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Abstract

The soil microhabitat is a heterogeneous and complex environment where local variations can

modulate phenomena observed at the plot scale. Most of the current methods used to describe 

soil functioning are bulk soil analyses which do not account for fine-scale spatial variability 

and cannot fully account for the processes that occur under the influence of the 3D organisa-

tion of soil. A good representation of spatial heterogeneities is necessary for the parametrisa-

tion of new models, which aim to represent pore-scale processes that affect microbial activity.

The visualization of soil at the scale of the microhabitat can be used to extract descriptors and 

reveal the nature of the relationships between the fine-scale organisation of soil’s constituent 

parts and soil functioning. 

However, soil imaging techniques tend to be under-used, possibly due to a lack of awareness 

of the methods or due to a lack of access to the relevant instruments. In recent years, new 

methods have been developed, and continuously improved, offering new possibilities to de-

cipher and describe soil physical, chemical and biological features of the soil microhabitat in 

evermore exquisite detail. 
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This review is structured into several parts in which first imaging methods that are useful for 

describing the distribution of microorganisms and microbial activities, followed by methods 

for characterising the physical organisation of the microhabitat and, finally, methods for char-

acterising the distribution of soil chemical features, including soil organic matter, are de-

scribed. Special attention is given to the preparation steps that are required for the proper use 

of the methods, either alone or in combination.
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Abbreviations

AFM: Atomic force microscopy 

AHA: L-azidohomoalanine

BIB: Broad ion beam

BONCAT: Bioorthogonal non-canonical amino acid tagging

CTC: 5-cyano-2,3-ditolyl-tetrazolium chloride

DAPI: Di Aminido Phenyl lndol

DTAF: Dichlorotriazinylaminofluorescein

EDX: Energy dispersive X-ray spectroscopy

EELS: Electron energy loss spectroscopy

ESEM: Environmental scanning electron microscopy

FDA: Fluorescein diacetate

FIB: Focused ion beam

FISH: Fluorescence in situ hybridization

FITC: fluorescein isothiocyanate

FTIR: Fourier transform infrared micro-spectroscopy

INT: 2-(p-iodophenyl)-3-(p-nitrophenyl)-5-phenyl tetrazolium chloride

LTSEM: Low temperature scanning electron microscopy

MALDI: Matrix assisted laser desorption ionisation

MRI: Magnetic resonance imaging

NEXAFS: Near edge X-ray fine structure spectroscopy

NMR: Nuclear magnetic resonance

PET: Positron emission tomography

PI: Propium iodide

SBF: Serial block face
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SEM: Scanning electron microscopy

SHIM: scanning helium ion microscopy

SIM: Structured illumination microscopy

SIMS: Secondary ionization mass spectrometry

SMLM: Single molecule localisation microscopy

SOM: Soil organic matter

STED: Stimulated-emission depletion microscopy

STMX: Scanning transmission X-ray microscopy

TEM: Transmission electron microscopy

TOF: Time of flight

TXM: Transmission X-ray microscopy

VNIR: Visible and near infrared

XANES: X-ray absorption near edge structure

X-ray CT: X-ray computed tomography

XRF: -ay fluorescence

1. Introduction

 Soils are extremely complex and heterogeneous environments and many properties 

observed at the profile or at the plot scale are, in fact, determined by microscale conditions 

and processes (e.g., Falconer et al., 2015; Keiluweit et al., 2017; Steffens et al., 2017). In 

soils, the local environment can differ dramatically across millimetres, or even less, and these 

variations can control the spatial distribution of microorganisms and their activities (Chenu et 

al., 2001; Ranjard and Richaume, 2001; Chenu and Stotzky, 2002; Grundmann, 2004; Jasin-

ska et al., 2006; Raynaud and Nunan, 2014; Frey, 2015; Juyal et al., 2020). The majority of 

the models that are currently used to describe or predict soil functioning are based on bulk soil

characteristics, thus implicitly assuming that microscale interactions and processes do not af-

fect the higher scale properties. This view has been vigorously challenged recently (Baveye et

al., 2018).

Soils exhibit heterogeneities along spatial, temporal, chemical, physical and biological dimen-

sions (Lehmann et al., 2020). The combinations and interactions among these dimensions 

mean that soils are made up of a myriad of micro-environments with unique combinations of 

properties. The microbiological functioning of soils is highly dependent on how microbial 

cells interact and are affected by the properties of their local environment (Alexander, 1964; 
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Baveye et al., 2018; Chenu and Stotzky, 2002). The access to resources and energy, the avail-

ability of water or O2, the pH that microbial cells are exposed to, the other organisms in prox-

imity for example, can all have dramatic effects on the activity of microbial cells. The envir-

onmental properties and the biological neighbourhood that microbial cells experience depend 

the physical structure of the soil’s solid and pore phases across scales, from the micro-envir-

onment scale to the scales at which fluxes are regulated. However, we have little or no in-

formation on how microbial cells are distributed within this complex and heterogeneous en-

vironment, nor do we know much about their interactions with the physical environment or 

population pressures that they are subjected to. Our understanding of soil microbial function-

ing is therefore derived from measurements of means and gross trends (Vos et al., 2013) and, 

in the final analysis, is not built on a solid mechanistic foundation. It is clear that an exhaust-

ive mapping soil microbes would be an arduous and, in view of the temporal variability inher-

ent to soil conditions, futile endeavour. However, a clearer picture of the range of interactions 

that occur in soil, their prevalence and the effects they can have on microbial functioning 

would allow us to build models with sounder mechanistic basis. Ultimately, this can only be 

achieved after studying the spatial relations of soil’s constituent parts, as spatial proximity is a

strong modulator of the interactions that can occur. 

New models, that account for microscale soil functioning, have begun to appear in re-

cent years (Pot et al., 2015; Tecon and Or, 2017; Portell et al., 2018; Wilmoth et al., 2018; 

Kemgue et al., 2019). The need for data at relevant spatial scales, such as the physical struc-

ture and chemical characteristics of soil and the spatial distribution of microorganisms and 

their activities, for parametrising such models, is paramount if useful information is to be ac-

quired from microscale modelling approaches (Baveye et al., 2018). In particular, visualising 

soil microorganisms in undisturbed soil samples is essential for understanding how they inter-

act with their local environment, such as the local conditions experienced, their access to 

trophic resources or their interactions with other microorganisms, and the consequences these 

interactions have for soil functioning. 

For example, it has been suggested that microbial activity hotspots account for a major

part of total microbial activity in soils, despite being found in only a small portion of the soil 

volume (Kuzyakov and Blagodatskaya, 2015). A better understanding of the functioning of 

such hotspots, in particular of those outside well defined “spheres” such as the rhizosphere or 

the detritusphere, would contribute greatly to our capacity to predict the response of microbial

activity to changing environmental conditions or soil management. Yet, we know close to 

nothing about such hotspots nor about what causes them to occur. Are they more likely to oc-
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cur in the presence of certain types of pore architecture or is it the happy coincidence of com-

plementary microbial taxa being co-located (Kim et al., 2008). To answer these questions, we 

must first know who is where and how they are organised. 

 However, visualisation methods of soils at fine scales are challenging, as soils are het-

erogeneous organo-mineral matrices, composed essentially of very small particles in the sub-

mm range that are variably hydrated, and the spatial organisation of which is strongly affected

by moisture state. A range of visualisation methods has been used over the last 30 years, but 

there have been a number of recent methodological developments and a concomitant increase 

in the number of studies in this area. New methods are now able to provide much more in-

formation than before: not only are the resolutions of images higher but it is also possible to 

obtain spatial information on soil physical, chemical and biological characteristics in three di-

mensions. Furthermore, image processing and analysis tools have become more efficient, al-

lowing for better correction, segmentation of areas of interest or even predictions of chemical 

composition (Hapca et al., 2015; Anderson et al., 2020). 

 Despite the technological progress, imaging methods are still under-utilised in soil sci-

ences because the scientific community is not always aware of them, and due to the fact that 

they are time consuming, expensive and not always easy to implement. Furthermore, several 

visualisation methods require access to instruments that are not widely available (e.g. NEX-

AFS, nanoSIMS). Many of the imaging methods that are useful for visualising microbial 

communities in their habitat have extremely small fields of view (e.g. the area covered by a 

nanoSIMS image is approximately 30 x 30 µm²). The questions then arise, should targetted or

random sampling be used (Brus, 2019) and what of the representativeness of the images ac-

quired? Targetted imaging is useful for determining the types of situations that can be en-

countered, but there is a risk that it will provide a biased view as the areas of interest chosen 

may not reflect the soil more generally. In order to obtain a representative view, a degree of 

random sampling is required, though this can be reduced with a judicious use of spatial mod-

elling (Brus, 2019). Whilst sampling considerations are clearly a drawback of these ap-

proaches, their exceptional analytical power means that they deserve more attention. 

 The aim of this review is to give a broad overview of the methods currently available 

that can be used to obtain information on soil microorganisms and their activities in their mi-

cro-environment. We review and present different methods in which (i) microorganisms can 

be located in their habitats, (ii)  different types of microorganisms can be identified, (iii) the 

characteristics of the immediate environment of microbial communities can be described and 
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(iv) in situ information on the activities of microorganisms can be acquired. We systematic-

ally specify the spatial resolution of the methods, the preparation techniques and quantifica-

tion possibilities. We address the limits of the different methods, the possibilities of combin-

ing them and discuss perspectives in the field. 

