
HAL Id: hal-03775570
https://hal.science/hal-03775570

Submitted on 21 Sep 2022

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Energy-Based Analog Neural Network Framework
Mohamed Watfa, Alberto Garcia-Ortiz, Gilles Sassatelli

To cite this version:
Mohamed Watfa, Alberto Garcia-Ortiz, Gilles Sassatelli. Energy-Based Analog Neural Network
Framework. SOCC 2022 - 35th IEEE International System on Chip Conference, IEEE, Sep 2022,
Belfast, United Kingdom. pp.1-6, �10.1109/SOCC56010.2022.9908086�. �hal-03775570�

https://hal.science/hal-03775570
https://hal.archives-ouvertes.fr


Energy-Based Analog Neural Network Framework
Mohamed Watfa∗†, Alberto Garcia-Ortiz†, Gilles Sassatelli∗
∗LIRMM, University of Montpellier, CNRS, Montpellier, France

†ITEM, University of Bremen, Bremen, Germany
{mwatfa, sassatelli}@lirmm.fr {agarcia}@item.uni-bremen.de

Abstract—With the impressive success of deep learning, a
recent trend is moving towards neuromorphic mixed-signal
approaches to improve energy efficiency. However, the process of
building, training, and evaluating mixed-signal neural models is
slow and laborious. In this paper, we introduce an open-source
framework, called EBANA, that provides a unified, modular-
ized, and extensible infrastructure for building and validating
analog neural networks (ANNs). It already includes the most
common building blocks and maintains sufficient modularity and
extensibility to easily incorporate new concepts. It uses Python
as interface language with a syntax similar to Keras, while
hiding the complexity of the underlying analog simulations. These
features make EBANA suitable for researchers and practitioners
to experiment with different design topologies and explore the
various tradeoffs that exist in the design space.

Index Terms—deep learning, neural networks, training, analog,
SPICE, framework, processing-in-memory

I. INTRODUCTION

The past decade has seen a remarkable series of advances
in deep learning (DL) approaches based on artificial neural
networks. In the drive towards better accuracy, the complexity
and resource utilization of state-of-the-art models have been
increasing at such an astounding rate that most of the training
and processing is being done in large data centers. However,
energy cost, scalability, latency, data privacy, etc., pose serious
challenges to existing cloud computing. Alternatively, edge
computing has emerged as an attractive possibility [1].

With energy-efficiency being a primary concern, the success
of bringing intelligence to the edge is pivoted on innovative
circuits and hardware that simultaneously take into account
the computation and communication that are required. Con-
sequently, recent hardware architectures for DL show an
evolution towards “in/near-memory” computing with the goal
of reducing data movement as much as possible. One category
of such architectures, the so-called Processing-In-Memory
(PIM), consists in removing the necessity of moving data to
the processing units by performing the computations inside
the memory. This approach is commonly implemented by
exploiting the analog characteristics of emerging non-volatile
memories (NVM) such as ReRAM crossbars. Furthermore, as
ANN inference is inherently resilient to noise, this opens the
opportunity to embrace analog computing, which can be much
more efficient than digital especially in the low SNR (signal-
to-noise ratio) regime [2].

Due to the highly demanding device and circuit require-
ments for accurate neural network training [3], most mixed-
signal implementations are inference-only. While the opti-

mal implementation of the memory devices is an on-going
challenge, there is an opportunity to simplify the circuit
requirements by considering learning algorithms that are well-
matched with the underlying hardware. One such algorithm
is the Equilibrium Propagation (EP) algorithm that leverages
the fact that the equilibrium point of a circuit corresponds to
the minimization of an energy function [4]. By allowing the
bidirectional flow of signals, the EP method forgoes the need
for a dedicated circuit during the backward phase of training,
while also keeping the overhead of the periphery circuit that
supports it to a minimum as there is no need for analog-to-
digital converters between layers.

Given the growing rate of machine learning workloads, it is
of paramount importance to have a framework that is capable
of performing a comprehensive comparison across different
accelerator designs and identify those that are most suitable for
performing a particular ML task. Thanks to ML frameworks
such as Google’s Tensorflow and Keras, the ease of creating
and training models is far less daunting than it was in the
past. While training an analog neural network with EP could
in theory be possible in Tensorflow, there are three major
difficulties:

• First, the I-V characteristic of each circuit element has to
be completely defined.

