑ n i=1 δ i Y (t) + o D (1) i = 1, . . . , n, uniformly for t ∈ [t 0 , +∞). (53) 
Proof 11 Let X(t, D) = ∑ n i=1 x i (t, D). We rewrite the system (32) using the variables (X, x 1 , • • • , x n-1 ), and get:

               dX dt = s ∑ i=1 r i x i 1 - x i K i - n ∑ i=s+1 r i x i 1 + x i K i , dx i dt = r i x i 1 - x i K i + D ∑ n j=1, j =i (γ i j x j -γ ji x i ), i = 1, . . . , s, dx i dt = r i x i -1 - x i K i + D ∑ n j=1, j =i (γ i j x j -γ ji x i ), i = s + 1, . . . , n -1. ( 54 
)
This system is actually a system in the variables (X, x 1 , • • • , x n-1 ), since, whenever x n appears in the right hand side of (56), it should be replaced by

x n = X - n-1 ∑ i=1 x i . (55) 
When D → ∞, (56) is a slow-fast system, with one slow variable, X, and n -1 fast variables, x i for i = 1 . . . n -1. As suggested by Tikhonov's theorem [START_REF] Lobry | On Tykhonov's theorem for convergence of solutions of slow and fast systems[END_REF][START_REF] Tikhonov | Systems of differential equations containing small parameters in the derivatives[END_REF][START_REF] Wasow | Asymptotic Expansions for Ordinary Differential Equations[END_REF], we consider the dynamics of the fast variables in the time scale τ = Dt. We get

       dx i dτ = 1 D r i x i 1 - x i K i + ∑ n j=1, j =i (γ i j x j -γ ji x i ), i = 1, . . . , s, dx i dτ = 1 D r i x i -1 - x i K i + ∑ n j=1, j =i (γ i j x j -γ ji x i ), i = s + 1, . . . , n -1. ( 56 
)
where x n is given by (55). In the limit D → ∞, we find the fast dynamics

dx i dτ = n ∑ j=1, j =i (γ i j x j -γ ji x i ), i = 1, • • • , n -1.
This is an (n -1)-dimensional linear differential system. According to [12, Lemma B.1], this system admits unique equilibrium GAS given by

δ 1 ∑ n i=1 δ i X, . . . , δ n-1 ∑ n i=1 δ i X T .
Thus, the slow manifold of System (56) is given by

x i = δ i ∑ n i=1 δ i X, i = 1, . . . , n -1. ( 57 
)
As this manifold is GAS, Tikhonov's theorem ensures that after a fast transition toward the slow manifold, the solutions of (56) are approximated by the solutions of the reduced model, which is obtained by replacing (57) into the dynamics of the slow variable, that is:

dX dt = s ∑ i=1 r i X ∑ n i=1 δ i δ i 1 - X (∑ n i=1 δ i ) K i δ i + n ∑ i=s+1 r i X ∑ n i=1 δ i δ i -1 - X (∑ n i=1 δ i ) K i δ i = rX 1 - X (∑ n i=1 δ i ) K
, where r and K are defined in (51). Therefore, the reduced model is (50

). If ∑ s i=1 δ i r i > ∑ n i=s+1 δ i r i , (50) admits X * = n ∑ i=1 δ i K = n ∑ i=1 δ i ∑ s i=1 δ i r i -∑ n i=s+1 δ i r i ∑ n i=1 δ 2 i α i
as a positive equilibrium point, which is GAS in the positive axis, and if ∑ s i=1 δ i r i ≤ ∑ n i=s+1 δ i r i , (50) admits the origin as unique equilibrium point, which is GAS. The approximation given by Tikhonov's theorem holds for all t ≥ 0 for the slow variable and for all t ≥ t 0 > 0 for the fast variables, where t 0 is as small as we want. Therefore, letting Y (t) be the solution of the reduced model (50) with initial condition Y (0) = X(0, D) = ∑ n i=1 x 0 i , then, then D → ∞, we have the approximations (52) and (53).

Note that, in the case of perfect mixing, the approximation (52) shows that:

• If ∑ s i=1 δ i r i > ∑ n
i=s+1 δ i r i , then the total population behaves like the unique logistic equation (50) and then, when t and D tend to ∞, the total population

∑ x i (t, D) tends toward (∑ n i=1 δ i ) K = (∑ n i=1 δ i ) ∑ s i=1 δ i r i -∑ n i=s+1 δ i r i ∑ δ 2 i α i . • If ∑ s i=1 δ i r i ≤ ∑ n i=s+1 δ i r i
, then the equation (50) admit the origin as unique equilibrium, and then, when t and D tend to ∞, the total population ∑ x i (t, D) tends toward 0

The approximation (53) shows that, with the exception of a thin initial boundary layer, where the density population x i (t, D) quickly jumps from its initial condition x 0 i to the average δ i X 0 / ∑ n i=1 δ i , each patch of the n-patch source-sink model behaves like the single logistic equation

du dt =        ru 1 - u δ i K if ∑ s i=1 δ i r i > ∑ n i=s+1 δ i r i , ru -1 - u δ i K otherwise,
where r = -r, K = -K, r and K are given in (51). Hence, when t and D tend to ∞, the density population x i (t, D) tends toward K =

δ i ∑ s i=1 δ i r i -∑ n i=s+1 δ i r i ∑ δ 2 i α i if ∑ s i=1 δ i r i > ∑ n i=s+1 δ i r i , and x i (t, D) tends toward 0 if ∑ s i=1 δ i r i ≤ ∑ n i=s+1 δ i r i .
According to the previous theorem, we obtain the limit E * (∞) of E * (D) when D → ∞:

Corollary 3.2
We have:

lim D→+∞ E * (D) =    ∑ s i=1 δ i r i -∑ n i=s+1 δ i r i ∑ n i=1 δ 2 i α i (δ 1 , . . . , δ n ), if ∑ s i=1 δ i r i > ∑ n i=s+1 δ i r i , 0 otherwise, (58) 
where α i = r i /K i and (δ 1 , . . . , δ n ) the vector which generate the kernel of Γ. Moreover, if the matrix Γ is symmetric, then:

lim D→+∞ E * (D) =    ∑ s i=1 r i -∑ n i=s+1 r i ∑ n i=1 α i (1, . . . , 1), if ∑ s i=1 r i > ∑ n i=s+1 r i , 0 otherwise. ( 59 
)
As a second corollary of the previous theorem we obtain the following result which describes the total equilibrium population for perfect mixing:

Corollary 3.3 We have X * T (+∞) =    ∑ n i=1 δ i ∑ s i=1 δ i r i -∑ n i=s+1 δ i r i ∑ n i=1 δ 2 i α i if ∑ s i=1 δ i r i > ∑ n i=s+1 δ i r i , 0 otherwise . ( 60 
)
Moreover, if the matrix Γ is symmetric, then:

X * T (+∞) =    n ∑ s i=1 r i -∑ n i=s+1 r i ∑ n i=1 α i , if ∑ s i=1 r i > ∑ n i=s+1 r i , 0 otherwise . ( 61 
)
Proof 12 The sum of the n components of the point E * (∞) immediately gives the equation (60).