2. Visualising microorganisms in their habitats

2.1. Localising microorganisms

 There are different methods for localising microorganisms in soil samples and for 

identifying them as bacteria, fungi, archaea etc. (Table 1). Distinguishing microorganisms 

from soil particles is not always straightforward, but there are a range of useful criteria based 

on size and shape for facilitating this: rounded shapes, filamentous forms, or the structure of 

the cell. These  may also be combined with general or specific stains in order to increase the 

contrast between objects of interest and the background.

At the extremes in terms of resolution, stereomicroscopes allow for the observation of 

fungi (Otten and Gilligan, 1998; Otten et al., 2004; Thompson et al., 2005), identified as such 

based on criteria such as shape, size or even colour, while bacteria and archea are too small to 

be visible. Fresh soil samples can be observed directly without any special preparation but 

thin sections should be prepared if the spatial organisation or spatial relations are of interest. 

With the greater magnification of light microscopy, both uni- and pluri-cellular organisms can

be visualised. Nonetheless, in soil, microorganisms do not show great contrast and it is diffi-

cult to identify them precisely based on shape, size and natural colour alone. 

If the spatial relations of microbial communities with constituents of their micro-en-

vironment is of interest, then the physical structure of samples must be preserved intact, as is 

done in resin embedded, thin sections of soil (Tippkötter et al., 1986; Tippkötter and Ritz, 

1996; Li et al. ,2004). In this way, the spatial integrity of samples and the integrity of biolo-

gical cells are preserved. 

Epi-fluorescence microscopy, combined with the use of stains, i.e. fluorochromes, 

makes it possible to distinguish the targeted organisms from the background and therefore 

locate and enumerate bacteria (Fig. 1a) (Fisk et al., 1998; Nunan et al., 2001; Juyal et al., 

2020) and fungi (Baschien et al., 2001) in 2D. The staining needed to visualise microorgan-

isms can be carried out either before the impregnation, by immersion of the sample in a stain-
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ing bath (Nunan et al., 2001), often after a fixation step, or applied after thin section prepara-

tion (Juyal et al., 2020). However, only microorganisms situated at the surface of the thin sec-

tion can be stained and visualised in the latter case. Several fluorochromes specifically stain 

cell constituents (Table 2). Provided their excitation spectra are not superimposed, and no in-

terferences occur, it is possible to use several staining agents simultaneously (Chen et al., 

2007). The main difficulties encountered with the use of fluorochromes are related to unspe-

cific staining, in particular with positively charged fluorochromes such as acridine orange, 

and to background auto-fluorescence of soil organic particles (Altemüller and Van Vliet-

Lanoe, 1990; Li et al., 2004). Figure 1a shows an example of auto-fluorescence (red arrow) 

with similar shape and size characteristics as bacterial cells, making the identification of bac-

teria more complicated. In addition, the quality of the staining can be affected by the presence

of clay particles, as stains tend to adsorb to clay surfaces resulting in a fluorescence which can

hinder the observation of microorganisms (Li et al., 2004). Other factors may also interfere 

with the staining such as the stain concentration, soil pH and the type of resin used (Al-

temüller and Van Vliet-Lanoe, 1990; Postma and Altemüller, 1990). It is possible to distin-

guish microorganisms from organic compounds by collecting visual information on microbes 

and organic matter auto-fluorescence in different channels and subtracting the signal in one 

from that in the other (Cardinale, 2014; Schmidt et al., 2018). Differences in signal intensity 

between dyed and auto-fluorescent objects can also be used to distinguish objects of interest 

from the background. Finally, new methods based on two-photon excitation fluorescence can 

be used to take advantage of the native auto-fluorescence of soil and microorganisms to locate

fungi and bacteria in soil without using any stain (Lee et al., 2022). Using methods such as 

those described above, Nunan et al. (2002) measured the spatial organisation of bacteria at the

micrometre scale and showed that bacteria were more strongly aggregated in the subsoil than 

in the topsoil. Juyal et al. (2020) showed that lower soil bulk densities favor the the dispersion

of inoculated bacteria in soil.

The resolution limit of light microscopy, imposed by the diffraction of light, is around 

200 nm, which allows for the observation of objects between 10-3 and 10-7 meters (Ranjard 

and Richaume, 2001) in preparations between slide and coverslip or in thin sections after in-

clusion in a resin. 

The resolution of scanning and transmission electron microscopy (SEM & TEM) is 

much higher (Table 1, Fig. 1b and c). It is possible to reach resolutions of circa 1 nm with 

SEM (Joy and Pawley, 1992) and 0.05 nm with TEM (Smith, 2008). Preserving the original 

soil microstructures and the integrity of organisms and organic constituents despite the high 
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vacuum to which the sample is exposed in the microscope is a challenge and requires the use 

of specific preparation methods. Samples are generally air-dried before SEM analyses. How-

ever, drying strongly affects all hydrated structures and damages biological features (e.g. bac-

terial cells as well as sheaths of extracellular polysaccharides appear flattened) so that conven-

tional SEM is not recommended (Chenu and Jaunet, 1992). Samples can be observed directly 

in a moist state without any conducive coating using an Environmental Scanning Electron Mi-

croscope (ESEM) (Gleeson et al., 2005; Lin and Cerato, 2014), though it gives poorer quality 

images in terms of brightness and contrast (Dal Cortivo et al., 2017; Bertola et al., 2019). In 

order to avoid the damage that is associated with drying, samples can also be observed with a 

Low Temperature Scanning Electron Microscope (LTSEM) after cryo-fixation  (Chenu and 

Tessier, 1995). To our knowledge, with SEM, image analysis is hardly possible given the 3D 

surface rendering of the images and the fact that soil microorganisms are only identified based

on shape, which is a difficult task. SEM has been used for example to show the presence of 

fungi in the detritusphere extending between plants cells and adhering soil aggregates (Gail-

lard et al., 1999) and more recently to study the colonisation of fungi and unicellular organ-

isms involved in the biodegradation of plant residues (Witzgall et al., 2021) or plastic materi-

als in soil (Zumstein et al., 2018).

Transmission electron microscopy can be used to visualise soil microorganisms in 

their habitats (Vidal et al., 2016; Watteau and Villemin, 2018). In order to do this, however, 

samples cannot be simply deposited on TEM grids as a suspension but rather have to be em-

bedded in a resin, from which ultrathin sections are prepared (Watteau et al., 2002, 2012; 

Elsass et al. 2008). The soil samples are fixed, dehydrated and impregnated with a resin prior 

to the ultrathin sectionning. These methods have been adapted from biology to soils to ac-

count for the sensitivity of soil organic matter to the electron beam (Villemin and Toutain, 

1987; Villemin et al., 1995; Elsass et al., 2008). In soil thin sections prepared for TEM, the 

use of contrasting agents and stains, such as osmium tetroxide (Villemin et al., 1995; Arai et 

al., 2019), uranium acetate, lead citrate (Foster, 1988; Chenu and Plante, 2006; Elsass et al., 

2008) or more specific stains, helps with shape and structure based identification by adding 

contrast between cells wall structure and the surrounding environment. TEM allows manual 

quantification if studied structures are recognisable (Chenu and Plante, 2006; Watteau and 

Villemin, 2018) but the method is most often used qualitatively to characterise proximity and 

thus potential interactions between microorganisms and the surrounding minerals or aggreg-

ates (Fig 1c) (Vidal et al., 2019).

 The surface of a soil sample and microbial cells can be visualised with scanning he-
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lium ion microscopy (SHIM or HIM) (Qafoku et al., 2019). This relatively new method is still

rarely used in soil science, even though the ion beam is less destructive for the surface of the 

sample than the electron beam of SEM (Bandara et al., 2021; Schmidt et al., 2021), samples 

do not need coating prior to analysis and resolutions of 5 Å are attainable  (Joens et al., 2013),

which makes it very promising for studying soils.  

 Microorganisms can also be identified with Atomic Force Microscopy (AFM) by visu-

alising their topography at very fine scales. This is achieved with a stylus that moves vertic-

ally with a vertical resolution of a few Å (Binnig et al., 1986). It requires fewer sample pre-

paration treatments than electron microscopy (Kherlopian et al., 2008); however it requires a 

flat surface at the base and the scale of the study objects (cell surfaces) is necessarily small

(Gaboriaud and Dufrene, 2007). It has therefore not been used on soil samples but rather on 

model systems, e.g. to study the adhesion of bacteria to clay mineral surfaces with kaolinite, 

montmorillonite, goethite or hematite particles (Lower et al., 2001; Huang et al., 2015; Qu et 

al., 2019) and to study the weathering of biotites, chlorites or serpentine minerals by mycor-

rhizae and other fungi (McMaster, 2012; Li et al., 2021).

 Several of the methods presented here only allow the visualisation of soil microorgan-

isms in 2D. The localisation of microbial cells in 3D is possible either (i) by using the depth 

of field of the microscope (stereomicroscope, SEM, HIM, AFM), (ii) by reconstituting the 

sample in a non-destructive way using confocal laser scanning microscopy (Li et al., 2004), 

but due to the opacity of soil this is mainly useful in the analysis of transparent artificial soil 

models as in Sharma et al. (2020), (iii) by progressively abrading the sample with a focused 

ion probe (FIB) (Berleman et al., 2016; Vidal et al., 2018), (iv) by reconstitution from thin 

sections: superimposed serial block face (SBF) sections or broad ion beam (BIB). However, 

the latter have been mainly used to study geo-materials (Desbois et al., 2010; Houben et al., 

2013; Hemes et al., 2015). 