• Second, the network layers have to be designed in such a
way that they can influence each other in both directions.

• Finally, implementing procedures that involve iterative
updates, like differential equations, within automatic dif-
ferentiation libraries like Tensorflow, would mean that we
need to store all the temporary iterates created during this
solution. This requires storing a great deal of information
in memory.

To address the above issues, this work introduces an ex-
ploratory framework called EBANA (Energy-Based ANAlog
neural networks), built in the spirit of Keras1 with two goals
in mind: ease-of-use and flexibility. By hiding the complexity
inherent to machine learning and analog electronics behind a
simple and intuitive API, the framework facilitates experimen-
tation with different network topologies and the exploration of
the various trade-offs that exist in the design space.

This paper is organized as follows. In sec. II, we give a very
brief introduction into energy based learning, and explain why
it is a natural fit for analog systems. In sec. III, we provide
an overview of the internals of our API, and illustrate with

1https://keras.io/guides/functional api/



an example how quickly and easily models can be created.
In sec. IV, we validate our framework by training an analog
circuit on a nontrivial ML task, evaluate the performance, and
show how the framework can be extended. Finally, we discuss
the conclusions and further work.

II. ENERGY BASED LEARNING

The main goal of deep learning or statistical modelling is
to find the dependencies between variables. Energy Based
Models (EBMs) encode these dependencies in the form of
an energy function E that assigns low energies to correct
configurations and high energies to incorrect configurations.
However, unlike statistical models which must be properly
normalized, EBMs have no such requirements [5], and, as
such, can be applied to a wider set of problems.

There are two aspects that must be considered for training
EBMs. The first is finding the energy function that produces
the best output y for an input x. This is usually tied to the
architecture of the network. The second is shaping the energy
function so that the desired value of y has lower energy than
all other (undesired) values. This idea is depicted in Fig. 1.
In the following sections, we consider one example of such a
method, explain how it works, and discuss how it can be used
to train analog neural networks.

pull down

Before Training After Training

pull up

Energy

state

Energy

statedesired
state

undesired
state

Fig. 1. Training EBMs consists in associating low energies with desired
configurations and high energies with undesired configurations

A. Introducing Equilibrium Propagation

The success of deep neural networks can be attributed
to the backpropagation (BP) algorithm. In spite of that, BP
poses a few difficulties for implementation in hardware. The
requirement for different circuits in both phases of training is
one of the core issues that the EP learning framework sets
out to address [4]. It involves only local computations while
leveraging the dynamics of energy-based physical systems. It
has been used to train Spiking Neural Networks [6] and in
bidirectional learning of Recurrent Neural Networks [7].

The EP algorithm is a contrastive learning method in which
the gradient of the loss function is defined as the difference
between the equilibrium state energies of two different phases
of the network. The two phases are as follows. In the free
phase, the input is presented to the network and the network
is allowed to settle into a free equilibrium state (thereby
minimizing its energy). Once equilibrium is reached, inference
result is available at the output neurons. In the second, nudging
phase, an error is introduced to the output neurons, and the

network settles into a weakly-clamped equilibrium state, which
has a slightly lower energy than the free equilibrium state. The
parameters of the network are then updated based on these two
equilibrium states.

B. Equilibrium Propagation Algorithm

In the EP algorithm, the activity or state si of each neuron
is governed by the network energy function

F (θ,x,y, β, s) = E(θ,x, s) + βC(θ,x,y, s). (1)

where θ = (W , b) are the network parameters, x is the input
to the network, y is the target output, and s = {s} = {x, h, ŷ}
is the collection of neuron states, comprised of input, hidden
and output neurons, respectively.

The total energy function F is composed of two sub-parts:
the internal energy E, which is a measure of the interaction
of the neurons in the absence of any external force, and the
external energy or cost function C, modulated by the influence
parameter β. The states are gradually updated over time to
minimize the overall energy.

The EP training algorithm is presented in algorithm 1. For
proof, see [4]. While it looks similar to backpropagation,
propagating the errors towards the input does not require a
special computational circuit, making this approach especially
attractive for implementation in hardware. However, unlike
backpropagation, the state of the network is an implicit
function of θ, meaning that the state and gradient of the
objective function cannot be calculated efficiently and exactly.
The requirement for long phases of numerical optimization
of the energy function makes applications based on the EP
framework less practical on digital hardware.