In the case n = 2 and s = 1, one has δ 1 = γ 12 and δ 2 = γ 21 . Therefore (60) becomes In the case of the multi-patch logistic model with asymmetric migration, i.e the model ( 32) with s = n, the formula (60) becomes

X * T (+∞) =    (γ 12 + γ 21 ) γ 12 r 1 -γ 21 r 2 γ 2 12 α 1 + γ 2 21 α 2 i f γ 21 /γ 12 < r 1 /
X * T (+∞) = n ∑ i=1 δ i ∑ n i=1 δ i r i ∑ n i=1 δ 2 i α i ,
which is the formula given by Elbetch et al. [START_REF] Elbetch | The multi-patch logistic equation with asymmetric migration[END_REF]Equation 13].

As a corollary of the previous theorem we obtain the following result which describes the behavior of the system (32) for perfect mixing and symmetrical dispersal: Corollary 3.4 Assume that the matrix Γ is symmetric. Let (x 1 (t, D), . . . , x n (t, D)) be the solution of the system (32) with initial condition

(x 0 1 , • • • , x 0 n ) satisfying x 0 i ≥ 0 for i = 1 • • • n. Let Y (t) be the solution of the equation dX dt = rX 1 - X nK , ( 62 
)
where

r = ∑ s i=1 r i -∑ n i=s+1 r i n , K = ∑ s i=1 r i -∑ n i=s+1 r i ∑ n i=1 α i and α i = r i /K i . ( 63 
)
Then, when D → ∞, we have

n ∑ i=1 x i (t, D) = Y (t) + o D (1) uniformly for t ∈ [0, +∞) (64) 
and, for any t 0 > 0, we have

x i (t, D) = Y (t) n + o D (1) i = 1, . . . , n, uniformly for t ∈ [t 0 , +∞). ( 65 
)
Proof 13 If Γ is symmetric, one has δ i = 1 for all i. Therefore, the formulas (50), (51), and the approximations (52), (53) for δ i = 1, give the proof of the corollary.

Total population size

In this section, Our aim is to compare the total equilibrium population

X * T (D) = x * 1 (D) + . . . + x * n (D), (66) 
with the sum of carrying capacities K 1 + . . . + K s , when the migration rate D varies from zero to infinity. First, we start by the following case.

Homogeneous Source-Sink System

Let we consider a Source-Sink patch model [START_REF] Lu | Global asymptotic behavior in single-species discrete diffusion systems[END_REF] when the patches have a homogeneous structure in the sense that the growth rates and death rates are independent of the patch.

In the next proposition, we show that, if the growth rates in source patches, and the death rates in the sink patches, are equal, then the total equilibrium population is smaller than the sum of carrying capacities. Moreover, under some conditions, we can have a persistent in all the patches, or extinction in all the patches from a positive value of the migration rate. Mathematically speaking, we have the result: Proposition 3.2 Consider the system [START_REF] Lu | Global asymptotic behavior in single-species discrete diffusion systems[END_REF]. If r 1 = . . . = r n , then X * T (D) ≤ ∑ s i=1 K i for all D ≥ 0, and

dX * T dD (0) = 0. Moreover, • If ∑ s i=1 δ i r i ≤ ∑ n i=s+1 δ i r i , then there is D * > 0 such that, X * T (D) > 0 for D < D * , and X * T (D) = 0, for D ≥ D * . • If ∑ s i=1 δ i r i > ∑ n i=s+1 δ i r i , then X * T (D) > 0 for all D ≥ 0.
Proof 14 If the equilibrium E * (D) exist, then it is a solution of the algebraic system:

       0 = r i x i 1 - x i K i + D ∑ n j=1, j =i (γ i j x j -γ ji x i ), i = 1, . . . , s, 0 = r i x i -1 - x i K i + D ∑ n j=1, j =i (γ i j x j -γ ji x i ), i = s + 1, . . . , n. ( 67 
)
The sum of these equations shows that E * (D) satisfies the following equation

s ∑ i=1 r i x i 1 - x i K i - n ∑ i=s+1 r i x i 1 + x i K i = 0. ( 68 
)
Therefore E * (D) belongs to the ellipsoid:

E n-1 s := x ∈ R n : Θ(x) := s ∑ i=1 r i x i 1 - x i K i - n ∑ i=s+1 r i x i 1 + x i K i = 0 . ( 69 
)
Note that, this ellipsoid is independent of the migration terms D and γ i j . It depends on the number of the sources and sinks patches. The ellipsoid E n-1 s passes through the points O, (K 1 , . . . , K s , 0, . . . , 0) and (0, . . . , 0, -K s+1 , . . . , K n ).

The equation of the tangent space to the ellipsoid E n-1 s , defined by (69), at point

A s = (K 1 , . . . , K s , 0, . . . , 0) is given by s ∑ i=1 (x i -K i ) ∂ Θ ∂ x i (A s ) + n ∑ i=s+1 x i ∂ Θ ∂ x i (A s ) = 0, ( 70 
)
where Θ is given by the equation (69). Since ∂ Θ ∂ x i (A s ) = -r i for all i = 1, . . . , n, the equation (70) can be written as follows:

n ∑ i=1 r i x i = s ∑ i=1 r i K i . ( 71 
)
If we take r 1 = . . . = r n , in Equation (71), we get that the equation of the tangent plane to

E n-1 s at the point A s is n ∑ i=1 x i = s ∑ i=1 K i .
By the convexity of Ellipsoid E n-1 s , any point of E n-1 s lies in the half-space defined by the inequation

∑ n i=1 x i ≤ ∑ s i=1 K i . Therefore E * (D) satisfies n ∑ i=1 x * i (D) ≤ s ∑ i=1 K i for all D ≥ 0.
Now, according to the formula of perfect mixing (60), we can see immediately that X * T (+∞) = 0 if and only if ∑ s i=1 δ i r i = ∑ n i=s+1 δ i r i . If r 1 = . . . = r n =: r, then the formula of the derivative (118

) at D = 0 becomes dX * T dD (0) = 1 r
(1, . . . , 1) Γ (K 1 , . . . , K s , 0, . . . , 0) T = 0, since Γ verify the relation [START_REF] Poggiale | Global production increased spatial heterogeneity in a population dynamics model[END_REF]. This completes the proof of the proposition.