 The data derived from the imaging of microbial distributions, such as those in Nunan 

et al. (2001), have been used to develop a statistical model of the spatial distribution of bac-

teria in soil (Raynaud and Nunan, 2014). Schnepf et al. (2022) have advocated that such an 

approach should be implemented more widely to analyse the distribution and organisation of 

microbial communities in the rhizosphere. Indeed, such data are slowly becoming available, 

e.g. data on the distribution of microbes around root cells  (Schmidt et al., 2018), or spatial 

distributions of inoculated microorganisms in the soil porosity across time (Juyal et al., 2020),

and start being used in biogeochemical models (Pagel et al., 2020).
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In addition, electron microscopy is one of the few methods with which viruses can be visuali-

sed, their size ranging between 30 and 80 nm (Kuzyakov and Mason-Jones, 2018). Viruses 

are believed to influence the assembly of bacterial communities, even if this is still poorly un-

derstood for soils. 

2.2. Identifying microorganisms

Prokaryotes can be distinguished from fungi on the basis of shape and size with SEM and 

fluorescence microscopy and on the basis of the cell wall structure with TEM. However, these

tools do not allow to differentiate archaea or actinomycetes from bacteria (Foster, 1993), nor a

finer differentiation within bacterial, archeal or fungal groups.

Fluorescence in situ hybridization (FISH) can be used for the in situ identification of 

microorganisms. The general principle of FISH is to use an oligonucleotide probe coupled to 

a fluorescent marker which binds to a specific sequence of RNA or DNA within the microbial

cell. It is used in conjunction with epi-fluorescence microscopy (Bandara et al., 2021) or with 

confocal microscopy (Muggia et al., 2013). A database of probes, called probeBase, can be 

used to search for, and identify, relevant probes (Greuter et al., 2016). More or less specific 

probes can be used to target microorganisms at different taxonomic levels: archaea, crenara-

chaea, bacteria and fungi, bacterial phyla, or identifying gram positive bacteria (Baschien et 

al., 2001; Eickhorst and Tippkötter, 2008a, 2008b; Zarda et al., 1997; Kobabe et al., 2004). 

The FISH methods can also be used to target certain functional groups of microorganisms, 

e.g. those involved in denitrification (Pratscher et al., 2009; Hoshino and Schramm, 2010), ni-

trification and methane oxidation (Torsvik and Øvreås, 2002). 

The main limitations of FISH are the percentage of successfully detected cells among 

the total targeted cells (Bouvier and Del Giorgio, 2003), as well as the high levels of back-

ground noise due to non-specific fixation of the stains on soil particles. It explains why FISH 

has been used so infrequently on soil samples. Different probes have been developed, making 

it possible (i) to amplify the signal, e.g. catalysed reporter deposition FISH or CARD-FISH

(Kubota, 2013; Schmidt and Eickhorst, 2014; Juyal et al., 2018; Schmidt et al., 2018; Bandara

et al., 2021), (ii) to increase the resolution by allowing observations via SEM using GOLD-

FISH (Kenzaka et al., 2005; Schmidt et al., 2012) (Fig. 1d, e, f and g), and (iii) to limit unspe-

cific staining or at least detect it . NON338 or NONEUB probe complementary to the 
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EUB338 probe and serving as a negative control for non-specific labelling) (Eickhorst and 

Tippkötter, 2008a).

3. Characteristics of microbial microhabitats

Understanding the drivers of microbial activity requires that the soil habitat be well 

described. The soil matrix determines the physical accessibility of microorganisms to re-

sources and water, the local conditions that control microbial activities and also regulates 

trophic relations (predation, competition etc.). Unravelling the distribution of microorganisms

and resources, as well as their probabilities of encounter, will likely improve our understand-

ing of soil microbial activity.

3.1. Physical characteristics of microhabitats

 Soil structure affects the spatial distribution of microorganisms and trophic resources 

and consequently the access that microorganisms have to substrate and controls the transport 

of oxygen and water, key factors for microbial growth and activity (Schlüter et al., 2020). Soil

structure can be heterogeneous at the microscale and must therefore be studied at this scale. 

The most frequently used method to describe the 3D structure of a soil is X-ray computed 

tomography (X-ray CT) or X-ray micro computed tomography (µ X-ray CT) (Fig. 2). It has 

been used to study the heterogeneity of soil organisation (Elyeznasni et al., 2012; Hapca et al.,

2015; Lucas et al., 2020) and its relation with soil biotic organisation and functioning (Helli-

well et al., 2014; Kravchenko et al., 2019; Schlüter et al., 2019a, 2019b; Rohe et al., 2021). 

Samples used in these studies vary in size from cm, with a voxel resolution of tens of micro-

metres (Elyeznasni et al., 2012; Hapca et al., 2015; Rohe et al., 2021), to mm sized aggreg-

ates, where resolutions can be in the micrometre range.

 The variation in absorption of the X-rays by different soil materials makes it possible 

to obtain images, in Hounsfield units (represented in gray levels), that reveal the different 

phases of the soil. As it is based on differences in density, it is mainly used to distinguish 

solids from voids, but the water phase can also be detected if located in pores that are suffi-

ciently large relative to the image resolution) (Landis and Keane, 2010; Tippkötter et al., 

2009) (Table 3).
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 Schlüter et al. (2019b) incubated sand-based microcosms in which they placed micro-

bial hotspots either randomly or in dense layers and found that both the spatial distribution of 

the hotspots and the water saturation critically affected NO and N2O emission rates. Determ-

ining air connectivity, pores tortuosity and diffusion lengths with X-ray µCT, they concluded 

that local oxygen supply was the driving variable, paving the way to use soil structural attrib-

utes to predict denitrification via parametrized models. 

Light and transmission electron microscopy may also be used to describe the structure 

of a soil, but these methods provide far less complete information, since they are in two di-

mensions. However, they can be adapted when better resolutions are needed (Table 3). For 

example, 3D acquisitions can be done on small samples such a soil aggregates using FIB-

SEM (e.g., Vidal et al. 2018). Microscale biogeochemical models with an explicit representa-

tion of soil structure use X-ray µCT images as input information, but are limited by the lack 

of information on sub-resolution pores in which many microorganisms reside (Pot et al., 

2021). 3D high resolution methods such as FIB-SEM might help to overcome these limita-

tions.

3.2. Chemical characteristics of microhabitats

3.2.1. Localisation of organic matter in soil

 Being the trophic resource of heterotrophic microorganisms, localizing and character-

izing in-situ soil organic matter is crucial. At the moment, even in microscale biogeochemical 

models, SOM spatial distribution is not described from soil imaging, but is prescribed assum-

ing either homogeneous or heterogeneous distributions (Pot et al., 2021).

Organic matter can be observed in soil at different resolutions (Fig. 1 and  2); first with op-

tical microscopy on the basis of its shape and colour. It is possible to visualise organic matter 

after staining, as in a recent study of Merino et al. (2021), who used confocal laser micro-

scopy to measure the decomposition of lignin that was stained with safranin-O.

With electron microscopy, organic matter can be identified using shape criteria, in the 

case of SEM and TEM, and by electron density in the case of TEM. It is also possible to stain 

SOM using heavy metals in order to amplify the contrast with the rest of the matrix (Foster, 

1988; Elsass et al., 2008; Chenu et al., 2015) (Fig. 2). The use of electron microscopy coupled

with energy dispersive X-ray spectroscopy (EDX), enabled by the genesis of X-ray photons 
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following the interaction of electrons with atoms, has been used to determine the elementary 

composition of OM (Table 3) (e.g., Chenu and Plante, 2006; Hapca et al., 2015). Similarly, 

electron energy loss spectroscopy (EELS) can provide information on the elementary com-

position and the chemical bonds of OM (Watteau et al., 1996, 2002; Watteau and Villemin, 

2018) allowing, for example, an elemental (C and N) characterisation of the polyphenolic 

substances during root senescence and biodegradation (Watteau et al., 2002). More recently it 

was used to characterize contrasting N and oxidized C contents between organo-organic and 

organo-mineral interfaces in a soil and suggested different organic matter stabilization pro-

cesses at these interfaces, at the nanometre scale (Possinger et al., 2020).

 Scanning transmission X-ray microscopy (STXM) provides an image of thin objects 

by transmission, as does TEM, but in this case from X-rays. The distribution of elements can 

be mapped based on the absorption of X-rays at different energy levels (Table 3). The 

samples must be very thin, but the method has the advantage that ultrathin sections of hy-

drated materials can be used (Solomon et al., 2012). Information on functional groups can be 

derived from X-ray absorption near edge structure (XANES) by coupling the STXM with 

Near-edge X-ray fine structure spectroscopy (NEXAFS) (Keiluweit et al., 2012; Remusat et 

al., 2012) at nanometre resolutions (Table 3, Fig. 3). This method was used by Lehmann et al.

(2005) to map the distribution of different forms of organic carbon at the nanometer scale in 

soil micro-aggregates. Using ultrathin sections of rapidly frozen samples obviates the need for

inclusion in a resin (Lehmann et al., 2008; Solomon et al., 2012). Otherwise, the resin used 

must be distinguishable from the mapped elements and for distribution maps of carbon must 

be carbon-free, such as polymerized elemental sulphur (Lehmann et al., 2005) or with a dif-

ferentiable signature (Vidal et al., 2018; Vergara Sosa et al., 2021). 

