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Abstract—In network monitoring, delays are of great use when
it comes to QoS or content distributed services. However, it is
often impossible to have access to all the delay measurements
within a network. This can be due to network failures or to
established measurement policies. For these reasons, delay matrix
completion techniques are important for an optimal network
monitoring service. In this paper, we formulate the completion
problem as a neural collaborative filtering problem by testing
two different architectures, generalized matrix factorization and
multi-layer perceptron. We evaluate these methods on two differ-
ent datasets: a synthetic one generated by an autonomous system
simulator, and a real-world dataset from Ripe Atlas platform.
Finally, a comparative study is conducted between these neural
collaborative filtering methods and standard approaches.

Keywords: Internet delays, matrix completion, deep learn-
ing

I. INTRODUCTION

In recent years, matrix completion has gained a lot of pop-
ularity with applications ranging from recommender systems,
image and audio reconstruction, to networking and genomics
[1]. Until recently, the matrix completion problem was re-
solved using matrix factorization approaches [2]. Lately, other
non-linear methods have appeared to solve this problem, such
as neural networks. These approaches can be more interesting
in terms of computational cost and their ability to capture the
complexity of high dimensional data [3].

In this work, we consider a matrix completion problem in
the context of Internet delays. When network data are studied,
we are often confronted with problems of missing data,
either because we cannot continuously probe the network or
because certain equipment do not respond. This may typically
concern a set of source and destination nodes and the delays
between them, such as the Round Trip Time (RTT). This
work addresses the delay matrix completion problem from
a neural network perspective by using a neural collaborative
filtering (NCF) approach [3]. Collaborative filtering [4] is a
widely used technique in recommender systems. It gathers
data from other users in order to identify similarities between
them. This helps the recommender system to predict missing
users preferences. Neural collaborative filtering in particular,
makes use of the flexibility and complexity of neural networks
to accomplish this recommendation task. We compare the
performance obtained with other techniques based on non-
negative matrix factorization (NMF) [5]. We base our compar-
ison on two datasets. The first generated by a delay simulator

of an autonomous system with variations linked to external
routing changes [6]. The second one consists of real RTT
measurements on the Internet obtained from the RIPE Atlas
platform [7].

In Section II we present our methodology consisting of
two neural collaborative filtering architectures. In Section
III we evaluate their performance by conducting extensive
experiments and we compare them to a previous work based
on some standard matrix factorization techniques. Finally, in
section IV we present our conclusion and some future work
directions.

II. METHODOLOGY

In this paper, we address the estimation of the missing
delays in a network as a matrix completion problem. For this
purpose, we consider a network with different nodes that can
refer to anchors or probes, and we consider slotted time. We
suppose that we can run delay measurements in the network, at
every instant, between a pair of nodes: one considered a source
and the other a destination. In general, these measurements are
conducted every 5 minutes in order to monitor properly the
network state.

More precisely, let D denote our n×m delay matrix, where
n is the number of source-destination pairs in the network
and m the number of instants. In this paper, we assume
that there are some unobserved entries in the matrix D that
correspond to missing measurements. The problem is to find
these missing values by exploiting the spatial and temporal
dependency between the different delays.

Let us introduce S the set of index pairs (i, j) such that Dij

is observed, and S the set of indices of unobserved delays.
Each index (i, j) of an entry of the delay matrix can be
represented by two one-hot encoded vectors. For example,
we associate to the entry Dij with (i, j) ∈ S the vectors
pi ∈ {0, 1}n and tj ∈ {0, 1}m where:

pi(k) = 1{k=i} and tj(l) = 1{l=j} (1)

where 1 is the indicator function. An example of this
encoding is given in Fig. 1.

We are now going to present two different Neural Collabora-
tive Filtering architectures that can be used to solve this matrix
completion problem. The Generalized Matrix Factorization
(GMF) which generalized the standard matrix factorization



Fig. 1. Sparse representation of the delays coordinates, pink squares represent
the missing delays.

approach to learn the model and the multi layer perceptron
(MLP), a standard deep learning architecture [3].

Each architecture is trained on a given number of epochs
over the set S of observed delays in order to minimize a loss,
defined as a measure of discrepancy between the predicted
and the observed delays. In order to do so, the neural network
uses an optimizer that updates each parameter during the back
propagation with a given learning rate. The impact of all these
parameters on the quality of the reconstruction will be studied
in the evaluation section. On the other hand, the test phase is
performed on S. To be more precise, we act as if the values
were not known, and we check the quality of the prediction
by evaluating the loss between the actual and the predicted
values.

A. Generalized Matrix Factorization (GMF)

According to [3], the architecture of the GMF algorithm is
composed of three main components.

1) For each Dij to be predicted, the input layer consists
of sparse entry vectors pi and tj .