In the case when s = n, the previous proposition becomes: if 

r 1 = . . . = r s , then 0 < X * T (D) ≤ ∑ i K i ,

Heterogeneous Source-Sink system

In the next proposition we give sufficient and necessary conditions for the total equilibrium population not to depend on the migration rate. More precisely, we show that, the only situation where the total equilibrium population is independent with respect to dispersal, is when all the patches are sources and the vector of the carrying capacities lies in the vector space ker Γ. That is, if there is at least one sink patch, or we have n sources patches and the vector of the carrying capacities does not belong in the vector space ker Γ, then the total equilibrium population is depends on the dispersion. 

       0 = diag r 1 -r 1 K 1 x 1 , • • • , r s -r s K s x s X s + D (Γ ss X s + Γ sp X p ) , 0 = diag -r s+1 -r s+1 K s+1 x s+1 , • • • , -r n -r n K n x n X p +D (Γ ps X s + Γ pp X p ) , (72) 
Suppose that the equilibrium E * (D) does not depend on D, then we replace in Equation (72):

           0 = diag r 1 -r 1 K 1 x * 1 (D), • • • , r s -r s K s x * s (D) X * s (D) +D Γ ss X * s (D) + Γ sp X * p (D) , 0 = diag -r s+1 -r s+1 K s+1 x * s+1 (D), • • • , -r n -r n K n x * n (D) X * p (D) +D Γ ps X * s (D) + Γ pp X * p (D) . (73) 
The derivative of (73) with respect to D gives:

ΓE * (D) = 0. ( 74 
)
Replacing the equation (74) in the equation (73), we get E * (D) = (K 1 , . . . , K s , 0, . . . , 0). From the equation (74), we conclude that (K 1 , . . . , K s , 0, . . . , 0) ∈ ker Γ. Since the vector space ker Γ is generate by a positive vector, then (K 1 , . . . , K s , 0, . . . , 0) ∈ ker Γ is hold if and only if, s = n. Now, suppose that s = n and (K 1 , . . . , K n ) ∈ ker Γ, then (K 1 , . . . , K n ) satisfies the equation (72), for all D ≥ 0. So, E * (D) = (K 1 , . . . , K n ), for all D ≥ 0, which proves that the total equilibrium population is independent of the migration rate D.

it is also clear that when all the patches are sources and the vector of the carrying capacities lies in the vector space ker Γ , we obtain the results proved by Elbetch et al. [START_REF] Elbetch | The multi-patch logistic equation[END_REF]Prop. 3.2 ] and [START_REF] Elbetch | The multi-patch logistic equation with asymmetric migration[END_REF]Prop. 4.5 ].

Two blocks of identical source and sink patches

we consider the model of source-sink patches [START_REF] Lu | Global asymptotic behavior in single-species discrete diffusion systems[END_REF] and we assume that we have one block of source patches and one block for the sink patches. We denote by I so = {1, . . . , s} and I si = {s + 1, . . . , n} for the block of the source patches and sink patches respectively such that I so ∪ I si = {1, . . . , n}. The source patches being identical means that they have the same growth rate r i and carrying capacity K i . Therefore, we have

r 1 = . . . = r s =: r so , K 1 = . . . = K s =: K so . (75) 
The same for the sink patches, we suppose that:

r s+1 = . . . = r n =: r si , K s+1 = . . . = K n =: K si . (76) 
First, we give some definitions: Definition 3.6 Let the flux

Γ iI si = ∑ j∈I si γ i j , Γ jI so = ∑
i∈I so γ i j , Γ I so I si = ∑ i∈I so , j∈I si γ i j , and Γ I si I so = ∑ i∈I so , j∈I si γ ji .

• For i ∈ I so , Γ iI si is the flux from block I si to patch i, i.e. the sum of the migration rates γ i j from patch j ∈ I si to patch i.

• For j ∈ I si , Γ jI so is the flux from block I so to patch j, i.e. the sum of the migration rates γ ji from patch i ∈ I so to patch j.

• Γ I so I si is the flux from block I si to block I so , i.e. the sum of the migration rates γ i j from patch j ∈ I si , to patch i ∈ I so .

• Γ I si I so is the flux from block I so to block I si , i.e. the sum of the migration rates γ ji from patch i ∈ I so , to patch j ∈ I si .

For each patch i we denote by T i the sum of all migration rates γ ji from patch i to another patch j = i (i.e. the outgoing flux of patch i) minus the sum of the migration rates γ ik from patch k to patch i, where k belongs to the same block as i. Hence, we have:

If i ∈ I so , T i = ∑ j∈I si γ ji + ∑ k∈I so \{i} (γ ki -γ ik ) If j ∈ I si , T j = ∑ i∈I so γ i j + ∑ k∈I si \{ j} (γ k j -γ jk ) (77) 
We make the following assumption on the migration rates

Γ 1I si = . . . = Γ sI si , Γ (s+1)I so = . . . = Γ nI so T 1 = . . . = T s , T s+1 = • • • = T n (78) 
If the conditions (78) are satisfied, then, according to [12, Lemma 4.6], we have for all i ∈ I so and j ∈ I si one has Γ iI si = Γ I so I si /s, Γ jI so = Γ I si I so /s, T i = Γ I si I so /s, T j = Γ I so I si /s.

where s = ns, Γ I so I si and Γ I si I so are defined in Definition 3.6. We consider the following regions in the set of parameters Γ I si I so and Γ I so I si , denoted Z 0 , Z 1 and Z 2 depicted in Figure 5 and defined by:

               Z 0 = (Γ I si I so , Γ I so I si ) : Γ I so I si ≥
r si r so Γ I si I so , Z 1 = (Γ I si I so , Γ I so I si ) : r si r so Γ I si I so < Γ I so I si < r si D r so r si + Dr so Γ I si I so , Z 2 = (Γ I si I so , Γ I so I si ) : Γ I so I si ≥ r si D r so r si + Dr so Γ I si I so .