Fourier transform infrared micro-spectroscopy (micro-FTIR) can be used to character-

ise, quantify and locate organic molecules based on the bonds of functional groups (Singh and

Gräfe, 2010). However, the resolution is generally low (Table 3). Several infrared spectro-mi-

croscopy methods using different wavelengths such as the visible and near infrared (VNIR) 

have enabled, using predictive models, the acquisition of images with a 53 µm resolution on 

dried soil, with detailed estimations of the organic carbon spatial distribution in a soil as a 

function of depth (Fig. 4) (Steffens and Buddenbaum, 2013; Hobley et al., 2018). This 

method requires almost no prior preparation except drying samples and ultrathin sectioning  

to 200nm using a cryo microtome (Hernandez-Soriano et al., 2018; Weng et al., 2021). 

Other micro-spectroscopy methods are still little used in soil science, such as Raman spectro-

metry with which organic matter can be characterised based on vibrational and rotational mo-
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lecular analyses (Bandara et al., 2021; Lee et al., 2022; Musat et al., 2012).

  Spectro-microscopy based on synchrotron radiation (SR), which is brighter and, 

above all, better focused than other sources of radiation, gives a finer OM identification than 

that obtained by spectroscopy used with conventional sources of radiations (Singh and Gräfe, 

2010; Hota, 2021). It also provides information on the location and nature of the OM con-

tained in a sample at finer scales than with conventional radiations. These methods are, for the

most part, non-destructive and with higher resolutions than the same methods used with con-

ventional sources of radiations (Weng et al., 2021), which makes it possible to obtain inform-

ation on various molecular species of OM (depending of their absorption characteristics at a 

given wavelength) at the scale of microbial habitat (Singh and Gräfe, 2010; Hernandez-Sori-

ano et al., 2018). Depending the photon energies used for image acquisition, some methods 

can be more harmful than others. SR based X-ray spectromicroscopy can harm and kill mi-

croorganisms, because of the high levels of electron volts applied to the sample. Lower en-

ergy levels are used with SR-based infrared spectromicroscopy, meaning that measurement 

can be repeated more easily and time sequences can be recorded (Holman and Martin, 2006).

Elementary maps of samples can be established at high resolutions using Secondary Ion Mass 

Spectrometry (Bandara et al., 2021; Remusat et al., 2012; Schurig et al., 2015). There are sev-

eral types of Secondary Ion Mass Spectrometry (SIMS): static SIMS or Time of flight SIMS 

(TOF-SIMS) and dynamic SIMS, CAMECA or nanoSIMS (Myrold et al., 2011). A primary 

ion beam (usually Cs+ for samples with organic matter, or O-) is used to sputter the sample 

surface and release secondary ions, which are collected, separated and analysed. These sec-

ondary ions are characterised using a mass spectrometer for dynamic SIMS and a time-of-

flight mass spectrometer for static SIMS (Myrold et al., 2011). Scanning the sample gives ac-

cess to elementary and isotopic map of the soil sample at very fine resolutions, i.e., less than 

100 nm (Herrmann et al., 2007b). However, as with many recent techniques, SIMS suffer 

from heavy technical constraints, particularly in sample preparation: the samples must be dry, 

stable, conductive, flat and resistant to a very high vacuum (Herrmann et al., 2007b). Hence, 

samples are usually embedded in a carbon containing epoxy resin which contributes to a 

background signal that has to be removed (Mueller et al., 2013). In addition, the method is re-

latively destructive since the ion beam sputters the sample’s surface. Quantitative elemental 

analyses are complicated to obtain because adequate standards are needed (Mueller et al., 

2013). Finally, the observed field with nanoSIMS is very small (from 5x5 to 50x50 µm), 
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which makes it very difficult to identify the areas of interest (Herrmann et al., 2007b). This 

suggests that when the spatial scales targeted are between 100 µm and 1 cm, TOF-SIMS may 

be more appropriate (Myrold et al., 2011; Bandara et al., 2021), although it is rarely utilised 

for soils due to a lower sputtering rate of the surface samples (impacting a thinner part of the 

sample surface) and is therefore more exposed to problems with surface contamination. Nev-

ertheless, the method is still worthwhile as it is one of the only methods that can be used to 

trace isotopic elements, such as 13C or 15N labelling, in a spatially explicit manner. 

 Recently, laser ablation-isotope ratio mass spectrometry (LA-IRMS) has been used to 

characterize natural 13C/12C abundance of soil organic matter, which was found to be hetero-

geneous, at a 10µm spatial resolution, in soil aggregates of the rhizosphere (Rodionov et al., 

2019).

Finally, Matrix assisted laser desorption ionisation (MALDI), with which various ana-

lytes (sugars, lipids, amino acids, metabolites etc.) may be mapped on roots after their extrac-

tion from the soil, is worthy of consideration, as shown by Rudolph-Mohr et al. (2015).

 Is it possible to localize organic matter un 3-D soil samples ? X-ray CT is appropriate 

as samples are subjected to an X-ray beam from different angles and this is followed by a 3D 

reconstruction of the object (Roose et al., 2016). With X-ray CT, as with transmission micro-

scopy, SOM is distinguished on a density basis but this remains difficult given the density 

similarity between SOM and other soil constituents (Roose et al., 2016). A number of heavy 

metal stains have been tested in order to accentuate the contrast (Peth et al., 2014; Van Loo et 

al., 2014; Maenhout et al., 2021). So far, only osmium (Peth et al., 2014; Zheng et al., 2020; 

Maenhout et al., 2021) and iodine (Lammel et al., 2019) stains have proved to specifically 

stain organic matter (though Schlüter et al. (2022) suggest that Osmium binds to some miner-

als), to provide a detectable staining and to diffuse through the soil matrix. Osmium was suc-

cessfully used to map soil organic matter (Rawlins et al., 2016).   

Micro-spectroscopy, µX-ray fluorescence (µXRF) tomography, where X-ray induce 

the reemission of a X-ray fluorescent radiation from the sample, is a promising method which 

provides information about the chemistry of 2D (Schlüter et al., 2022) or 3D samples. Its use 

is very rare in 3D, in particular because improvements still have to be made to circumvent 

problems of fluorescence attenuation in soils (Feng et al., 2021; Hapca et al., 2015; Roose et 

al., 2016).  Fluorescent light can be absorbed by the sample, in particular in the case of thick 

samples, thus attenuating the fluorescent signal. It has already be used in 3D to analyse di-

atom cells at the micrometre scale, or plant seedling (Pushie et al., 2014). Attempts have been 
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made to use the method with soil aggregates (Antipova et al., 2018). 

 Another option to go from 2D to 3D images is to use one of the methods described 

above and to carry out 3D reconstructions using statistical approaches. For example, Hapca et 

al. (2015) obtained several elementary 2D maps of a soil in SEM-EDX and extrapolated the 

chemical characteristics after combination with 3D images from X-ray tomography (Fig. 5).

 3.2.2. Oxygen and CO2 distributions in soil
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 As oxygen consumption and carbon dioxide emissions are directly related to the res-

piratory activity of soil organisms (Kuzyakov and Blagodatskaya, 2015), they are often mon-

itored quantitatively in the atmosphere around the soil sample but are rarely monitored at the 

microhabitat scale. Methods are being developed to visualise the distribution of partial gas 

pressures in soils using probes, called needle-type or planar optodes (Santner et al., 2015) 

(Table 4). The former are needles, often a set, pinched in the soil with which gas partial pres-

sures are measured (Elberling et al., 2011) ; it can bring additional image information if com-

bined with other methods like X-ray computed tomography (Rohe et al., 2021). There are dif-

ferent types of planar optodes, but they generally involve a combination of gels and optical 

sensors (Pedersen et al., 2015). They are based on the use of fluorochromes that are sensitive 

to the presence of a gas, which acts as an exciter or an extinguisher of fluorescence, causing 

variations in brightness which is recorded by a camera (Rudolph et al., 2012; Pedersen et al., 

2015). These fluorescent chemical probes are very sensitive and the reactions are reversible

(Rudolph et al., 2012). The associated resolutions vary depending on the cameras used and 

the experimental device (Santner et al., 2015), but resolutions of a few tens of µm have 

already been reached (Larsen et al., 2011; Pedersen et al., 2015).

 Most of these probes allow for the simultaneous visualisation of several parameters, 

such as oxygen, carbon dioxide, pH (Cf paragraphe 3.2.4.) and temperature (Borisov et al., 

2011). However, this technique still requires some improvement. Indeed, measuring simultan-

eously different parameters can result in interferences which affect the quality of the results

(Borisov et al., 2011; Pedersen et al., 2015). The dynamics of oxygen and water were studied 

non-invasively using this approach, thus providing new understanding of the activation of 

root systems regarding root respiration in a rhizosphere soil (Rudolph et al., 2012), and in a 

soil treated with pesticides (Rudolph-Mohr et al., 2015) with respective resolutions of 0.21 

mm and 50 µm per pixel (Fig. 6).