Algorithm 1 Equilibrium Propagation
1) Fix the inputs and allow the system to settle at s0

that corresponds to the local minimum of E(θ,x, s) or
F (θ,x,y, 0, s). Collect ∂F

∂θ (θ,x,y, 0, s
0).

2) With the input still fixed, nudge the output units toward
their target values. Allow the system to settle at a new
but nearby fixed point sβ that corresponds to slightly
smaller prediction error. Collect ∂F

∂θ (θ,x,y, β, s
β).

3) Update the parameter θ according to:

∆θ ∝ − 1

β

(
∂F

∂θ
(θ,x,y, β, sβ)− ∂F

∂θ
(θ,x,y, 0, s0)

)
(2)

III. EXPLORATORY FRAMEWORK

Our framework, shown in Fig. 2, is largely made up of two
parts: one for defining the network model, and the other for
training in the analog domain.

The interface to EBANA is Python due to its popularity
and its rich ecosystem of libraries for data processing and
data analysis. Furthermore, almost all the operations but cir-
cuit simulation are performed in Python: this includes netlist
generation, gradient currents calculation, and weight update.



We employ the open-source SPICE simulator Ngspice2 for
realistic simulation of the circuit dynamics. The interoper-
ability between Python and Ngspice is provided through the
Python library PySpice3, which provides the means to generate
SPICE netlists, send them to Ngspice for simulation, and
communicate the result back to Python.

model
(.py)

EBANA
framework

trained
model

SPICE

training
log

circuit
(.cir)

node
voltages

library
files

trainingmodel
creation

Fig. 2. Block diagram of EBANA framework

A. Network Structure

The process of designing and training a model in our frame-
work starts with defining the model. The general structure
of an analog neural network that can be trained with the
EP framework is shown in Fig. 3. It consists of an input
layer, several hidden layers, and an output layer. It looks
similar to a regular neural network that can be trained by the
backpropagation algorithm except for two major differences.
First, the layers can influence each other bidirectionally; i.e.,
the information is not processed step-wise from inputs to
outputs but in a global way. Second, the output nodes are
linked to current sources which serve to inject loss gradient
signals during training.

Bias Bias BiasNL CLALIL DL

Fig. 3. Analog neural network in the EP framework. IL: Current Layer, DL:
Dense Layer, NL: Nonlinearity Layer, AL: Amplification Layer, CL: Current
Layer

2http://ngspice.sourceforge.net/
3https://pypi.org/project/PySpice/

B. Creating a Model

Layers form the core data structure of our framework. They
are expressed as Python classes whose constructors create and
initialize the connections between the circuit components, and
whose call methods build the netlist. The process of creating
a model is heavily inspired by Keras’s functional API due
to its flexibility at composing layers in a non-linear fashion.
In this manner, the user is able to construct models with
multiple inputs/outputs, share layers, combine layers, disable
layers, and much more. An example of this is given in Fig. 4,
which follows the structure shown in Fig. 3. In the following
subsections, we provide details on only those layers that have
a unique interpretation in the analog domain.

Fig. 4. Example of a model in the EBANA framework (Iris model)

1) Input layer: This defines the number of inputs to the
circuit, which are typically represented by voltage sources.
Generally, the input layer is defined according to the dataset.
However, the input layer can be defined slightly differently in
the analog domain.

• First, since the weights are implemented by resistances,
and resistances cannot be negative, a second set of inputs
with the opposite polarity of the voltages defined in the
dataset is added to the input layer. This accounts for
negative weights and effectively doubles the number of
inputs. This idea is depicted with two green rectangles in
Fig. 4.

• Second, in typical software-based models, the bias, when
used, is implicitly set to 1. However, since circuits can
work with a wide range of voltages, setting the bias
voltage to values other than 1 is necessary. Hence, we
provide the option to independently set the bias voltage
in each layer. Note that it is also possible to learn the
bias voltages.

2) Weight layers: Two kinds of weight layers are defined
in the framework. The Dense class is the implementation of



the fully-connected layer, which means that the neurons of
the layer are connected to every neuron of its preceding layer.
Because of this fixed connection between inputs and weights,
resistive crossbar arrays are well-suited for implementing the
dot product operation in the analog domain.