(80) 0 We can state now our main result Theorem 3.7 Consider the regions Z 0 , Z 1 and Z 2 depicted in Figure 5 and defined by (80). Assume that the conditions (75),( 76) and (78) are satisfied. If (Γ I si I so , Γ I so I si ) ∈ Z 2 , then the model (32) admits the origin as unique equilibrium point, which is GAS, and if (Γ I si I so , Γ I so I si ) ∈ Z 0 ∪ Z 1 , the model (32) admits unique equilibrium point in the interior of the positive cone, which is of the form

Z 1 Z 0 Z 2 Γ I so I si = a 2 a 1 Γ I si I so Γ I si I so Γ I so I si Γ I so I si = Da 2 a 1 a 2 +Da 1 Γ I si I so
x 1 = x * 1 , . . . , x s = x * so , x s+1 = x * n , . . . , x n = x * si where (x * so , x * si ) is the interior equilibrium point of the 2-patch source -sink model       
dx so dt = sr so x so 1 -x so K so + D (Γ I so I si x si -Γ I si I so x so ) ,

dx si dt = sr si x si -1 - x si K si + D (Γ I si I so x so -Γ I so I si x si ) , (81) 
with specific growth rates sr so and death rate sr si , carrying capacities K so for the source patch, parameter K si due to the intraspecific competition in the sink patch and migration rates Γ I si I so from source patch to the sink patch and Γ I so I si from the sink patch to the source patch.

Proof 16 Assume that the conditions (75) and (76) are satisfied. Then, if the interior equilibrium point of (32) exist, it is the unique positive solution of the set of algebraic equations

         r so x i 1 - x i K so + D n ∑ k=1,k =i (γ ik x k -γ ki x i ) = 0, i = 1, • • • , s, r si x j -1 - x j K si + D n ∑ k=1,k = j (γ jk x k -γ k j x j ) = 0, j = s + 1, • • • , n. (82) 
We consider the following set of algebraic equations obtained from (82) by replacing x i = x so for i = 1, . . . , s and x i = x si for i = s + 1, . . . , n:

       r so x so 1 - x so K so + D (Γ iI si x si -T i x so ) = 0, i = 1, • • • , s, r si x n -1 - x si K si + D Γ jI so x so -T j x si = 0, j = s + 1, • • • , n. (83) 
Now, using the assumptions (78), together with the relations (79), we see that the system (83) is equivalent to the set of two algebraic equations:

       r so x so 1 - x so K so + D Γ I so I si s x si - Γ I si I so s x so = 0, r si x si -1 - x si K si + D Γ I si I so s x so - Γ I so I si s x si = 0. (84) 
We first notice that if x so = x * so , x si = x * si is a positive solution of (84) then x i = x * so for i = 1, . . . , s and x i = x * si for i = s + 1, . . . , n is a positive solution of (82). According to Proposition 2.1, If (Γ I si I so , Γ I so I si ) ∈ Z 2 , then the model (84) admits the origin as unique equilibrium point, which is GAS, and if (Γ I si I so , Γ I so I si ) ∈ Z 0 ∪ Z 1 , the model (84) admits unique equilibrium point in the interior of the positive cone.

As a corollary of the previous theorem: Corollary 3.5 Assume that the conditions (75), ( 76) and (78) are satisfied. Then the total equilibrium population X * T (D) = sx * so (D) + sx * si (D) of (32) behaves like the total equilibrium population of the 2-patch source-sink model

      
dy so dt = r so y so 1 -y so sK so + D (γ 2 y siγ 1 y so ) ,

dy si dt = r si y si -1 - y si sK si + D (γ 1 y so -γ 2 y si ) . ( 85 
)
with specific growth rate r so , death rate r si , carrying capacities sK so , parameter K si due to the intraspecific competition in the sink patch and migration rates γ 1 = Γ I si I so s , γ 2 = Γ I so I si s .

Proof 17 The equilibrium point (x * so , x * si ) is the positive solution of the following system:

      
sr so x so 1 -x so K so + D (Γ I so I si x si -Γ I si I so x so ) = 0, sr si x si -1 -x si K si + D (Γ I si I so x so -Γ I so I si x si ) = 0.

(86)

Therefore (y * so = sx * so , y * si = sx * si ) is the solution of the set of equations

      
r so y so 1 -y so sK so + D (γ 2 y siγ 1 y so ) = 0,

r si y si -1 - y si sK si + D (γ 1 y so -γ 2 y si ) = 0, (87) 
obtained from (86) by using the change of variables y so = sx so , y si = sx si .

We can describe the conditions for which, under the conditions (75), ( 76) and (78), patchiness is beneficial or detrimental in model [START_REF] Lu | Global asymptotic behavior in single-species discrete diffusion systems[END_REF]. We consider the regions in the set of the parameters Γ I so I si and Γ I si I so , denoted L 0 , L 1 , L 2 , L 3 and L 4 , depicted in Fig. 6 and defined by:

                                 If r si ≥ r so then       
L 0 = (Γ I so I si , Γ I si I so ) : Γ I si I so Γ I so I si < r si r so L 1 = (Γ I so I si , Γ I si I so ) :

Γ I si I so Γ I so I si ≥ r si r so If r si < r so then               
L 2 = (Γ I so I si , Γ I si I so ) : Γ I so I si Γ I si I so ≤ r so r si L 3 = (Γ I so I si , Γ I si I so ) : r si r so < Γ I si I so Γ I so I si < K si (r sor si ) r so (K so + K si ) L 4 = (Γ I so I si , Γ I sI I so ) :

Γ I si I so Γ I so I si ≥ K si (r so -r si ) r so (K so + K si ) (88) 
Case r si ≥ r so . 76) and (78). In L 0 and L 1 the effect is detrimental with extinction in two patches for L 0 and persistence for L 1 . In L 4 , patchiness has a beneficial effect on total equilibrium population. In L 2 and L 3 , the effect is beneficial for D < D 0 and detrimental for D > D 0 with persistence of the population in the region L 2 and extinction in the region L 3 .