 3.2.3. Water distribution in soil

 Water is a major factor driving microbial activity in soil and can be visualised with a 

few methods (Table 4). Magnetic resonance imaging (MRI) can be used to visualise water dy-

namics in soil (Roose et al., 2016), but rarely is. It has been tested at the rhizosphere scale (0.6

mm resolution) by Pohlmeier et al. (2008), who observed changes in soil water content as a 
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consequence of water uptake by roots. This method has the advantage of offering 3D images, 

which few other methods currently offer.

Neutron computed tomography is based on the absorption of neutrons by the sample, 

providing three-dimensional images similar to X-ray CT images (Koliji et al., 2010). It has 

been used by Carminati et al. (2007) to study water flows in soil. Furthermore, neutron radio-

graphy, in which neutrons transmitted through a sample are analysed, also gives information 

on the distribution of water, but in two dimensions and only at resolution of a few tens of µm

(Carminati et al., 2010; Rudolph et al., 2012) (Fig. 7). Recently, fast neutron tomography has 

been used to visualise and monitor in 3D the root uptake of water, as 3D images can be ac-

quired in few seconds (Tötzke et al., 2021), and determine which roots are preferentially at 

the origin of water uptake in soil.

 The resolution of these methods explains why they are mainly used at the rhizosphere 

scale and are not adapted for studies at the microbial scale. Finally, X-ray CT, delivering 

greyscale images that are characteristic of the different phases of soil, including water, can 

also provide information on the spatial distribution of water. A segmentation treatment makes 

it possible to distinguish water from soil, in 3D and with a resolution which may be less than 

a mm (Landis and Keane, 2010). As with the mapping of organic matter, a number of studies 

have used contrast agents (heavy elements dissolved in water like CdSO4, KI or AgNO3) in 

order to increase the water signal (Van Loo et al., 2014). Others have attempted to combine 

images of a dry and wet soil to subtract the "dry soil" signal from the "wet soil" signal in or-

der to isolate the "water" signal (Tracy et al., 2015). However, this approach is not suitable for

clay soils, because of the risk of shrinking and swelling of clays with soil moisture changes

(Baveye et al., 2018).

 3.2.4. Other soil chemical characteristics

 Planar optodes, described in section 3.2.2., also allow for the visualisation of other 

molecules such as NH4
+ or PO4

3- (Pedersen et al., 2015), and for the mapping of pH and redox 

potential (Eh) (Pedersen et al., 2015; Roose et al., 2016). Reagents sensitive to acid-base vari-

ations have, for example, been used by Rudolph-Mohr et al. (2015) to describe pH variations 

within a soil after the addition of pesticides.
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4. In situ information on the physiological state and activities of microorganisms

 Visualizing the microstructure of soil, localising microorganisms in the pore network, 

localising organic constituents which are potential substrates sets the scene for microbial 

activity. This also needs to be assessed directly and a  range of methods have been developed 

to gain information on the in situ activities of soil microorganisms. Here, we focus on those 

that are compatible with visual observations of soils. The in situ activities of soil microorgan-

isms at the micro-scale can be studied using methods that (i) differentiate the physiological 

state of microbial cells, using markers, (ii) demonstrate in situ substrate uptake, using tracers, 

and (iii) visualise potential activities of extracellular enzymes.

4.1. Physiological state of soil microorganisms

 Microorganisms can be present in different physiological states in soil. While dead 

microorganisms are in an irreversible state in which no growth, cell elongation, nor protein 

synthesis can take place, active microorganisms are, as defined by Blagodatskaya and 

Kuzyakov (2013), « the portion of total microbial biomass that i) is involved in current utiliz-

ation of substrates, ii) readily responds to substrate input e.g., by respiration, producing en-

zymes, or iii) is growing and reproducing ». The dormant state of soil microorganisms is that 

of microbial cells exhibiting strongly reduced physiological activity, e.g., resting cells form-

ing spores or cysts. Dormant microorganisms may switch more or less rapidly from inactive/

dormant state to activity (Blagodatskaya and Kuzyakov (2013).

 These different physiological states can be directly or indirectly observed in situ by 

microscopy using fluorescent markers targeting microbial nucleic acids or proteins. Specific 

markers, such as Fluorescein Diacetate (FDA), 2-(p-iodophenyl)-3-(p-nitrophenyl)-5-phenyl 

tetrazolium chloride (INT), 5-cyano-2,3-ditolyl-tetrazolium chloride (CTC),  make the direct 

visualisation of active microorganisms possible because they are subjected to enzymatic oxid-

ation or hydrolysis by active cells (Table 5). 

Recently, a promising method for identifying the active fraction of microorganisms in situ, 

called bioorthogonal non-canonical amino acid tagging (BONCAT), has been introduced to 

soil science (Couradeau et al., 2019). The method is based upon the incorporation  of an ad-
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ded L-methionine analog, L-azidohomoalanine (AHA) combined with a chemically reactive 

azide group, during protein synthesis. A biorthogonal azide-alkyne click reaction is then used 

to tag the molecule with a fluorophore which renders the active fraction of the microbiome 

detectable (Hatzenpichler et al., 2014). Although this method holds much promise, it has not 

yet been used on undisturbed samples. Nevertheless, BONCAT has already shown that a sur-

prisingly high proportion of cells extracted from a soil at two depths was active (25-70%)   

Couradeau et al. (2019). 

 While its reliability is sometimes questioned (Shi et al., 2007), propidium iodide (PI) 

allows the visualisation of dead microorganisms because damaged cells-walls are PI per-

meable, contrary to living cells (Table 5). These stains may be combined with fluorochromes 

such as DAPI or Calcofluor White (Table 2), to both locate the total microorganisms and infer

their physiological state. Dormant microorganisms are estimated by deducting active and dead

microorganisms from the total microorganisms (Maraha et al., 2004).

These methods generally allow for a good estimate of dead, active and dormant mi-

croorganisms (Blagodatskaya and Kuzyakov, 2013) but present some limitations. For ex-

ample, intact dead cells are not labelled by PI (Maraha et al., 2004). These labelling tech-

niques also present limits, in particular within a soil matrix, in which, in addition to unspecific

staining (Li et al., 2004), accessibility may be limited for the marker to reach its target. 

  

4.2. Enzymatic activities 

 Finally, a third way to characterise the activity of microorganisms in situ is to visual-

ise their production of extracellular enzymes. Zymography has been developed quite recently

(Pedersen et al., 2015) and is used by only a limited number of soil research teams (Spohn 

and Kuzyakov, 2013; Spohn et al., 2013; Spohn and Kuzyakov, 2014; Razavi et al., 2016; Sa-

naullah et al., 2016; Ma et al., 2017; Guber et al., 2018; Bilyera et al., 2020). Zymography 

produces images of the spatial distribution of enzymes on the surface of a soil sample. A gel 

or membrane containing a substrate that changes colour when it comes into contact and reacts 

with a specific enzyme is placed on the surface of a soil sample. Colour zones signal the pres-

ence of the targeted enzyme in the sample (Guber et al., 2018; Razavi et al., 2019). The resol-

ution of zymography ( tens of µm and often used at the mm scale) is often lower than the 
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techniques described in the previous two paragraphs. Nevertheless, research is under way to 

adapt zymography to the micro-scale environment and resolutions (< 100µm), by preparing 

thin sections from resin impregnated samples and analysing these with epifluorescence micro-

scopy (Ghaderi et al., 2020). Recently, zymography has been adapted to also visualise oxido-

reductases (Khosrozadeh et al., 2022), and time lapse imaging has been implemented allowed 

to better describe enzyme activities by accounting diffusion losses and the kinetics of signa 

development (Guber et al., 2021). It has, for example, allowed the visualisation of the distri-

bution of phosphatases at the rhizobox scale (Spohn and Kuzyakov, 2013; Spohn et al., 2013; 

Razavi et al., 2016; Liu et al., 2017) (Fig. 9). Heitkötter and Marschner (2018) demonstrated 

that microbial hotspots of activity, revealed by zymography, represented less than 3% of cores

surface area, but after spraying glucose onto the surfaces of interest, the enzymatic activity 

dramatically increased outside of these initial hotspots, demonstrating that apparently dormant

areas of soil are easily stimulated.

 There are few examples of correlative imaging using zymography with other methods,

even if it has been used with X-ray tomography and 14C imaging (Kravchenko et al., 2019; 

Becker and Holz, 2021). However, this technique has enabled the identification of hotspots of

activity of numerous enzymes (β-glucosidase, α-glucosidase, xylanase, phosphatase, chit-

inase, peroxidase etc.) (Kuzyakov and Blagodatskaya, 2015; Heitkötter and Marschner, 2018; 

Razavi et al., 2019). 

4.3. Assimilation of substrates

  Physiologically active heterotrophic microorganisms assimilate organic substrates and,

therefore, isotopically labelled organic substrates can be used to label and visualise active mi-

croorganisms within the soil architecture. It requires a combination of methods for detecting 

both the microorganisms and the isotopically labelled constituents, the superposition of which

can reveal active cells, as described below.