2) The embedding layer is a fully connected layer project-
ing a sparse vector to a dense one. Its dimension k is
considered as a parameter of the model. This layer is
seen as a latent feature extractor.

3) Finally, the neural collaborative filtering block is a
multi-layered neural architecture that connects the output
of the embedding layer to the predicted delays. Its goal
is to minimize the loss between the estimated delay and
the target value.

In this model, each layer output serves as an input for
the next one. This architecture is described in figure 2, with
the size indicating the dimension of the input, with k, r
and 1 corresponding respectively to the dimension of the
embedding layer, the FC1 and the FCout with FC denoting
a fully connected layer. The ReLu is the activation function
used between the two FCs. We can formulate the GMF model
as:

De
ij(Ξ1,Ξ2,Θ1,Θout)

= ϕout(ϕ1(E1(pi,Ξ1) ◦ E2(tj ,Ξ2),Θ1),Θout),
(2)

where De
ij is the estimated delay corresponding to the entry

(i, j), ϕout and ϕ1 are respectively the mapping functions of
the output layer FCout and the first neural collaborative filter-
ing layer FC1. ◦ denotes the element-wise product of vectors

Fig. 2. Generalized Matrix Factorization (GMF) model.

and E1 and E2 refer to the functions of the embedding layers.
Finally, Θ1, Θout, Ξ1 and Ξ2 correspond to their trainable
parameters. For simplicity reasons, De

ij(Ξ1,Ξ2,Θ1,Θout) is
denoted by De

ij(Ξ,Θ).
Such neural network is called the Generalized Matrix

Factorization (GMF) since we can find the classical matrix
factorization if ϕ1 is a product by the all one vector and
ϕout is the identity function. Indeed, let us denote hi =
E1(pi,Ξ1) ∈ Rk and wj = E2(tj ,Ξ2) ∈ Rk the dense
vectors resulting from the embedding layers. The classical
reduced rank matrix factorization model D = H⊤W with
H = [h1 · · ·hn] ∈ Rn×k and W = [w1 · · ·wm] ∈ Rk×m

estimates De
ij(Ξ,Θ) as follows: De

ij(Ξ,Θ) = h⊤
i wj . When

ϕout = Id and ϕ2 = 1 with Id the identity function and 1 a
vector of ones of length k, and there is no intermediate ReLu:

De
ij(Ξ,Θ) = ϕout(ϕ1(hi ◦wj ,Θ1),Θout)

= Id(1
⊤(hi ◦wj)) = 1⊤(hi ◦wj) = h⊤

i wj .
(3)

B. Multi layer perceptron (MLP)

The MLP model also takes as an input the sparse vectors
pi and tj followed by an embedding layer. The embedded
vectors hi and wj are then concatenated and provided to a
towered multi-layered architecture. This multi-layer architec-
ture introduces more flexibility and non-linearity to the model.
We denote ϕi(x,Θi) the mapping function of each hidden
layer i and Θi its trainable parameter. For this model, we
choose the ReLu as an activation function.

C. Loss and optimizers

For both architectures, we consider the mean squared error
as the loss function:

L(Ξ,Θ) =
1

|S|
∑

(i,j)∈S

(Dij −De
ij(Ξ,Θ))2, (4)

with |S| is the cardinal of S and Ξ,Θ denoting the different
trainable parameters of the network. In the evaluation section,
we use a batch size of 1 and we test different optimizers.



Fig. 3. Multi Layer Perceptron (MLP) model.

III. EVALUATION

We evaluate these two methods on two different datasets.
The first one is a synthetic dataset generated by an autonomous
system (AS) simulator [5], [6]. This simulator generates the
traffic entering and leaving the AS, with some abrupt traffic
changes that can be interpreted as BGP routing changes. The
distribution of the traffic on the links of the AS network is
calculated using a simple gravity model. Finally, the delays
on each link are modeled through an M/M/1 model. In this
simulator, the internal routing is supposed to be known and
fixed. The second dataset is a real-world dataset from a
measurement campaign that we have conducted on the Ripe
Atlas platform [7]. This campaign involves Ripe anchors
located around the world and the measurements are conducted
at a frequency of 4 minutes.

To evaluate the completion performance of the two NCF
architectures, we consider the convergence stress [8] as a
performance measure. It measures the quality of the recon-
struction on the missing values Dij with (i, j) ∈ S:

Stress =

√∑
(i,j)∈S(Dij −De

ij(Ξ,Θ))2∑
(i,j)∈S(Dij)2

(5)

We use the stress to compare the performance of NCF
approaches to the Non-negative Matrix Factorization (NMF)
ones [5]. To this end, we consider two NMF algorithms: the
alternated projected gradient (APG) [9] and the NeNMF [10]
algorithm that uses a Nesterov gradient. NMF is used with
a view to highlight clusters of delay trajectories in the lines
of the right matrix of the factorization, hence the positivity
constraint for the factorization.

