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Abstract

Density estimation raises delicate problems in higher di-

mensions especially when strong convergence is required and

data marginals can be highly correlated. Modified histograms

have been introduced to circumvent the problem of low bin

counts when convergence is considered in the sense of infor-

mation divergence. These estimates are defined from some

reference probability density and an associated partition which

is defined in the univariate case from the quantiles of the

reference density. Therefore, in the multivariate case, the

definition of the partition causes an additional problem re-

lated to the lack of total order. In this paper, we present

a method for constructing modified multivariate histograms

such that the corresponding partition is well adapted to the

observed data. The approach is based on a data-driven co-

ordinate system selected by cross-validation. We discuss the

performance of our estimate with the help of a finite sample

simulation study.

1 Introduction

We consider the problem of estimating an unknown probability density f
defined on R

d based on independent, identically distributed observations
X1, . . . , Xn from f . Here the quality of estimation will be evaluated by a
nonnegative divergence F (f, fn). Of interest are estimators fn consistent in
the sense

lim
n→∞

F (f, fn) = 0 a.s. or lim
n→∞

EF (f, fn) = 0

where E denotes the expectation with respect to the random vector (X1, . . . ,
Xn) figuring in the estimate fn. The two most important divergences in
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mathematical statistics and information theory are the total variation V and
the information divergence D. They are defined by

V (f, g) =
1

2

∫

Rd

|f(x) − g(x)|λ(dx) =
1

2
‖f − g‖L1

D(f, g) =

{

∫

Rd f(x) log
f(x)
g(x)

λ(dx) if f ≪ g

∞ otherwise,

where ≪ denotes absolute continuity. It is well known (cf. Csiszàr (1967),
Kemperman (1969), and Kullback (1967)) that for all densities f and g,
V (f, g) and D(f, g) are linked by the following inequality, called Kullback-
Csiszár-Kemperman inequality:

2V 2(f, g) ≤ D(f, g) ,

which entails that the information divergence is topologically stronger than
the total variation. In numerous application fields of statistics (data compres-
sion, telecommunication networks, classification, pattern recognition, neural
networks...), the consistency defined by total variation may prove inadequate.
This is the case when precise estimation of tail probabilities or convergence
of integrals of various functionals are required (see Berlinet, Vajda and van
der Meulen (1998) for discussion). Another concern with convergence in to-
tal variation is that, given any sequence of density estimates, the rate of
convergence of the expected L1 error can be arbitrary slow (Devroye, 1983).
Therefore stronger topologies such as information divergence are often pre-
ferred.
Classical nonparametric density estimates such as kernel estimates and his-
tograms are not universally consistent in information divergence (see Hall,
1987). The modified histograms introduced by Barron (1988) and Barron,
Györfi and van der Meulen (1992) circumvent this problem. They are defined
as follows.

Suppose that we observe independent R
d-valued random variables X1, . . . , Xn

with common unknown density f .

• Denote by g a known density on R
d and by ν the associated probability

measure;

• Define a sequence of integers {mn}n≥1 such that 1 ≤ mn ≤ n and let
hn = 1/mn;

• Introduce a sequence of partitions Pn = {An,1, An,2, . . . , An,mn
}, n ≥ 1,

such that ν(An,i) = hn, i = 1, . . . ,mn;
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• Finally consider, for an = 1/(nhn + 1) the following estimator fn

fn(x) =
[

(1− an)
µn

(

An(x)
)

hn

+ an

]

g(x) =
nµn

(

An(x)
)

+ 1

nhn + 1
g(x) . (1.1)

where µn stands for the empirical measure associated with the sample
X1, . . . , Xn and An(x) stands for An,i if x ∈ An,i.

The estimate (1.1) is a mixture of a histogram-type density estimate and the
known density g. It can also be regarded as a piecewise transformation of g
itself, which is thus often called in this context the reference density.
Under the conditions

D(f, g) < ∞, lim
n→∞

hn = 0 and lim
n→∞

nhn = ∞ ,

almost sure consistency in information divergence and consistency in ex-
pected information divergence have been proved by Barron, Györfi and van
der Meulen (1992).
For further results on modified histograms we refer the reader to Berlinet
and Brunel (2004), Berlinet, Györfi and van der Meulen (1997), Berlinet and
Biau (2004) and Györfi, Liese, Vajda and van der Meulen (1998).