 Radioisotope labelled organic substrates in combination with autoradiography have 

been used to measure the spatial distribution of substrate assimilation activities. When placed 

in contact with an emulsion or a photographic film, the distribution of radioactive source is re-

corded, such as zones of root exudation (Holz et al., 2019), rhizosphere hotspots (Becker and 

Holz, 2021) and assimilation zones (Torsvik and Øvreås, 2002) at scales ranging from cm-

mm. It has allowed, for example, the visualisation of the transfer of 14C photosynthates from 
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Pinus roots to mycorrhizae in rhizoboxes with 14C (Leake et al., 2001), 32P (Lindahl et al., 

1999) and 33P (Wu, 2014), and to locate methanotrophs assimilating 14C-CH4 according to soil 

depth and aggregates size in an afforestation chronosequence on subalpine pasture (Karbin et 

al., 2017). Autoradiography can be applied at much smaller scales when combined with elec-

tron microscopy, i.e. micro-autoradiography, but this has seldom been used with soils (Lee et 

al., 1999; Rogers et al., 2007). Radioisotope based methods are very sensitive, meaning that 

low substrate concentrations can be used, but they demand specific safety procedures, unlike 

stable isotopes.

 Similar information can be obtained using substrates labelled with stable isotopes and 

SIMS. Cliff et al. (2002) visualised the assimilation of 15N and 13C by bacteria and fungi 

grown in a model soil system made of kaolinite with TOF-SIMS. SIMS techniques have been 

used to monitor the fate of labelled organic root exudates, thus highlighting microbial hot-

spots in the rhizosphere and shedding light on rhizosphere functioning through the visualisa-

tion of the transfer of organic carbon from the plant to rhizosphere microorganisms (e. g.

Vidal et al., 2018). They have also been used to visualise microorganisms that have assimil-

ated N after 15N nitrogen fertilizers addition to soil, as shown in Fig. 8 (Herrmann et al., 

2007b).  

 No technique can visualise microorganisms and their activities in 3D at present. How-

ever, positron emission tomography (PET) is a promising approach, as it can locate isotopes 

in 3D in a sample. Garbout et al. (2012) used this method to visualise the assimilation of 11C-

CO2 by a plant. However, as 11C is very unstable (half-life of 20.4 min), the observation time 

was short. Although commonly used in the medical sciences field, this technique, which does 

not require any particular sample preparation, is nearly un-used in soil science. In addition, 

the resolutions obtained so far are very low, i.e. in the order of a mm, which mean that this 

methodology not really suitable for investigating microorganisms in soils.

 The methods presented so far target assimilation sites. In order to establish links 

between the spatial distribution of microorganisms and the distribution of their activities in 

the soil structure, several methods need to be combined. In some studies microorganisms 

were located with FISH labels and their activities with micro-autoradiography FISH (MAR-

FISH) (Lee et al., 1999; Ouverney and Fuhrman, 1999; Torsvik and Øvreås, 2002; Nubel et 

al., 2002; Musat et al., 2012). In others, such as in Schlüter et al. (2019a), fluorescence micro-
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scopy and electron microscopy were used to locate microorganisms in a soil structure that was

visualized with computed microtomography. In this study nanoSIMS was also used to 

identify microorganisms that had assimilated the organic substrate. Similarly, the use of FISH

followed by the use of nanoSIMS (FISH-SIMS) made visualising microorganisms that had as-

similated stable isotopes possible (Musat et al., 2012; Mueller et al., 2013; Schurig et al., 

2015). The FISH methods can be adapted using very electronegative halogen markers (I, Br) 

(HISH-SIMS) which can be detected in SIMS directly (Li et al., 2008; Musat et al., 2012; 

Mueller et al., 2013). However, to our knowledge, this technique has not yet been applied to 

soil samples. Finally, the cross-use of SIMS with electron microscopy is frequent (Watteau 

and Villemin, 2018). It facilitates the prior identification of areas of interest and makes it pos-

sible to obtain information related to microhabitat (Mueller et al., 2013).

5. Methodological challenges and solutions

 All observation methods have different advantages and disadvantages and the choice 

of one rather than another will depend on the scientific question to be answered. Different 

critical points must be considered before choosing the most relevant method: the sample pre-

paration, possible combination of different methods, existing imaging treatments and repres-

entativeness of these images with regards to the scientific question.

5.1. Sample preparation methods

 The sample preparation impose a number of constraints, which need to be taken into 

account when choosing a method of analysis. First, observation methods often, though not 

systematically, require the production of thin sections and/or impregnation for the soil struc-

ture to remain undisturbed. The procedure used must be adapted to the sample and the object-

ive of the study, and all samples and controls should be prepared in equivalent conditions and 

technical controls to assess the quality of preparations.

 5.1.1. Fixation and dehydratation
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 When fragile objects need to be kept in their original state or microorganisms activity 

needs to be stopped, a fixation can be performed, by cross linking proteins. Fixatives often are

toxic compounds, which require to take precautions to ensure user safety. Glutaraldehyde 

solutions are frequently used for this purpose (Tippkötter et al., 1986; Altemüller and Van 

Vliet-Lanoe, 1990; Nunan et al., 2001; Elsass et al., 2008; Vidal et al., 2018) but avoided with

FISH because glutaraldehyde impedes hybridization of nucleic acids (Solovei, 2010), making 

formaldehyde the fixative of choice with FISH (Schmidt et al., 2012; Schmidt and Eickhorst, 

2014). Fixatives can also have substantial influence on the samples’ chemistry, which is sus-

ceptible to modify the information acquired with Raman spectra for example (Bandara et al., 

2021). Thus, control samples are needed to assess their effect. Cryo-fixation, using liquid ni-

trogen, propane or ethane for rapid freezing without ice crystal formation is another fixation 

option. Also, rewetting soil samples with fixatives should be performed as carefully as pos-

sible as it may displace the microorganisms and modify particles organisation.

 Dehydration, which is essential for some methods (TEM, SEM and nanoSIMS for ex-

ample) can alter soil structure (Tippkötter and Ritz, 1996) because of clay shrinkage. Differ-

ent protocols exist, such as air drying (Gutiérrez Castorena et al., 2016), freeze-drying (Tipp-

kötter et al., 1986) or dehydration with water-ethanol or water-acetone gradients (Tippkötter 

et al., 1986; Nunan et al., 2001; Elsass et al., 2008; Mueller et al., 2012). Water-acetone ex-

changes have proven their efficiency in limiting impacts on soil structure (Altemüller and Van

Vliet-Lanoe, 1990). However, biological material must be fixed prior dehydration with water 

-acetone gradients in order to avoid cell damage (Elsass et al. 2008). Water-ethanol exchanges

are believed to minimize cells damage because ethanol is a weaker solvent than acetone

(Bandara et al., 2021). Following cryo-fixation, freeze-substitution allows dehydration by 

substituting frozen water with a solvent at sub-zero temperatures. Supercritical drying is also 

efficient for drying soil containing natural “gels” (allophanic soils) (Woignier et al., 2005, 

2008; Calvelo Pereira et al., 2019).

 5.1.2. Staining

 Stains (fluorochromes or contrast agents) used in particular with epi-fluorescence, 

confocal microscopy and electron microscopy for observing microorganisms may have lim-

ited efficiency. Many stains, and particularly in undisturbed soil, may have difficulty penetrat-

ing the sample and reach their target (Peth et al., 2014). Testing this by quantifying the gradi-
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ents of the stain in soil aggregates as performed by Zheng et al. (2020) is hence very useful. In

addition, non-specific staining, as well as autofluorescence can also occur, depending on soil 

characteristics. Therefore, controls should be considered whenever possible with unstained 

thin sections or samples. Stains can be applied on the surface of previously prepared thin sec-

tions (Elsass et al., 2008; Gutiérrez Castorena et al., 2016; Juyal et al., 2019; Schlüter et al., 

2019a), which is useful when used in combination with surface imagery methods.

 5.1.3. Embedding

 The embedding step can present some difficulties with ensuring that the resins saturate

the entire porosity and with avoiding the presence of air bubbles, which lead to fragile 

samples for subsequent processing (cutting, polishing). The relatively high viscosity is at 

cause here. These problems are particularly true for large samples, which require long periods

under high vacuum conditions. A solution is to perform multiple additions of resins at differ-

ent dilutions with acetone making it less viscous, thus ensuring that the porosity is better filled

(Nunan et al., 2001; Elsass et al., 2008; Mueller et al., 2012; Vidal et al., 2018). 

 In addition, the choice of embedding resin should suit the study objectives. For ex-

ample, nanoSIMS requires the use of special resins such as Aradite-502 (Mueller et al., 2012; 

Vidal et al., 2018) for their resistance to the applied pressures (Herrmann et al., 2007a; Muel-

ler et al., 2012). Any study targeting the localisation and characterisation of soil carbon re-

quires the use of resins that can be differentiated from the sample (Mueller et al., 2012; Vidal 

et al., 2018; Vergara Sosa et al., 2021). For the specific case of nanoSIMS, even though most 

samples are embedded, direct deposition of samples is also possible as long as they are very 

flat (< 1µm topography for natural abundance and 30 µm for stable isotopes enriched 

samples) (Mueller et al., 2013).  

5.2. Image acquisition and processing

 When acquiring images, it is important to note that very often the operator will have 

an impact on the quality of the final image. Indeed, parameters such as time of exposure or 

aperture, that are generally set manually, are very important and should be taken into account.

Regardless of the choices made when establishing a protocol, the different steps should be 

systematically recorded as, failing that, variations in choices from one operator to another and
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from a day to another may have an impact on the results. 