A. Results on synthetic data

Impact of the embedding layer dimension Our simulated
dataset consists of a delay matrix of n = 20 source-destination
pairs over m = 400 instants. We start our study by varying
the embedding layer dimension k in the model architectures.

As we can see in Table I the stress decreases with the
embedding layer dimension. This is due to the fact that a

larger embedding layer captures more latent features and is
more adapted to complex high-dimensional data. We set the
embedding dimension to 35 for the MLP approach since it
reaches its minimum stress at this value, whereas for the GMF
the embedding dimension will be fixed at 30.

Impact of the number of epochs We have also assessed the
influence of the number of epochs on the completion accuracy
by changing it during the training phase. We can notice in
figure 4 (a) that the performance is enhanced when we increase
the training phase for both GMF and MLP. We can see that
stress starts to become stable between 1.5e5 and 2e5 epochs.
We fix the number of epochs to 1.5e5 for the rest of the
experiences for both architectures.

Impact of the optimizer and the learning rate We are
also interested in the impact of the type of optimizer. We
have tried three different optimizers: the stochastic gradient
descent (SGD), the Adam optimizer and the AdamW which
corresponds to the Adam optimizer with weight decay. Table
I shows that the Adam optimizer is optimal for this study
for both models. Moreover, we analyzed the influence of the
learning rate by trying different values. Figure 4 (b) indicates
that the learning rates of 0.001 and 0.0005 minimize the
stress respectively for the GMF and MLP models. Hence, the
learning rate will be fixed for each architecture accordingly.

Comparison of the execution times The execution time plays
a crucial role in the real-world deployment of completion
methods and should take part in the evaluation process. By
using a 2, 6 GHz Intel Core i7 processor and a 32Go 2667
MHz DDR4 memory the MLP and GMF were executed
respectively within 335 and 222 seconds each. On the other
hand, NeNMF takes 472s to converge whereas APG has a
much longer execution time of 16 minutes.

Testing piecewise regularization term on NCF As previously
highlighted in [5], we can add a regularization term to the loss
in order to incorporate more information about the temporal
stability of the RTTs observed in the data. Let us denote by
Lβ(Ξ,Θ) the regularized loss function, where β is the regu-
larization parameter. Omitting the dependencies with respect
to (Ξ,Θ) for simplicity reasons, Lβ writes:

Lβ = 1
|S|

∑
(i,j)∈S(Dij −De

ij)
2

+β
∑

i

(
|De

i1 −De
i2|+ |De

i(T−1) −De
iT |

+
∑T−1

t=2 |De
it −De

i(t+1)|+ |De
it −De

i(t−1)|
)
,

(6)

We observe in table III that the regularization does not have
a positive impact on the stress evolution. Therefore, we will
fix β = 0.

Impact of the sampling rate and NMF/NCF comparison
When a signal is partially observed, we denote the sampling
rate, the proportion of the observed values with respect to the
total entries of the matrix. In figure 4 (c), we investigate its
impact on the stress for NCF and NMF methods. Despite the
fact that all the methods display a stress less than 2%, we can



Emb dim k 5 10 15 20 25 30 35
Stress GMF 0.0183 0.0188 0.0134 0.0133 0.012 0.0103 0.0106
Stress MLP 0.0222 0.0135 0.0154 0.0113 0.0144 0.0108 0.0085

TABLE I
IMPACT OF THE EMBEDDING DIMENSION ON THE STRESS.

(a) (b) (c)

Fig. 4. (a) The impact of the number of epochs, (b) the impact of the learning rate and (c) the impact of the sampling rate on the stress.

notice that the MLP clearly outperforms the other methods
with a stress smaller than 1% for sampling rates higher than
70%. On the other hand, the performance of the GMF tends
to approach the NeNMF results on lower sampling rates but
surpasses it on higher ones. APG displays however worse
results than other methods.

Figures 5 and 6 show the reconstruction of two delay
matrices sampled respectively at 70% and 50% using GMF
and MLP. We can notice that the reconstruction captures
the baseline of each time series. Besides, the completion
corresponding to a higher sampling rate is less noisy and
shows more stability.

Optimizer SGD Adam AdamW
Stress GMF 0.0194 0.0112 0.0210
Stress MLP 0.0344 0.0089 0.0102

TABLE II
IMPACT OF THE OPTIMIZER ON THE STRESS.

Beta 0 0.01 0.1 0.3 0.5
Stress GMF 0.0104 0.0130 0.0201 0.0230 0.0260

TABLE III
IMPACT OF BETA ON THE STRESS.