When d = 1, the quantiles of the reference density are used to partition
R. Formally, denoting by G the distribution function associated with the
probability density g (g is defined on (a; b), a and b may be infinite), we set

An,i =
(

G−1
(i − 1

mn

)

, G−1
( i

mn

)]

, i = 1, . . . ,mn ,

where the interval (., .] is understood as open on the left and closed on the
right only when its upper bound is finite and where G−1 is the quantile
function defined by







G−1(α) = inf{x : G(x) ≥ u} if 0 < α < 1
G−1(α) = a if α = 0
G−1(α) = b if α = 1 .

(1.2)

Thus, univariate modified histograms result from the comparison of the quan-
tiles of g with the empirical quantiles. Under mild conditions the choice of g
does not affect dramatically the asymptotics. Practically, however, g should
not be “too far” from f , so that the comparison between the empirical mea-
sure and the reference density over the partition makes sense.

For d ≥ 2, the choice of such a partition is much more delicate because
the lack of total order does not allow to define multivariate quantiles having
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the same properties as univariate ones. The aim of this paper is to propose
a method for constructing multivariate modified histograms. In Section 2,
we give two algorithms to construct this estimate. The first one uses rect-
angles to partition R

d (as for the standard multivariate regular histogram
estimate). However, the performance of this estimate becomes poor in the
presence of high correlation among components of the data vector. This leads
us to a more effective method which results from a transformation of these
rectangles. We use the data-driven coordinate system introduced by Chaud-
huri and Sengupta (1993). In Section 3, we select this coordinate system by
cross-validation and we end with some simulations showing the very good
performance of the second estimate.

2 Construction of the estimator

Not any sequence of partitions of R
d has good properties to build consistent

estimates. The following concept, introduced by Csizàr (1973) has a great
importance in the definition of suitable partitions.

Definition 2.1 A sequence of partitions {Pn} of R
d is said to be ν-approxima-

ting for a given probability measure ν if, for every measurable set A and for
every ǫ > 0, there is for all n sufficiently large a set An equal to a union of
sets in {Pn} such that

ν(An △ A) < ǫ ,

where An △ A denotes the symmetric difference of An and A.

As proved by Barron, Györfi and van der Meulen (1992) this notion is basic
in the proof of consistency of modified histograms.
The partition of a univariate modified histogram is computed from the quan-
tiles of the reference density. Several authors have proposed extensions of
quantiles to multidimensional spaces. Chaudhuri (1996) proposed the notion
of geometric quantile which generalizes the spatial median studied earlier (see
Brown (1983) and Kemperman (1987)). Chakraborty (2001) transformed
these geometric quantiles in order to obtain affine equivariant multivariate
quantiles. Liu, Parelius and Singh (1999) proposed to define affine equivari-
ant multivariate quantiles using depth analysis. They generalized half-space
depth quantiles introduced by Tuckey (1975). Given a measure ν, using quan-
tile contour plots of Chakraborty (2001) or center outward quantiles surfaces
of Liu, Parelius and Singh (1999), one can construct a sequence of parti-
tions Pn = {An,1, . . . , An,mn

} such that ν(An,i) = hn (i = 1, . . . ,mn). These
sequences are nested in the sense that for all n there exists a sequence

Bn,1 ⊂ Bn,2 ⊂ . . . ⊂ Bn,mn
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such that

∀i = 1, . . . ,mn, An,i = Bn,i −
i−1
⋃

j=1

Bn,j . (2.1)
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Figure 1: Half-space depth center-outward quantile surface of order 0.25, 0.5
and 0.75 for the uniform distribution on the square [0, 1]2.