While fully-connected layers are straight-forward to imple-
ment, the implementation of a convolutional layer is difficult
in the analog domain because spatial invariance is imposed
through weight sharing. A common scheme to map con-
volutional layers to resistive crossbars is to decompose the
convolution operation into vector-matrix-multiplications. This
is done by unrolling the filters along the columns and applying
the input sliding windows sequentially across the rows. This
operation can only be parallelized by replicating the weights
across multiple crossbars. Because of this, we implemented
a slightly different variant of the convolutional layer, called
the LocallyConnected2D layer, that avoids the weight
sharing problem.

Another issue that is specific to ANNs is the weight
initialization problem. Neural networks are very sensitive to
the initial weights, and thus selecting an appropriate weight
initialization strategy is critical to stabilize the training process.
As a result, a lot of research has gone into finding optimal
weight initialization strategies [8]. However, since conduc-
tances cannot be negative, these methods cannot be applied
directly. The default option is to initialize the conductances
by drawing samples uniformly at random from the range
[10−4S, 10−1S]. It should be noted that some circuit topologies
have difficulty converging using the default initialization.

3) Nonlinearity layer: The nonlinearity layer is imple-
mented as two separate layers: an activation layer, and an
amplification layer, which has the effect of normalizing the
swing of the signal as it goes through the network.

With the help of diodes, it is possible to create nonlinearities
similar to the tanh and sigmoid activation functions. Several
options are available for the nonlinearity.

• Diode orientation (direction): This specifies the
orientation of the anode and cathode of the diode with
respect to ground.

• Bias voltage (bias): By choosing a bias value other
than zero, we can change the voltage at which the diode
saturates, and therefore alter the shape of the nonlinearity.

• SPICE model (model): This is a text description that is
passed to the SPICE simulator that defines the behavior
of the diode. The default option is to use an ideal diode.

The amplification layer is implemented with ideal behav-
ioral sources. The only option we have available is to change
the gain A of the stage. This means that the voltages get
boosted in the forward direction by a factor of A, and the
currents get amplified in the backward direction by a factor of
1
A .

4) Current Source layer: This layer simply adds current
sources at each output node to inject current into the network
during the nudging phase. It is implemented with ideal current
sources. During the forward phase, the current sources are set
to 0.

C. Training
The training process that is implemented by the fit method

is illustrated in Fig. 5.

START

Free phase 
(SPICE simulation)

Calculate gradient
currents

Nudging phase
(SPICE simulation)

Finish 
batch?

Load next training
sample

Update weights

Finish
iterations?

Calculate voltage
drops

Calculate voltage
drops

END

No

No Yes

Yes

Fig. 5. Implementation of the fit method

1) Weight gradient calculation: The current gradients are
calculated according to the chosen loss function. For instance,
in the case of the mean squared-error (MSE), the loss is given
by C(Ŷk, Y ) = 1

2 (Ŷk − Yk)
2, where k is the index of output

node, Ŷk is the output of the node, and Yk is the target value.
Other loss functions such as the cross-entropy loss are also
available.

The current that is injected into output node k is some
multiple β of the derivative of the loss with respect to that
node: i.e., −β ∂C

∂Ŷk
. The negative sign implies gradient descent.

To address the constraint of non-negative weights, the
number of output nodes are doubled. That is, the output
node Ŷk is represented as the difference between two nodes:
Ŷk = Ŷ +

k − Ŷ −
k . The currents, I+k and I−k , that are to be

injected into Y +
k and Y −

k , respectively, are:

I+k = −β ∂C

∂Y +
k

= β(Yk + Y −
k − Y +

k )

I−k = −β ∂C

∂Y −
k

= β(Y +
k − Y −

k − Yk)

(3)

2) Weight update: During the free phase, the current
sources at the output nodes are set to 0. The inputs are applied
and circuit is allowed to settle. We then collect the node
voltage V 0 = (V 0

1 , . . . , V
0
N ) and calculate the voltage drop

∆V 0
ij across each conductance.

In the nudging phase, the current given by equation (3) is
injected into each output node. After the circuit settles, we
collect the node voltages V β = (V β

1 , . . . , V β
N ) and calculate

the voltage drop ∆V β
ij across each conductance once again.

We then update each conductance according to the equation
below [9].

Gij ← Gij −
α

β
[(∆V β

ij )
2 − (∆V 0

ij)
2] (4)



where α is the learning rate.
The weight update rule as defined by (4) is one of the

options available in the optimizer class, and is defined
under the name SGD (stochastic gradient descent). Other
weight update mechanisms such as SGDMomentum (stochas-
tic gradient descent with momentum) and ADAM are also
available.