The image processing steps are also of fundamental importance for the extraction of 

relevant information. It allows analysing the image and thus distinguishing objects, enumerat-

ing them, but also extracting data about their size and shape and characterizing their spatial 

distribution. The images obtained with the different methods present characteristics which dif-

fer according to the modes of acquisition (size and depth fields, resolutions, voxels or pixels, 

number of channels, bit depth) and which require different image processing and analysis 

strategies. Starting from the raw image, the identification of different soil constituents can re-

quire significant expertise for choosing the optimal processing procedure. Indeed, observation

methods based on shapes and colours for example can generate errors and also lead to differ-

ent conclusions from one observer to another (Baveye et al., 2010). Replications of observa-

tions at different dates and by several observers may be useful (Kleber et al., 2003; Chenu and

Plante, 2006), but it is costly and time consuming.. 

 Image processing often requires segmentation, correction and filtering steps, amongst 

others (Schlüter et al., 2014; Roose et al., 2016; Withers et al., 2021; Jeckel and Drescher, 

2021). To avoid operator effects, image analyses should be automated as much as possible. 

The choice of a segmentation threshold is subjective and depends on the observer. Therefore, 

most studies recommend the use of a fully automatic thresholding. However, thresholds must 

be chosen correctly depending on the targeted object characteristics and the type of sample

(Iassonov et al., 2009; Hapca et al., 2013; Bilyera et al., 2020; Pot et al., 2020). The same is 

true for all stages of image processing (Kaestner et al., 2008; Houston et al., 2013) and this 

should always be carefully described in any scientific publication. There are more and more 

methodological publications describing specific methods to perform total or locally adaptative

methods (Sauzet et al., 2017; Gao et al., 2019; Bilyera et al., 2020). Machine learning and es-

pecially supervised pixel classification have been increasingly found to provide reliable clas-

sification of different minerals and organic matter in nanoSIMS images (Steffens et al., 2017; 

Vidal et al., 2021), in SEM microscopy of shales (Wu et al., 2019) and in hyperspectral mi-

croscopy where bacteria were classified ex situ (Liu et al., 2021). We can thus expect that it 

will help future research to extract more easily the images interest objects.

 All samples, including controls, should be acquired in the exact same conditions with 

the same parameters and the image processing should follow the same steps, otherwise they 

cannot be considered equivalent and compared. 
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5.3. Image representativeness 

 As the representativeness of images is linked to their size, the question of the repres-

entativeness of the images arises when the imaging resolution is high. The study areas must 

be chosen with care and otherwise it can lead to focusing on exceptional areas, which can res-

ult in incorrect conclusions being drawn. Then it may be difficult to link observation results to

the overall functioning of the soil. Microbial densities are much higher in hot-spots than un 

bulk, which has consequences on the choice of imaging methods because the necessary field 

to describe processes inside these environments has to be considered. NanoSIMS is adapted to

the study of the rhizosphere and detritusphere as the probability of encountering microorgan-

isms that have assimilated isotopically-labelled resource is relatively high, contrary to the 

bulk soil (Védère, 2020). 

Furthermore, it should not be forgotten that many of the techniques available provide a

2D image of a 3D object. For example, the organisation of porosity in 2D images is not rep-

resentative of the 3D pore network. To overcome this, correlative imaging can help to reach a 

more complete understanding of the spatial organisation of soil constituents soil functioning, 

as was done by Schlüter et al. (2019a).  

5.4. Combination of observation methods

 5.4.1. Compatibility of the different methods

 Reviewing the literature shows that there is no single method to study both the spatial 

and temporal fate of soil microorganisms and their activities in their microhabitats. This is 

why understanding the functioning of the soil as a whole requires a combination of different 

methods and correlative-imaging. Recent publications demonstrate the great potential of this 

approach. The first step is to check that the methods are compatible. When the analyses can 

be carried out on the same samples, then the question of the order of the methods to be used 

must be considered. 

 Indeed, the methods previously described require specific preparations and are more 

or less destructive, such as SEM or SIMS, which require the samples to be covered with a 

gold layer or which sputter the sample, respectively. These methods should therefore be im-

plemented in the final stages of observation. Other methods such as tomography or zymo-

graphy are advantageous since, not requiring specific prior soil preparations, they allow for 
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multiple observations of the same object without such concerns. Moreover, X-ray computed 

tomography has negligible effects on root growth (Zappala et al., 2013), archaea and bacteria 

and their functioning in soil (Bouckaert et al., 2013; Schmidt et al., 2015).

 Altogether, we suggest to favour first the methods which do not require any particular 

preparation (X-ray or neutron tomography for example), secondly the observations using flat 

probes or gels (zymography or planar optodes) and requiring only a cut in the material, then 

the methods requiring the preparation of thin sections and finally all the methods whose oper-

ation consists in bombarding the surface of the object and which can irreversibly damage the 

surface of the objects  (SEM, nanoSIMS). Other methods, such as Raman scanning can be 

harmful for the resin (Bandara et al., 2021). All these particularities should be considered in 

order to define the best pathway to do correlative imaging. For example, Bandara et al. (2021)

successfully applied a thin section protocol in order to combine and correlate images from 

nothing less than six different imaging methods by using LR white resin. Otherwise, the 

methods can be applied to different samples prepared under the same conditions, but the num-

ber of samples to be prepared can quickly become huge. 

 A challenge to overcome with correlative imaging is related to the superimposition of 

two images of the same exact zone acquired with different techniques. Solutions are to use a 

single same sample holder including a coordinate system (Bandara et al., 2021) or to target 

landmarks directly present in the samples (Juyal et al., 2020; Schlüter et al., 2019a) to find 

back the region of interest. For surface imaging methods, it is also possible to artificially mark

the sample surface to create references helping at finding previously targeted region of in-

terest using the electron microscopy beam (Bandara et al., 2021). Moreover, the difficulty in-

creases when one wants to combine optical techniques, which imply a field depth, and surface

techniques which have none. Indeed, some features below the sample surface may be visual-

ized with field depth techniques but not with surface techniques. For example, if the zone of 

interest is not on the sample surface, although visible by light microscopy, then, it will not be 

possible to reach it with surface techniques such as scanning electron microscopy or 

nanoSIMS (except if the object is very close to the surface where you can expect to reach it 

by an abrasion of surface). This limitation makes the correlative imaging not trivial.  How-

ever, powerful tools, such as correlia, a pluggin developed for imageJ, help correlating images

from different methods (Bandara et al., 2021; Rohde et al., 2020).
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 5.4.2. Upscaling issues

 Focusing on microorganisms in their habitat results in considering a very small field 

of observation compared to the global functioning of the soil and raises the question of the up-

scaling. How can we account for these observations on larger scales? Are microscale observa-

tions representative of the phenomena described on a larger scale? Some studies recommend 

the creation of mosaics of high-resolution images in order to obtain a wide image of the 

samples. Others advice to work with an average volume which consists of averaging micro-

scopic description into a Representative Elementary Volume (Baveye et al., 2018) or a homo-

genisation which assumes that structure is sufficiently periodic to be considered as composed 

of repeated units for variables as porous structure (Roose et al., 2016). The use of these op-

tions is still under discussion considering the trade-off between their potential and the consid-

erable loss of data that they can involve (Baveye et al., 2018). 

 The combination of observation methods can also address this problem with comple-

mentary observations at different spatial scales. Such studies have already been carried out, 

such as that of Schlüter et al. (2019), who used correlative imaging with X-ray tomography at 

a centimetre scale, optical microscopy and fluorescence at a mm scale, then electron micro-

scopy on the scale of a few hundred microns and finally nanoSIMS on the tens of microns 

scale in order to describe the microhabitat in a decaying leaf detritusphere combining struc-

tural, geochemical and biological data. They showed that if bacteria were mainly present in 

pores < 10 µm, they were preferentially concentrated near macropores and organic matter.

Juyal et al. (2019, 2020) also combined observations at mm (X-ray tomography, light and 

fluorescence microscopy) and micrometric (light and fluorescence microscopy) scales to 

study the localisation and spread of microorganisms in the soil structure and in particular as a 

function of porosity indicators. Keiluweit et al. (2012) characterised the soil-microorganisms 

interaction by combining nanoSIMS and NEXAFS with STMX allowing them to propose a 

conceptual model of the fate and transformation of fungal cell wall compounds in soil and its 

relation with mineral particles. Bandara et al. (2021) acquired images allowing description of 

the rhizosphere using six different imaging methods, i.e.. light microscopy, epifluorescence 

microscopy, HIM microscopy, Tof-SIMS, nanoSIMS, SEM-BSE and -EDX and confocal Ra-

man spectroscopy. 

2D (SEM-EDX) and 3D (X-ray CT) approaches may be combined to build 3D chem-

ical maps of soil samples based on a statistical approach such as that proposed by Hapca et al. 

(2015). Similarly, Anderson et al. (2020) combined 2D (FIB-SEM) with 3D images (TXM, 

29

900

901

902

903

904

905

906

907

908

909

910

911

912

913

914

915

916

917

918

919

920

921

922

923

924

925

926

927

928

929

930

931

932

933



transmission X-ray microscopy) using machine learning on sediment rock materials. Another 

approach is to merge 2D images acquired at 3 different scales to create one final image with a 

better resolution and multiscale porosity information (Karsanina et al., 2018). The develop-

ment of computer calculation capacity also allows thinking that reconstruction from 2D to 3D 

images will be facilitated in the future.