Such a sequence of partitions is not ν-approximating for any measure ν. For
example, let ν be the uniform distribution on the square [0, 1]2 and consider a
sequence of partitions built from halfspace depth quantiles (see Liu, Parelius
and Singh (1999)). Formally, for i = 1, . . . ,mn, Bn,i is a half-space depth
center-outward quantile surface of order i/mn and An,i is defined by (2.1)
(see Figure 1). Consider the vertical line which passes through the center
of the square (dashed line in Figure 1). This line splits the square into two
rectangles. If A denotes one of these rectangles, it is easily seen that for all
sets An equal to a union of sets in Pn, we have

ν(An △ A) = 0.5 ,

which entails that Pn is not ν-approximating.
Other authors have defined quantiles in multidimensional spaces (see Brown
and Hettmansperger (1987), Eddy (1983, 1985)), but as far as we know none
permits the construction of modified histograms for any reference density.
This leads us to restrict our attention to a certain class of reference densities.
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2.1 Regular modified histograms

The standard regular (unmodified) histogram is defined by a partition of R
d

into rectangular cells of widths h1, . . . , hd. The goal of this paragraph is the
adaptation of this partition to modified histograms. In this regard we only
consider reference densities g such that

g(x1, . . . , xd) = g1(x1) . . . gd(xd) , (2.2)

where g1, . . . , gd are univariate densities. For j = 1, . . . , d, we denote by Gj

the distribution function associated with the probability density gj and by
G−1

j the quantile function as in (1.2).

Given i.i.d. observations X1, . . . , Xn from a density f on R
d and given a

reference density g such as (2.2), modified multivariate histograms are built
as follows:

• Set m = m1 . . . md with m1, . . . ,md positive integers and let hj = 1/mj

for j = 1, . . . , d;

• For j = 1, . . . , d and ij = 1, . . . ,mj − 1, compute univariate quantiles
of order ijhj of gj. Denote by qj,ij these quantiles i.e.

qj,ij = G−1
j (ijhj)

with the convention qj,0 = −∞ and qj,mj
= ∞;

• Consider the grid defined by the above family {qj,ij}; this grid leads to
a partition of R

d into m hyperrectangles (see Figure 2), say

Ai1,...,id =
d

∏

j=1

(qj,ij−1, qj,ij ] ; (2.3)

• For each of these cells, compute the empirical measure:

µn(Ai1,...,id) =
1

n

n
∑

i=1

1{Xi∈Ai1,...,id
} ;

• The regular modified multivariate histogram density estimate fn is de-
fined by:

fn(x) =
nµn

(

A(x)
)

+ 1

nh + 1
g(x) (2.4)

where h = h1 . . . hd and A(x) stands for Ai1,...,id if x ∈ Ai1,...,id .
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q1;1 q1;2 q1;3
q2;1q2;2

A1;1 A2;1 A3;1 A4;1A1;2 A2;2 A3;2 A4;2A1;3 A2;3 A3;3 A4;3

Figure 2: Example of partition in R
2 : m1 = 4, m2 = 3.

Denote by ν the probability measure associated with the reference density g.
It is easily seen that, for any set Ai1,...,id ,

ν(Ai1,...,id) = h .

Consistency in information divergence and expected information divergence
is established in our next theorem.

Theorem 2.1 Let fn be the regular modified histogram defined in (2.4). As-
sume that D(f, g) < ∞.

(i) If hj = hj,n (j = 1, . . . , d) and lim
n→∞

max
1≤j≤d

hj,n = 0 then the sequence of

partition
{Pn} = {An,i1,...,id}1≤j≤d

1≤ij≤mj,n

defined in (2.3) is ν-approximating.

(ii) Moreover assume that lim
n→∞

nhn = ∞ (hn = h1,n . . . hd,n), then

lim
n→∞

ED(f, fn) = 0 and lim
n→∞

D(f, fn) = 0 a.s.
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Proof .

We first prove (i). Let S denote the support of ν and S its complement in
R

d. With a slight abuse of notation, we denote

{Pn} = {An,1, . . . , An,mn
} .

For j = 1, . . . , d, let aj = inf{x ∈ R : gj(x) 6= 0} and bj = sup{x ∈ R :
gj(x) 6= 0} (aj and bj may be infinite). Let Sj (resp. Sj) be the projection
of S (resp. S) on (aj, bj). Sj is the union of kj distinct intervals of length
l(i) (i = 1, . . . , kj). For x = (x1, . . . , xd) ∈ S, let pj(xj) denote the number
of intervals of Sj before xj and consider for j = 1, . . . , d

Tj : Sj −→ R

xj −→ xj −
pj(xj)
∑

i=1

l(i)

and

T : S −→ R
d

(x1, . . . , xd) −→ (T1(x1), . . . , Td(xd)) .