D. Parallelism

Training with EP requires performing the free phase and
nudging phase, after which the conductances are updated. Both
of these phases are done sequentially in SPICE, and are the
critical path in the pipeline. While SPICE simulations are
always going to be time consuming, the overall simulation
time can be reduced by running many simulations in parallel.
This is achieved by noting that all the samples in a mini-
batch are independent and, therefore, could be simulated
independently. As a result, the simulation time could in theory
be limited only by the time it takes to simulate a single sample.

IV. EVALUATION

In this section, we evaluate our framework focusing on three
aspects: correctness, extensibility, and performance.

A. Illustrative Example: Learning the Iris Dataset

As a first step in the evaluation, we built a model that could
learn the Iris dataset. This example is a well-known problem
of moderate complexity, containing 150 samples, with 4 input
variables and 3 output variables.

Two preprocessing steps are needed before the data is ready
for training. First, the input variables have to be normalized.
Second, since the output variable is categorical and ordering
is unimportant, we associate each unique output value with a
3 bit one-hot encoded value. Hence, after the preprocessing
step, the dataset has 4 inputs and 3 outputs.

We constructed a model with 1 input layer, 1 hidden layer,
and 1 output layer, as shown in Fig. 4. The input layer has 9
nodes; 4 for the regular inputs, 4 for the inverted set, and 1
for the bias. In the preprocessing step, the data was scaled to
have a mean of 0 and standard deviation of 4. Therefore, the
voltages at the input take real values in the range [−4V, 4V].

The hidden layer was implemented with 10 nodes and
the output layer with 6 nodes. The weights were ini-
tialized from samples drawn randomly from the range[
10−7S, 0.08√

nin+nout+1
S
]
, where nin is the size of the inputs

and nout is the number of nodes. The learning rate of both
layers was set to 0.0001.

The dataset was split into two parts: 105 samples for
training, and 45 samples to evaluate the model on new data
while training. The optimizer was set to ADAM and the model
was trained for 400 iterations. It achieved an accuracy of 100%
on the test dataset. A plot of the loss and accuracy as a function
of the number of the training epochs is shown in Fig. 6. This
validates the correctness of our framework.

To gain more insight into the training process, a sample
of 8 conductances were chosen at random and their evolution

in the course of the training is plotted in Fig. 7. We observe
a complex but smooth evolution of the conductances. Also,
despite achieving an accuracy of 100%, the circuit has yet
to arrive at the most optimal equilibrium state for the given
dataset.

For a machine learning task with higher difficulty, we
trained a larger model on the Fashion-MNIST dataset. To
reduce the simulation time, we encoded the sample images
into vectors of length 128 (originally 784) before feeding them
into the analog model. We achieved an accuracy of 86% on
the test dataset after just 1 epoch with the cross-entropy loss.
A similar sized model in Keras achieved an accuracy of 86.7%
on the test dataset after 1 epoch and 88.9% after 100 epochs.

B. Extensibility

Even thought it is possible to design fully functional ANNs
with the EBANA framework, we provide sufficient system
encapsulation and model extensibility to meet the individual
requirements of incorporating new models and extending the
functionality of the framework, beyond Energy-Based Models.
This includes adding new layers, defining new loss functions,
changing the training loop, and much more.

To demonstrate the extensibility capabilities of our frame-
work, we consider the example shown in Fig. 9. Here, we
show that by subclassing the SubCircuit class, and with
a just a few lines of code, a new kind of nonlinearity can be
defined using MOSFET transistors and voltages sources.

Our library is modularized to easily plug in or swap out
components. For instance, to investigate the circuit behavior
with this new kind of nonlinearity, all we have to do is
replace the DiodeLayer in Fig. 2 with MOSDiode layer
in Fig. 9 and rerun the simulation. Moreover, while the circuit
in Fig. 2 is setup for training, it can be easily converted to
one that measures the compatibility of an input-output pair by
simply swapping the current layer with a voltage layer that
represents the output.

C. Performance

To evaluate the performance of the simulator, two exper-
iments were conducted. The first experiment was conducted
on the Iris model with the goal of measuring the speed-up
gained through parallelism. We fixed the number of samples
in the mini-batch and ran the simulation for the same number
of epochs on a single thread, followed by 2, and then 4. The
result is shown in Fig. 8. While the speed-up factor was indeed
almost doubled when the thread count was increased from 1
to 2, doubling the thread count further resulted in just 1.5x
increase in speed. Due to the resulting circuit being relatively
simple, and the small batch size, the overhead of starting
new processes for every batch is a nontrivial percentage of
the overall simulation time. To investigate this further, we
artificially increased the dataset size 8 folds to keeo a thread
busy for a longer period. The orange line plot of Fig. 8
confirms this intuition.