Proposition 3.4 Assume that the conditions (75),( 76) and (78) are satisfied, then, the total equilibrium population X * T (D) = sx * so (D) + sx * si (D) of ( 32) satisfies the following properties 1. If r si ≥ r so , let L 0 and L 1 be defined by (88) and depicted in Figure 6. Denote D * = Γ I si I so r so r si Γ I so I si r si -Γ I si I so r so . Then we have:

• if (Γ I so I si , Γ I si I so ) ∈ L 0 then X * T (D) ≤ sK so for all D ≥ 0. More precisely,

0 < X * T (D) ≤ sK so If D < D * , X * T (D) = 0 If D ≥ D * . (89) 
• if (Γ I so I si , Γ I si I so ) ∈ L 1 then 0 < X * T (D) ≤ sK so for D ≥ 0.

2. If r si < r so , let L 2 , L 3 and L 4 be defined by (88) and depicted in Figure 6. Then we have:

• if (Γ I so I si , Γ I si I so ) ∈ L 2 then X * T (D) > sK so for D < D 0 and X * T (D) < sK so for all D > D 0 . where D 0 = (r sor si ) (sK so + sK si )

Γ I si I so (r sir so ) + 1 s Γ I so I si α so (sK so + sK si ) (sα so ) -1 + (sα si ) -1 , (90) with α so = r so /K so and α si = r si /K si . Moreover, X * T (D) = 0 for all D ≥ D * . • if (Γ I so I si , Γ I si I so ) ∈ L 3 then we have

X * T (D) ≥ sK so If D ≤ D * , 0 < X * T (D) < sK so If D > D * . (91) 
• if (Γ I so I si , Γ I si I so ) ∈ L 4 , then X * T (D) ≥ sK so for any D ≥ 0.

Proof 18

The result is a consequence of Theorem 2.2 and Corollary 3.5.

Death rates are much larger than the growth rates

In this part, we consider the multi-patch Source-Sink model [START_REF] Lu | Global asymptotic behavior in single-species discrete diffusion systems[END_REF] and we assume that the death rates of the sink patches are much larger than the growth rates of the source patches.

Under this assumption, one can write the model in the matrix form as follow:

   Ẋs = diag r 1 -r 1 K 1 x 1 , • • • , r s -r s K s x s X s + D (Γ ss X s + Γ sp X p ) , Ẋp = 1 ε diag -r s+1 -r s+1 K s+1 x s+1 , • • • , -r n -r n K n x n X p + D (Γ ps X s + Γ pp X p ) , (92) 
where ε is assumed to be a small positive number. We have the following result:

Theorem 3.8 Let (x 1 (t, ε), . . . , x n (t, ε)) be the solution of the system (92) with initial condition (x 0 1 , . . . , x 0 n ) satisfying x 0 i ≥ 0 for i = 1, . . . , n. Let u(t) = (u 1 (t), . . . , u s (t)) be the solution of the following differential system

Ẋs = diag r 1 - r 1 K 1 x 1 , . . . , r s - r s K s x s X s + DΓ ss , (93) 
with initial condition u(0) = (x 0 1 , . . . , x 0 s ), X s = (x 1 , . . . , x s ) T and Γ ss is the sub matrix of Γ defined by [START_REF] Yu | Effect of diffusion on a consumer-resource system with source-sink patches Discrete and Continuous Dynamical System series B[END_REF]. Then, when ε → 0, we have

x i (t, ε) = u i (t) + o ε (1), i = 1, . . . , s uniformly for t ∈ [0, +∞) (94) 
and x i (t, ε) = o ε (1), i = s + 1, . . . , n, (95) 
uniformly for t ∈ [t 0 , T ], where 0 < t 0 < T are arbitrary but fixed and independent of ε. If the solution u s (t) of the reduced problem converges to an asymptotically stable equilibrium, then we can put T = +∞ in the approximations (94) and (95).

Proof 19 When ε → 0, the system (92) is a slow-fast system, with x 1 , . . . , x s are slow variables, and x s+1 , . . . , x n fast variable. Tikhonov's theorem [START_REF] Lobry | On Tykhonov's theorem for convergence of solutions of slow and fast systems[END_REF][START_REF] Tikhonov | Systems of differential equations containing small parameters in the derivatives[END_REF][START_REF] Wasow | Asymptotic Expansions for Ordinary Differential Equations[END_REF] prompts us to consider the dynamics of the fast variables in the time scale τ = 1 D t. One obtains

Ẋp = diag -r s+1 - r s+1 K s+1 x s+1 , • • • , -r n - r n K n x n X p + εD (Γ ps X s + Γ pp X p ) (96) 
In the limit ε → 0, we find the fast dynamics

Ẋp = diag -r s+1 - r s+1 K s+1 x s+1 , • • • , -r n - r n K n x n X p . (97) 
The slow manifold is given by the equilibrium of the system (97), i.e X p = 0, which is GAS in the positive axis. When ε goes to zero, Tikhonov's theorem ensures that after a fast transition toward the slow manifold, the solutions of (92) converge to the solutions of the reduced model (93), obtained by replacing X p = 0 into the dynamics of the slow variable. The approximations (94) and (95) follow from Tikhonov's Theorem. Recall that when the reduced problem (93) has an asymptotically stable equilibrium, then these approximations hold for all t > 0 and not only on a compact interval [0, T ]. Recall also that there is a boundary layer for the fast variables, that is the approximations (95) hold only for t > t 0 where t 0 > 0 can be arbitrarily small but fixed.

For the dynamics of the reduced model (93), we have the following result:

Theorem 3.9 Consider the model (93). Let A be the matrix defined by A := diag(r 1 , . . . , r s ) + DΓ ss .

Assume that the matrix Γ ss is irreducible, then we have:

• if S(A) ≤ 0, the origin is GAS for (93), and

• if S(A) > 0, the reduced model has a GAS positive equilibrium.

Proof 20 As the matrix Γ ss is irreducible, then the matrix A is also. Note that, the matrix A is the Jacobian matrix of the reduced model (93) evaluated at X s = 0. According to [32, Corollary 1 ], we conclude the complete proof.

Remark 3.3 Under the assumption that the matrix Γ ss is irreducible, the approximations (94) and (95) hold for all t > 0 and not only on a compact interval [0, T ].

Note that, we ca written the reduced model (93) as follow:

dx i dt = r i x i 1 - x i K i -γ i x i + D s ∑ j=1 γ i j x j , . . . i = 1, . . . , s, (98) 
where γ i = D ∑ n j=s+1 γ ji for i = 1, . . . , s. We denote Γ := (γ i j ) 1≤i, j≤s the matrix which represent the migration between the source patches. In [19, Theorem 2.1], Gao have considered the model (98)and proved under the assumptions γ i > 0, (K 1 , . . . , K s ) ∈ ker T and Γ is irreducible, that, if R 0 ≤ 0, the origin is GAS for (93), and if R 0 > 0, there exist unique positive equilibrium which is GAS. Here R 0 is the basic reproduction number of the reduced model (93) defined as: R 0 = ρ(FV -1 ), with F = diag(r 1 , . . . , r s ) and V = diag(γ 1 , . . . , γ s ) -D Γ, where ρ is the spectral radius.