The application T allows to remove the hyperrectangles R of R
d such that

ν(R) = 0.
Fix a measurable set A. If An is equal to a union of sets in Pn then

ν(An △ A) = ν(T (An) △ T (A)) .

Therefore, it suffices to prove that the partition

{PT
n } = {T (An,1), . . . , T (An,mn

)}

is ν-approximating. Note that T (An,i) (i = 1, . . . ,mn) are hyperrectangles of
R

d such that ν(T (An,i)) = h1,n . . . hd,n. Since limn→∞ hj,n = 0, j = 1, . . . , d,
we have for each ball B centered at some point x0

lim
n→∞

max
{i:T (An,i)∩B 6=∅}

diam(T (An,i)) = 0

where diam(E) = supx,y∈E d(x, y) and d(x, y) denotes the distance in R
d. It

follows from Csiszár (1973, p. 168) that the partition {PT
n } is ν-approximating.

Combining (i) with Theorem 2 in Barron, Györfi and van der Meulen (1992)
gives (ii).

�
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Table 1: Information divergence and total variation according to the corre-
lation.

ρ 0 0.25 0.5 0.75 0.95
D(f, fn) 0.32 0.33 0.35 0.43 0.74
V (f, fn) 0.19 0.19 0.21 0.22 0.34

2.2 Influence of correlation

Through an example, we study the influence of the shape of the data vector
on the performance of the density estimate defined in (2.4). Table 1 gives
the information divergence D(f, fn) and the total variation V (f, fn) between
binormals and their standard modified histogram estimates. Simulated bi-
normals have 0 mean, unit standard deviation and varying correlation (from
0 to 0.95), the size of the samples is n = 250. To construct the estimate,
we take m1 = m2 = 5 and the reference density g is a product of Gumbel
densities:

g(x, y) = exp
(

− x − exp(−x)
)

exp
(

− y − exp(−y)
)

. (2.5)

Results are clearly better in the presence of weak correlation. One can explain
it as follows. On Figure 3, we have represented a sample of size n = 250 from
a binormal with 0 mean and identity variance matrix (left) and the image
of this sample by the affine transformation (right):

T (x) = Σ1/2x + a

where

Σ =

(

1 0.95
0.95 1

)

and a =

(

−1
0

)

.

Note that the transformed sample can be seen as a sample simulated from
a binormal N (a, Σ). We represent on these graphics the partition used to
construct regular modified histograms with a reference density of Gumbel
(see (2.5)) and m1 = m2 = 5. For the transformed sample, only few classes
possesses observations, the partition is not well adapted to the data cloud.
Therefore the comparison between the empirical measure and the reference
density over the partition does not make much sense.
To correct this, we will construct data dependent modified histograms for
which keeping the parameters g and mj (j = 1, . . . , d) fixed, the correspond-
ing partition is equivariant under affine transformation of data vectors. Our
method is inspired by the affine equivariant quantile contour plots defined by
Chakraborty (2001).
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Figure 3: See text in Subsection 2.2.

2.3 Data-driven modified histograms

Statistical practice suggests that histograms based on data-dependent parti-
tions will provide better performance than those based on a fixed sequence
of partitions. Theoretical evidence for this superiority was put forward by
Stone (1985). In this paragraph, we construct a modified histogram based
on a data-dependent partition equivariant under affine transformation of the
data vector (for g and mj, j = 1, . . . , d fixed). The approach is based on
a “data-driven coordinate system” introduced by Chaudhuri and Sengupta
(1993). Formally, fix n0 such that n0 > d + 1 and consider n0 + n data
points X1, . . . , Xn0+n i.i.d. from a density f on R

d. Split the data into a set
X1, . . . , Xn0

used for choosing the “data-driven coordinate system” and a set
Xn0+1, . . . , Xn0+n used for constructing the density estimate. To lighten the
notation we will write X⋆

1 , . . . , X
⋆
n for Xn0+1, . . . , Xn0+n.