Fig. 5. Reconstruction of an 70% observed simulated dataset using GMF

B. Results on real-world data

This dataset comes from a measurement campaign on Ripe
Atlas. Unlike the precedent work [5], we wanted to have a

Fig. 6. Reconstruction of an 50% observed simulated dataset using MLP

ground truth for all the entries of our delay matrix. To this end,
we selected anchors belonging to some of Google ASs around
the world. They are prone to be more stable, and have a higher
probability to be connected and respond to requests. This was
actually the case, since we did not have missing delays on this
campaign. The dataset contains 50 RTT time series of length
800 each corresponding to 22 hours of measurements.

Impact of the embedding layer dimension First, we explore
the impact of the embedding layer on the stress in table IV.
These values were achieved by running 1.5e5 epochs. The
stress remains overall constant for both architectures, but we
can see that GMF and MLP achieve their minimum stress at
20. For this reason, we fix this dimension to 20.

Emb dim 5 10 15 20 25 30
Stress GMF 0.0118 0.0115 0.0115 0.0113 0.0115 0.0118
Stress MLP 0.0121 0.0134 0.0132 0.0119 0.0142 0.0131

TABLE IV
IMPACT OF THE EMBEDDING DIMENSION ON THE STRESS FOR 1.5e5

EPOCHS.

Impact of the number of epochs Table V shows that MLP
reaches its minimum stress at 1.5e5 epochs, whereas GMF
stress continues to decrease after this value. Due to time
execution considerations, we set the number of epochs to 1.5e5
for both architectures.

Impact of the optimizer and the learning rate We investigate
the impact of the learning rate at Table VI. One can clearly
see that 1e−4 is the best learning rate for both architectures.



Number of epochs 5e4 1e5 1.5e5 2e5 2.5e5
Stress GMF 0.0182 0.0117 0.0119 0.0116 0.0115
Stress MLP 0.0123 0.0120 0.0118 0.0119 0.0142

TABLE V
IMPACT OF THE NUMBER OF EPOCHS ON THE STRESS.

We fix then the learning rate at this value. Table VII shows
the stress after 1.5e5 epochs with a learning rate of 1e−4 for
different optimizers. The Adam optimizer is the most suitable
for both the GMF and the MLP architectures.

Optimizer SGD Adam AdamW
Stress GMF 0.4433 0.0113 0.0116
Stress MLP 0.4408 0.0117 0.0118

TABLE VI
IMPACT OF THE OPTIMIZER ON THE STRESS.

Learning rate 0.005 0.001 0.0005 0.0001
Stress GMF 0.0192 0.0173 0.0144 0.0118
Stress MLP 0.0168 0.0151 0.0144 0.0117

TABLE VII
IMPACT OF THE LEARNING RATE ON THE STRESS.

Impact of the sampling rate and NMF/NCF comparison
We can see in Table VIII that the stress decreases with the
sampling rate for all the architectures. Moreover, we can
observe that the MLP is better than the GMF and that the
overall stress remains smaller than 2%. However, we see that
the NeNMF outperforms the NCF approaches when applied to
the real-world dataset, which is in line with the findings of the
comparative studies [11], [12]. Such result can be explained
by the time stability of the real-data matrix combined to its
high dimensions. These conditions can be in favor of a simple
matrix product rather than a more complex model that needs
to learn many additional parameters.

By comparing figure 7 and figure 8, one can notice that
both reconstructions correspond to the original time series,
but we can clearly see that at equal sampling rate, the GMF
reconstruction is noisier than the MLP one.

Sampling rate 0.50 0.6 0.7 0.8 0.9
Stress GMF 0.0198 0.0186 0.0166 0.0166 0.0158
Stress MLP 0.0126 0.0170 0.0125 0.1210 0.0119
Stress NeNMF 0.0182 0.0117 0.0119 0.0116 0.0115

TABLE VIII
IMPACT OF THE NUMBER OF EPOCHS ON THE STRESS.

IV. CONCLUSION

NCF approaches enable us to achieve very low stress rate for
the matrix completion task, both the simulated and real-world
datasets. In this paper, we have studied extensively the impact
of multiple parameters such as the optimizer, the learning rate
or the number of epochs on the reconstruction quality. This
allowed us to set an optimal training environment for the NCF
models. The comparison with the NMF algorithms showed
that NCF outperforms NeNMF on synthetic data, whereas this
tendency is reversed when applied to Ripe Atlas data. One of
the possible reasons is that we didn’t use enough iterations,
and we did not use the piecewise regularization. Finally, the
addition of a regularization term didn’t improve the completion

Fig. 7. Reconstruction of an 70% observed real-world delay matrix using
GMF.

Fig. 8. Reconstruction of an 70% observed real-world delay matrix using
MLP.

quality on the synthetic dataset. In the future, we consider
exploring other regularization terms, as well as testing online
versions of these methods for the matrix completion problem.
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