4 Multi-patch Source-sink model without intraspecific competition in the sink patches

In this section, we assume that, there is no intraspecific competition in ns sink patches, i.e α i = 0 for all i ≥ s + 1 in the model [START_REF] Levin | Spatial patterning and the structure of ecological communities[END_REF]. Under this assumption, the system (31) is rewritten as follow:

     dx i dt = r i x i 1 - x i K i + D ∑ n j=1, j =i (γ i j x j -γ ji x i ), i = 1, . . . , s, dx i dt = -r i x i + D ∑ n j=1, j =i (γ i j x j -γ ji x i ), i = s + 1, . . . , n. (103) 
The model ( 103) is studied by Arino et al. [START_REF] Arino | Number of Source Patches Required for Population Persistence in a Source-Sink Metapopulation with Explicit Movement[END_REF] for n patches connected by migration terms and also by Wu et al. [START_REF] Wu | Dispersal asymmetry in a twopatch system with source-sink populations[END_REF] for two patches. The global dynamics of ( 103) is given in [3, Theorem 1]. In all of this section, we denote E * (D) the positive equilibrium of (103) if it exists, and X * T (D), the total equilibrium population.

The large migration rate

We have the following result which is a consequence of Theorem 3.2.

Corollary 4.1

We have:

lim D→+∞ E * (D) =    ∑ s i=1 δ i r i -∑ n i=s+1 δ i r i ∑ s i=1 δ 2 i α i (δ 1 , . . . , δ n ), if ∑ s i=1 δ i r i > ∑ n i=s+1 δ i r i , 0 otherwise, (104) 
where α i = r i /K i . Moreover, if the matrix Γ is symmetric, then:

lim D→+∞ E * (D) =    ∑ s i=1 r i -∑ n i=s+1 r i ∑ s i=1 α i (1, . . . , 1), if ∑ s i=1 r i > ∑ n i=s+1 r i , 0 otherwise. ( 105 
)
Proof 24 Just replace α i = 0 for i = s + 1, . . . , n in Theorem 3.2.

According to the previous corollary, we obtain the formula of the total equilibrium population for perfect mixing:

X * T (+∞) =    ∑ n i=1 δ i ∑ s i=1 δ i r i -∑ n i=s+1 δ i r i ∑ s i=1 δ 2 i α i if ∑ s i=1 δ i r i > ∑ n i=s+1 δ i r i , 0 otherwise. ( 106 
)
Moreover, if the matrix Γ is symmetric, then:

X * T (+∞) =    n ∑ s i=1 r i -∑ n i=s+1 r i ∑ s i=1 α i , if ∑ s i=1 r i > ∑ n i=s+1 r i , 0 otherwise . (107) 

Derivative of the total equilibrium population

In this section, Our aim is to calculate the derivative of the total equilibrium population of the model (103) at D = 0. First, we start by giving the following result:

Lemma 4.1 Consider the model (103). The total equilibrium population X * T satisfies the following relation:

X * T (D) = s ∑ i=1 K i + D s ∑ i=1 n ∑ i=1, j =i γ i j x * j (D) -γ ji x * i (D) α i x * i (D) + n ∑ i=s+1 n ∑ i=1, j =i γ i j x * j (D) -γ ji x * i (D) r i . ( 108 
)
Proof 25 If the system (103) admits unique equilibrium E * (D) in the interior of the positive cone, then it satisfies the following system:

   0 = r i x * i (D) 1 - x * i (D) K i + D ∑ n j=1, j =i (γ i j x * j (D) -γ ji x * i (D)), i = 1, . . . , s, 0 = -r i x * i (D) + D ∑ n j=1, j =i (γ i j x * j (D) -γ ji x * i (D)), i = s + 1, . . . , n. (109 
) Dividing the first s equations in (109) by α i x * i (D), and the last ns equations by r i , one obtain

   x * i (D) = K i + D ∑ n i=1, j =i γ i j x * j (D)-γ ji x * i (D) α i x * i (D) i = 1, . . . , s, x * i (D) = D ∑ n i=1, j =i γ i j x * j (D)-γ ji x * i (D) r i i = s + 1, . . . , n. (110) 
Taking the sum of these expressions gives (108).

Proposition 4.1 The derivative of the total equilibrium population X * T at D = 0, is given by: dX

* T dD (0) = 1 r 1 , . . . , 1 r n Γ (K 1 , . . . , K s , 0, . . . , 0) T . (111) 
Proof 26 Using matrix notation, the relation (109) is written as follow: 

X * T (D) = s ∑ i=1 K i + D 1 α 1 x * i (D) , . . . , 1 
α s x * s (D) , 1 r s+1 , . . . , 1 
which gives (118), since x * i (0) = K i for all i = 1, . . . , s, and x * i (0) = 0 for all i = s+1, . . . , n.

Comparison between results on (32) and the results on (103)

In this part, our aim is to compare the result on [START_REF] Lu | Global asymptotic behavior in single-species discrete diffusion systems[END_REF] and the results on (103). We focus on two results on the total equilibrium population, the formulas of perfect mixing and the derivatives of the total equilibrium population at D = 0. We have the following result: > 0, if ∑ s i=1 δ i r i > ∑ n i=s+1 δ i r i , = 0 otherwise.

Conclusion

The goal of this paper was to generalize to a multi-patch source-sink model the results obtained in [START_REF] Wu | Dispersal asymmetry in a twopatch system with source-sink populations[END_REF] for a two-patch source-sink model and also the results of [START_REF] Elbetch | The multi-patch logistic equation[END_REF][START_REF] Elbetch | The multi-patch logistic equation with asymmetric migration[END_REF] for mutipatch logistic model i.e. n-source 0-sink patch model. The diffusion between patches is modeled by a cooperative matrix. When this last matrix is irreducible, the system has a unique equilibrium, which furthermore is globally asymptotically stable (see Subsection 3.1). In Subsection 3.2 we considered the particular case of perfect mixing, i.e. when the diffusion rate goes to infinity, that is, individuals may travel freely between patches. As in [START_REF] Wu | Dispersal asymmetry in a twopatch system with source-sink populations[END_REF] for Two-patch model and [START_REF] Elbetch | The multi-patch logistic equation[END_REF][START_REF] Elbetch | The multi-patch logistic equation with asymmetric migration[END_REF], we compute the total equilibrium population in that case as a function of the number of the source patches, and, by perturbation arguments, we proved that the dynamics in this ideal case provides a good approximation for the case when the diffusion rate is large.