• Set m = m1 . . . md with m1, . . . ,md positive integers, and let hj = 1/mj

for j = 1, . . . , d;

• Let α = {k0, k1, . . . , kd} denote a subset of {1, 2, . . . , n0} of size (d +
1). Consider the points Xk0

, . . . , Xkd
which will form a “data-driven

coordinate system”, where Xk0
will determine the origin and the lines

joining that origin to the remaining d data points Xk1
, . . . , Xkd

will
form various coordinate axis. Consider the d × d matrix

X(α) = {Xk1
− Xk0

, . . . , Xkd
− Xk0

} .

If f is absolutely continuous on R
d, X(α) is an invertible matrix with

probability one for any choice of α (see Chaudhuri and Sengupta (1993)).
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Next, transform all the observations in terms of the new coordinate sys-
tem as







Ẋi = {X(α)}−1Xi, i = 1, . . . , n0 ,

Ẋ⋆
i = {X(α)}−1X⋆

i , i = 1, . . . , n .

• Let g̃ be a density on R
d such that

g̃(x1, . . . , xd) = g̃1(x1) . . . g̃d(xd) , (2.6)

where g̃1(x1), . . . , g̃d(xd) are univariate densities.
Define p = (p1, . . . , pd) the coordinatewise median associated with the
density g̃, i.e.

pj = G̃−1
j (0.5) , j = 1, . . . , d ,

and let Ẋ([n0/2]) be the empirical coordinatewise median from the sam-

ple Ẋ1, . . . , Ẋn0
i.e.

Ẋ([n0/2]) = (Ẋ
(1)
([n0/2]), . . . , Ẋ

(d)
([n0/2])) .

where [ ] stands for the integer part and Ẋ
(j)
(1) , . . . , Ẋ

(j)
(n0) denotes the

order statistics of the j-th components of the data vector Ẋ1, . . . , Ẋn0
.

Consider the vector bα
X = p − Ẋ([n0/2]) and let X̃⋆

i be the image of Ẋ⋆
i

by the translation of vector bα
X , i.e.

X̃⋆
i = Ẋ⋆

i + bα
X , i = 1, . . . , n .

As for the regular modified histograms presented above, for j = 1, . . . , d
and ij = 1, . . . ,mj−1, denote q̃j,ij the quantile of order ijhj of g̃j. These
quantiles lead to a partition of R

d into m hyperrectangles say

Ãi1,...,id =
d

∏

j=1

(q̃j,ij−1, q̃j,ij ] .

Let µn (resp. µ̃n) be the empirical measure associated with the sample
X⋆

1 , . . . , X
⋆
n (resp. X̃⋆

1 , . . . , X̃
⋆
n);

• Express the Ãi1,...,id ’s in terms of the original coordinate system, i.e.

Ai1,...,id = X(α)
(

Ãi1,...,id − bα
X

)

.

Ãi1,...,id is the image of the hyperrectangle Ai1,...,id by an affine trans-
formation therefore Ãi1,...,id is an hyperparallelogram (see Figure 4).
Moreover, it is easily seen that

µn(Ai1,...,id) = µ̃n(Ãi1,...,id) ;

11



• Finally, fix

gα(x) =
1

∣

∣det
(

X(α)
)∣

∣

g̃
(

{X(α)}−1x + bα
X

)

, (2.7)

then the data-driven modified histogram density estimate is defined by

fn(x) =
nµn

(

A(x)
)

+ 1

nh + 1
gα(x) , (2.8)

where h = h1 . . . hd and A(x) stands for Ai1,...,id if x ∈ Ai1,...,id .

Lemma 2.1 The estimate fn(x) defined in (2.8) is a modified histogram in
the sense of (1.1).

Proof .

It suffices to prove the following assertions:

• gα is a density (we will denote by ν the measure associated with this
density);

• for j = 1, . . . , d and ij = 1, . . . ,mj, ν(Ai1,...,id) = h.

These assertions are direct consequences of the change of variables theorem.
�

Remark 2.1 One can use other translations, however our choice of bα
X seems

to be well adapted to our estimate. Indeed, modified histograms result from
the comparison between the reference density and the empirical measure.
Thus, our translation is chosen so that the image of Ẋ1, . . . , Ẋn0

has the same
median as the density g̃. This translation can be seen as a “bias correction”.
We choose the median because of its robustness.