For the second experiment, we wanted to measure the
simulation performance as a function of problem complexity.



Fig. 6. Plot of loss and accuracy vs. Iteration

0 100 200 300 400
Iteration

10−3

10−2

C
on

du
ct

an
ce

Fig. 7. Evolution of the conductances Fig. 8. Speed up factor vs. number of threads

TABLE I
SIMULATION TIME AS A FUNCTION OF CIRCUIT SIZE AND TRAINING DATASET SIZE

datasets input units output units circuit nodes (N ) training dataset size (D) epochs (E) time (T ) thread count (P ) K(10−4)
xor 5 2 16 4 85 14s 1 25.74
iris 9 6 56 105 155 182s 4 7.99

wine 25 4 111 5000 2 217s 4 7.92

Fig. 9. Example of defining a new kind of layer

To this end, we considered 3 datasets; xor, iris, and wine. To
obtain an estimate for the complexity of the circuit, we counted
the number of nodes only in those models that achieved greater
than 95% accuracy on the test dataset. This is due to the fact
that the bias-variance trade-off is a property of the model size.

The circuits were simulated and the average simulation time
in seconds is recorded in table I. For a measure of the intrinsic
speed of the simulator, a column with a calculated property K
is added. The property is calculated according to equation (5)
and takes into account the simulation time T , the number of
allocated threads P , the number of nodes in the generated
circuit N , the number of epochs E , and the size of the training
dataset D. We can see from table I that K is about the same
for the two examples whose simulation time is not dominated
by the overhead of starting the SPICE simulator. We expect
this to hold true for larger datasets.

K =
T · P

N · E ·D (5)

Training for all the experiments was carried out in a laptop
with an Intel i7-6700HQ CPU and 32 GB of RAM.

V. CONCLUSION

In this paper, we presented an open-source unified, mod-
ularized, and extensible framework called EBANA [10], that
can be used to easily build, train, and validate analog neural
networks. While it is already possible to build fully functional
models, more features and functionalities will be added in
future iterations, including more realistic hardware blocks for
proper evaluation of the energy consumption of the system.
Furthermore, we plan on improving the training speed by op-
timizing the training loop and adding methods for distributed
training over multiple machines.

REFERENCES

[1] Xiaofei Wang et al. Convergence of Edge Computing and Deep
Learning: A Comprehensive Survey. IEEE Communications Surveys
& Tutorials, 22(2):869–904, 2020.

[2] Boris Murmann. Mixed-Signal Computing for Deep Neural Network
Inference. 29(1):3–13.

[3] Tayfun Gokmen and Yurii Vlasov. Acceleration of Deep Neural Network
Training with Resistive Cross-Point Devices: Design Considerations.
Frontiers in Neuroscience, 10, July 2016.

[4] Benjamin Scellier and Yoshua Bengio. Equilibrium Propagation: Bridg-
ing the Gap between Energy-Based Models and Backpropagation. 11:24.

[5] Yann LeCun, Sumit Chopra, Raia Hadsell, Marc’Aurelio Ranzato, and
Fu Jie Huang. A Tutorial on Energy-Based Learning. page 59.

[6] Erwann Martin et al. EqSpike: Spike-driven equilibrium propagation for
neuromorphic implementations. 24(3):102222.

[7] Axel Laborieux et al. Scaling Equilibrium Propagation to Deep
ConvNets by Drastically Reducing its Gradient Estimator Bias.
arXiv:2006.03824 [cs], June 2020.

[8] Huimin Li et al. A Comparison of Weight Initializers in Deep Learning-
Based Side-Channel Analysis. In Jianying Zhou et al., editors, Applied
Cryptography and Network Security Workshops, volume 12418 of LNS,
pages 126–143. Springer International Publishing.

[9] J. Kendall, R. Pantone, K. Manickavasagam, Y. Bengio, and B. Scel-
lier. Training End-to-End Analog Neural Networks with Equilibrium
Propagation.

[10] EBANA Framework. https://github.com/mawatfa/ebana.