In Subsection 3.3 we considered the total equilibrium population in the n patches. We gave a complete solution in the case when the source and sink patches are partitioned into two blocks of identical patches ( source patches are identical and sink patches also). Our results mirror those of [START_REF] Wu | Dispersal asymmetry in a twopatch system with source-sink populations[END_REF], which deals with the two-patch source-sink case (see Section 2). As shown in Proposition 3.2, diffusion could make total abundance small than if non-diffusing and also the extinction in both patches.

In Subsections 3.4 and 3.5, we study the total equilibrium population of the sourcesink patch model [START_REF] Lu | Global asymptotic behavior in single-species discrete diffusion systems[END_REF] as a function of the diffusion rate in the case where the growth (resp. death) rate is much larger than the death (resp. growth) rate.

Some questions important remain open: Is there a way to make connections between the sources and sinks patches that increases the total equilibrium population? Mathematically speaking, are there conditions on the parameters of the model in which the following: is positive for all positive diffusion rate D? Anther problem, for example, for three-patch logistic model ( One-source Two-sink, Two-source One-sink), is it possible to give a complete comparison between the total equilibrium population and the sum of the carrying capacities. I think this question is difficult and requires a lot of work and mathematical tools.

A Derivative of the total equilibrium population of (32)

First, we start by the following result: (116)

Taking the sum of these expressions gives (114). 

which is the formula [START_REF] Elbetch | The multi-patch logistic equation[END_REF]Equation 28]. Note that, the formula (118) show that, the derivative of the total equilibrium population at D = 0 is depend on growth and death rates r i , the carrying capacities K i for all i = 1, . . . , s, and the sub matrix Γ ss , Γ ps of the matrix Γ. It is independents of the parameters K i with i = s + 1, . . . , n, and the sub matrix Γ pp , Γ sp of the matrix Γ

B Background concepts and preliminaries results

In this section, our goal is to recall some concepts and results which we need in this work. Proofs of some results are given here and the others we refer interested readers to references.

Definition B.1 A matrix A = (a i j ) is called cooperative if a i j ≥ 0 for all i = j. 

Remark 3 . 1

 31 For the existence , uniqueness, and positivity of δ see Lemma 1 of Cosner et al. [7], Lemma 4.1 and Lemma 1 of Elbetch et al. [11, 12]. On the other hand, it is shown in Guo et al. [22, Lemma 2.1] and Gao and Dong [20, Lemma 3.1] that the vector (Γ * 11 , . . . , Γ * nn ) T is a right eigenvector of Γ associated with the zero eigenvalue. Here, Γ *

Proposition 3 . 3

 33 The equilibrium E * (D) does not depend on D if and only if, s = n and (K 1 , . . . , K n ) ∈ ker Γ. In this case E * (D) = (K 1 , . . . , K n ) for all D > 0. Proof 15 The equilibrium E * (D) := (X * s (D); X * p (D)), where X * s (D) = (x * 1 (D), . . . , x * s (D)) and X * p (D) = (x * s+1 (D), . . . , x * n (D)), is the unique positive solution of the system:

Figure 5 :

 5 Figure 5: The regions Z 0 , Z 1 and Z 2 in the set of parameters Γ I si I so and Γ I so I si .
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 104326 Figure 6: Qualitative properties of source-sink model (32) under the conditions (75),(76) and (78). In L 0 and L 1 the effect is detrimental with extinction in two patches for L 0 and persistence for L 1 . In L 4 , patchiness has a beneficial effect on total equilibrium population. In L 2 and L 3 , the effect is beneficial for D < D 0 and detrimental for D > D 0 with persistence of the population in the region L 2 and extinction in the region L 3 .

r n Γ (x * 1 (

 1 D), . . . , x * n (D)) T . (112)By differentiating the equation (112) at D = 0, we get: , . . . , x * n (0)) T ,

Corollary 4 . 2

 42 Consider the models[START_REF] Lu | Global asymptotic behavior in single-species discrete diffusion systems[END_REF] and (103) with the total equilibrium population X * T (D) and X * T (D) respectively. Then, , and X * T (+∞) -X * T (+∞)

  γ i j x * j (D)γ ji x * i (D) α i (K i + x * i (D))

Lemma A. 1 Proof 27 0

 127 Consider the model[START_REF] Lu | Global asymptotic behavior in single-species discrete diffusion systems[END_REF]. The total equilibrium population X *γ i j x * j (D)γ ji x * i (D) α i (K i + x *i (If the system (32) admits unique equilibrium E * (D) in the interior of the positive cone, then it satisfies the following system: = r i x * i (D) 1 -x * i (D) K i + D ∑ n j=1, j =i (γ i j x * j (D)γ ji x * i (D)), i = 1, . . . , s, 0 = r i x * i (D) -1 -x * i (D) K i + D ∑ n j=1, j =i (γ i j x * j (D)γ ji x * i (D)), i = s + 1, . . . , n.(115)Dividing the first s equations in (115) by α i x * i (D), and the last ns equations byα i (K i + x * i (D)), one obtain ) = K i + D ∑ n i=1, j =i γ i j x * j (D)γ ji x * i (D) α i x * i (D) i = 1, . . . , s, x * i (D) = D ∑ n i=1, j =i γ i j x * j (D)γ ji x * i (D) α i (K i + x * i (D))i = s + 1, . . . , n.