5.5. Perspectives

 5.5.1. Methodological developments. Methods of the future.

 There are a number of potentially useful methods that are not or rarely used in soil sci-

ence for a variety reasons. µX-ray fluorescence CT for example (Fig 2) is seldom used be-

cause of necessary developments and improvements regarding the issue of energy attenuation

(Bleuet et al., 2010; Hapca et al., 2015; Roose et al., 2016). Nuclear magnetic resonance 

(NMR) is little compatible with soil samples that contain paramagnetic particles (Schmidt et 

al., 1997; Baveye et al., 2018). Neutron radiography and positron emission tomography (PET)

scanning do not yet have sufficient spatial resolutions for the study of soils at the scale of mi-

croorganisms. A number of methods therefore still have technical limitations for applying 

them to the soil environment and to the microorganisms’ spatial scales.

 Other methods, however, are underused, even though they would be appropriate for 

investigating soil microorganisms in their habitats. Super-resolution methods which give ac-

cess to unprecedented resolutions in optical microscopy could be used, e.g. to study  microor-

ganisms and soil particles interactions. Super resolution techniques such as STED (stimu-

lated-emission depletion microscopy), SIM (structured illumination microscopy) or SMLM 

(single molecule localisation microscopy) have resolutions down to a few tens of nanometers

(Turkowyd et al., 2016), but have not yet been used to visualise soil microorganisms. With 

STED, the sample is scanned using two lasers. The first one stimulates the emission of fluor-

escence subjected to diffraction on a targeted zone and the second, in the form of a "donut", 

uses a de-excitation beam and comes to switch off a part of the emission of the fluorochrome 

leaving only its central emission source. This process counterbalances the effects of diffrac-

tion and means that resolutions of between 20-70 nm can be achieved. As this method is 

based on activation and successive repeated extinction of fluorochromes, all fluorochromes 

must be photo-stable (Turkowyd et al., 2016).
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 The SIM method uses a mask containing a pattern of lines regularly spaced with a fre-

quency, orientation and phase known, rotating above the sample to achieve a controlled illu-

mination of the fluorochrome. The exploitation of the “moiré” effect obtained by this ap-

proach is used to reconstruct the structure of the observed object at a resolution of approxim-

ately 80-100 nm. One advantage is that it does not require any staining (Turkowyd et al., 

2016).

 Finally, the SMLM (single molecule localisation microscopy) methods use the blink-

ing of certain fluorochromes to isolate them one by one via their isolated emissions, allowing 

very small resolutions to be obtained between 10 and 50 nm. Here the fluorochromes must be 

photo-convertible and photo-stable (Turkowyd et al., 2016).

 These last methods are very sophisticated and the density of the staining, the type and 

the size of the fluorochrome used strongly impact the final result (Huang et al., 2009). The 

SIM and SMLM methods also require a time-consuming post-processing of images that 

hinders their use. These methods are used in cell biology and chemistry but not yet in soil sci-

ence.

 Similarly, FIB, BIB and SBF are rarely used while they could provide much 3D in-

formation on objects not accessible to the Xray CT resolutions. Other methods of the future 

are to use transparent soil media to overcome soil’s opacity and thereafter use 3D imaging 

methods not previously suitable to study undisturbed soil. Sharma et al.(2020) tested different

artificial transparent soils to obtain 3D images using CLSM and Raman microscopy. They re-

corded microorganisms position and carbon uptake and were able to observe a higher activity 

of bacteria at the vicinity of dead fungal hyphae following a drying/ rewetting cycle. Yang et 

al. (2021) by using such transparent model of soil could observe under confocal microscopy 

the dynamics of organic matter sorption and protection by clay and the effect of microbial en-

zyme activities on this protection. 

 5.5.2. Dynamic observations

 While the importance of hot moments is recognized for soil biogeochemical processes,

still few visualisation studies address temporal dynamics. The first reason is that visualisation 

methods for soil microorganisms in their microhabitat are time consuming and expensive. 

Further, if the visualisation methods are destructive, it requires to prepare and process a large 

number of replicate samples. Nevertheless, a few methods allow non-destructive time monit-
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oring visualisation of soil. X-ray tomography, neutron radiography and zymography allow re-

peated observations on the same sample at different dates. However, the scanning time of 

these methods is sometimes too long for dynamics to be captured. For example the direct 

monitoring of water flow through the porosity remains difficult to study because CT tomo-

graphy could not scan fast enough to capture the water flow (Baveye et al., 2018). Neutron 

tomography has improved enough to allow fast imaging and monitoring of water uptake in 

soil with 1 minutes iterations as recently demonstrated by Tötzke et al. (2021) and high speed 

synchrotron-based X-ray computed tomography allowed few seconds iteration scanning but it

is currently not used in soil sciences (Berg et al., 2013).

 5.5.3. Precious experimental data for modelling

 It is now acknowledged that the spatial distribution of microorganisms, trophic re-

sources, air and water in the soil architecture at the microscale largely determine the biogeo-

chemical fluxes at the macroscale. A new generation of biogeochemical models is emerging 

that are based on an explicit description of soil structure and water distribution at the micro-

scale (Pot et al., 2015; Kemgue et al., 2019; Ruiz et al., 2020; Pot et al., 2021), in order to 

more accurately forecast the dynamics of organic matter in soil under a wide range of climate 

and management conditions (Monga et al., 2008; Portell et al., 2018; Ruiz et al., 2020). In 

these microscale models, the distribution of microorganisms and trophic resources are up to 

now ascribed a priori (Pot et al. 2021), and not based on experimental data. However experi-

mental data, such as the distribution of microorganisms (Raynaud and Nunan, 2014; Juyal et 

al., 2019; Schlüter et al., 2019a) or organic matter (Peth et al., 2014; Quigley et al., 2018; 

Schlüter et al., 2022), are necessary input data for calibrating the models and assessing their 

performance. The many technological advances and developments in the field should allow 

for rapid progress in this area. 

 5.5.4. Imaging soils at the microscale for soil microbial ecology

 Despite the numerous constraints and difficulties, these methods, when combined, of-

fer major perspectives for characterizing the location of total and active microorganisms in 

their environment and better understanding soil functioning. Considering the scant available 

knowledge on soil microorganisms distribution and activities in their microhabitats, there is 

an open field for microbial ecology research using imaging at the microscale. We can imagine
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different workflows providing valuable data and an overall better understanding of soil func-

tioning at the microscale and will present two exemples. 

A first example concerns the detritusphere. In the detritusphere, soil moisture controls 

the transfers of organic solutes, enzymes and microorganisms, the accessibility of microor-

ganisms to their substrates and modulates biodegradation (Védère et al., 2020). X-ray com-

puted tomography can allow to describe the organisation of the porosity in the vicinity of la-

belled plant residues and the porosity directly connected to it (distances to the residues, con-

nectivity, tortuosity, direction…). Following the pores description, thin sections can be pro-

duced on the same samples and the spatial distribution of microorganisms in the vicinity of 

previously targeted porosity and at increasing distances from the residues could be assessed 

using epifluorescence microscopy. Finally, nanoSIMS can allow to observe C and N transfers 

from the residue to the soil and to locate microbial assimilation hotspots at this interface. 

Combining several imaging methods can address questions such as the influence of plant 

residues on soil porosity, whether soil moisture modifies the spatial distribution of microor-

ganisms decomposing plant  residues and the interplay between mineralisation and stabiliza-

tion of carbon from these plant residues.

A second example addresses the possible influence of biochar addition of rhizosphere 

functioning. Biochars are increasingly used to improve soil properties like water retention or 

cation exchange capacity of soil. They present a high porosity that can be used by micro-

organisms as habitats. Rhizosphere development and functioning is influenced by biochar ad-

dition (Atkinson et al., 2010). Unfortunately no clear description of microorganisms spatial 

distribution relative biochar particle exists. X-ray computed tomography can describe soil 

porosity inside the rhizosphere artificially produced in a rhizobox. Then, the surface of the 

box could be exposed to direct zymography in order to give information about enzymes diffu-

sion in the porosity. Once those measurements being done, thin sections of soil at the vicinity 

of root and biochar particles could be prepared to localize microorganisms using epifluores-

cence microscopy. Such a workflow could address questions like: Is rhizosphere porosity in-

fluenced by biochar addition in soil? Do biochar particles provide new habitats for micro-

organisms and modify their spatial distribution? Are enzyme activities affected by biochar in 

the rhizosphere?

 

6. Conclusion

33

1033

1034

1035

1036

1037

1038

1039

1040

1041

1042

1043

1044

1045

1046

1047

1048

1049

1050

1051

1052

1053

1054

1055

1056

1057

1058

1059

1060

1061

1062

1063

1064

1065



 Imaging techniques have developed significantly in recent years, have become in-

creasingly accessible and are attracting unprecedented attention in the soil’s scientific com-

munity. Microorganisms can be located and identified at fine scales with more accuracy and 

confidence using modern visualisation methods. The mapping of certain microbial activities, 

such as enzyme activities and substrate assimilation, in the soil structure is also possible. The 

improvement of existing techniques has made  detailed descriptions, at better resolutions, pos-

sible and the development of new technologies opens new horizons. However, technical de-

velopment is still necessary, particularly to reduce analytical time and costs and to optimise 

the combination of different methods. Moreover, imaging techniques often need a high-level 

expertise to be used properly and these are rarely present at a single location. Therefore, a bet-

ter understanding of soil microhabitats will involve multi-disciplinarity and collaborative 

studies. The information obtained on the spatio-temporal evolution of microorganisms and 

their activities in the soil structure should make it possible to improve knowledge and lead to 

a better understanding of soil functioning.
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