Remark A. 1

 1 Using matrix notation, the relation (115) is written as follow:Dv T (D)Γ (x * 1 (D), . . . , x * n (D)) T ,(117)where v T (D) =1 α 1 x * i (D) , . . . , 1 α s x * s (D) , 1 α s+1 (K s+1 +x * s+1 (D)) , . . . , 1 α n (K n +x * n (D)) . Proposition A.1The derivative of the total equilibrium population at D = 0, is given by: 1 , . . . , K s , 0, . . . , 0) T .(118)Proof 28 By differentiating the equation (117) at D = 0, we get:dX * T dD (0) = v T (0)Γ (x * 1 (0), . . . , x * n (0)) T .(119)which gives (118), since x * i (0) = K i for all i = 1, . . . , s, and x * i (0) = 0 for all i = s+1, . . . , n.For s = n, the derivative (118) becomes dX * 1 , . . . , K n ) T ,

Definition B. 2

 2 The stability modulus of a matrix A is given byS(A) = max {Re(λ ) : λ is an eigenvalue of A} ,(121)and the spectral radius of A isρ(A) = max{| λ |: λ is an eigenvalue of A}.(122)
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  r 2 ,

	0	otherwise.	
	which is the formula given by Wu et al. [38, Equation 5.8]. In the case n = s = 2, the
	formula (60) becomes		
	X * T (+∞) = (γ 12 + γ 21 )	γ 12 r 1 + γ 21 r 2 γ 2 21 α 2 12 α 1 + γ 2	,
	which is the formula given by Arditi et al. [2, Equation 7] and by Poggiale et al. [34, page
	362].		

  which is [11, Prop. 3.1 and Prop. 6.2].

Growth rates are much larger than the death rates

In this part, we consider the multi-patch Source-Sink model [START_REF] Lu | Global asymptotic behavior in single-species discrete diffusion systems[END_REF] and we assume that the growth rates of the source patches are much larger than the death rates of the sink patches. Under this assumption, one can write the model in the matrix form as follow:

where ε is assumed to be a small positive number. We have the following result:

Theorem 3.10 Let (x 1 (t, ε), . . . , x n (t, ε)) be the solution of the system (92) with initial condition (x 0 1 , . . . , x 0 n ) satisfying x 0 i ≥ 0 for i = 1, . . . , n. Let u(t) = (u 1 (t), . . . , u p (t)) be the solution of the differential system

with initial condition (x 0 s+1 , . . . , x 0 n ), X p = (x s+1 , . . . , x n ) T , K s = (K 1 , . . . , K s ) T , Γ pp and Γ ps are the sub matrix of Γ defined by [START_REF] Yu | Effect of diffusion on a consumer-resource system with source-sink patches Discrete and Continuous Dynamical System series B[END_REF]. Then, when ε → 0, we have

uniformly for t ∈ [t 0 , T ], where 0 < t 0 < T are arbitrary but fixed and independent of ε. If the solution u p (t) of the reduced problem converges to an asymptotically stable equilibrium, then we can put T = +∞ in the approximations (101) and (102).

Proof 21

The proof is the same as Theorem 3.8.

Our goal in next, is to prove the global stability of the reduced model (100). First, we start by the following lemma: Lemma 3.11 Assume that the matrix Γ is irreducible. The reduced model (100) does not admits the origin as equilibrium.

Proof 22 We suppose that the origin is a equilibrium of (100), then Γ ps K s = 0, which equivalent to Γ ps = 0. So, we obtain a contradiction since Γ is irreducible. Theorem 3.12 Assume that the two matrices Γ pp and Γ are irreducible. The reduced model (100) admits unique equilibrium point in the interior of the positive cone R n-s + \{0} which is GAS.

Proof 23 To show the global stability of the reduced model (100) in this case, we use the result of Hirsch [START_REF] Hirsch | The dynamical systems approach to differential equations[END_REF] recalled in Theorem B.7.

The jacobian matrix of the reduced model (100) is given by

which is irreducible because Γ pp is also. Moreover, if G(X p ) ≤ G(Y p ) then diag(-r i -2α i x i ) ≤ diag(-r i -2α i y i ) which gives x i ≥ y i for all i, i.e X p ≥ Y p ≥ 0. All solutions are bounded and the reduced model (100) does not admits the origin as equilibrium by Lemma 3.11. Hence, the reduced model (100) is globally stable according to Hirsch [START_REF] Hirsch | The dynamical systems approach to differential equations[END_REF].

We have the following result [33, Lemma 8]:

Lemma B.3 Let A be a non negative matrix. Let u ∈ R n be a non-zero vector and λ ∈ R be a real number. If Au ≥ λ u then ρ(A) ≥ λ . If for a strictly positive vector u we have Au ≤ λ u then ρ(A) ≤ λ .

Proof 29 If Au ≥ λ u then, since A is non negative, A k u ≥ λ k u for all k. Therefore A k ≥ λ k for any matricial norm. Using the Gelfand formula ρ(A) = lim k→∞ A k 1 k , we obtain that ρ(A) ≥ λ . The second statement is a simple consequence of the representation (2) in [START_REF] Nesterov | Computing closest stable nonnegative matrix[END_REF].

We have also the following result [6, Lemma 8]:

If for a strictly positive vector u we have Au ≤ λ u then S(A) ≤ λ .

Proof 30 Let A be a cooperative matrix, there exists h > 0 such that A + hI, where I is the identity matrix, is non negative. Let u and λ be such that Au ≥ λ u. Since S(A + hI)u ≥ (λ + h)u, using Lemma B.3, we deduce that ρ(A + hI) ≥ λ + h. According to the Perron-Frobenius Theorem [23, Theorem 3, page 66], we have S(A + hI) = ρ(A + hI).

Therefore we have S(A + hI) ≥ λ + h. Using S(A + hI) = S(A) + h, we obtain S(A) ≥ λ . By the same method, we prove the second statement.

Let we consider the autonomous system:

where ẋ denote the derivative of x, Ψ = (Ψ 1 , . . . ,

Definition B. [START_REF] Cosner | The effects of human movement on the persistence of vector-borne diseases[END_REF] The system (123) is called cooperative if the Jacobian matrix JΨ(x) is a cooperative matrix for all x ∈ R n + .

To prove the global stability of the system cooperative (123), generally, the following result is used:

Theorem B.6 [START_REF] Freedman | Global stability and predator dynamics in a model of prey dispersal in a patchy environment[END_REF][START_REF] Takeuchi | Cooperative systems theory and global stability of diffusion models[END_REF] If system (123) possesses a positive equilibrium point x * satisfying

then x * is globally stable.

We have also the following result of Hirsch [START_REF] Hirsch | The dynamical systems approach to differential equations[END_REF]:

Theorem B.7 If the cooperative system (123) has the following proprieties:

• JΨ(x) is irreducible for any x ≥ 0,

• JΨ(x) ≤ JΨ(y) for any x ≥ y ≥ 0, and • all solutions are bounded, then either the origin is globally stable or else there exists a unique positive equilibrium point and all the trajectories in R n + \ {0} tend to it.