¿From now on, given a sample T1, . . . , Tn0+n, we write T ⋆
1 , . . . , T ⋆

n for Tn0+1, . . . , Tn0+n

and µn(A; T ⋆
1 , . . . , T ⋆

n) for the empirical measure associated with T ⋆
1 , . . . , T ⋆

n .
Moreover, with a slight abuse of notation, we will denote by {Ai1,...,id} the
partition

{Ai1,...,id}1≤j≤d
1≤ij≤mj

.

We now prove the equivariance of the partition under arbitrary affine trans-
formations of data vectors.

12



Figure 4: Transformation of the partition.

Theorem 2.2 The partition {Ai1,...,id} is equivariant under arbitrary affine
transformations of data vectors. We can formulate it as follows.
Let the d-dimensional vectors X1, . . . , Xn0+n be transformed into Z1, . . . ,
Zn0+n with Zi = MXi + c where M is a d × d nonsingular matrix and c
is a vector in R

d. Suppose that we use the same density g̃ and the same inte-
gers mj (j = 1, . . . , d) to construct the data-driven modified histogram from
X1, . . . , Xn0+n and Z1, . . . , Zn0+n. If {Ai1,...,id} (resp. {Bi1,...,id}) denotes the
partition computed from the sample X1, . . . , Xn0+n (resp. Z1, . . . , Zn0+n),
then for all integers i1, . . . , id such that 1 ≤ ij ≤ mj and 1 ≤ j ≤ d we have

(i) Bi1,...,id = MAi1,...,id + c .

(ii) µn(Ai1,...,id ; X
⋆
1 , . . . , X

⋆
n) = µn(Bi1,...,id ; Z

⋆
1 , . . . , Z

⋆
n) .

Proof .

Let α = {k0, k1, . . . , kd} be a subset of {1, . . . , n0} of size d + 1. Consider

X(α) = {Xk1
− Xk0

, . . . , Xkd
− Xk0

}
and

Z(α) = {Zk1
− Zk0

, . . . , Zkd
− Zk0

}

13



so that we have Z(α) = MX(α).
Note that for i = 1, . . . , n0

Żi =Z(α)−1Zi

=X(α)−1Xi +
(

MX(α)
)−1

c

=Ẋi +
(

MX(α)
)−1

c .

Therefore Ż[n0/2] = Ẋ[n0/2]+(MX(α))−1c and bα
Z = bα

X−
(

MX(α)
)−1

c. As we
use the same density g̃ and the same integers mj (j = 1, . . . , d), the partitions
computed for transformed observations will be the same for the samples
X1, . . . , Xn0+n and Z1, . . . , Zn0+n. We denote {Ãi1,...,id} this partition. To
obtain {Ai1,...,id} and {Bi1,...,id} we only have to retransform {Ãi1,...,id}. For
all integers i1, . . . , id such that 1 ≤ ij ≤ mj and 1 ≤ j ≤ d, it follows that

Bi1,...,id =Z(α)(Ãi1,...,id − bα
Z)

=MX(α)
(

Ãi1,...,id −
(

bα
X − (MX(α))−1ci

¯
g)

)

=M
(

X(α)
(

Ãi1,...,id − bα
X

)

)

+ c

=MAi1,...,id + c ,

which gives (i).
Since X̃⋆

i = X(α)−1X⋆
i + bα

X and Z̃⋆
i = Z(α)−1Z⋆

i + bα
Z (i = 1, . . . , n), it easily

follows that
∀i = 1, . . . , n, X̃⋆

i = Z̃⋆
i .

Therefore

µn(Ãi1,...,id ; X̃
⋆
1 , . . . , X̃

⋆
n) = µn(Ãi1,...,id ; Z̃

⋆
1 , . . . , Z̃

⋆
n)

and (ii) is proved.
�

Remark 2.2 It is worth pointing out that the actual reference density (in
the sense of (1.1)) is gα which implies that the reference density depends
on the data. However, one can have some a priori idea on the density to
estimate and thus want to construct modified histogram for a given reference
density g. It is possible to use this algorithm provided that g may be written
in the form

g(x) =
1

| det(M)| g̃(M−1x + a) (2.9)
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where x = (x1, . . . , xd), M is an invertible matrix d × d, a is a vector of R
d

and g̃ is a product of univariate densities i.e.

g̃(x) = g̃1(x1) . . . g̃d(xd) .

In that case we no longer split the data (all the observations are used to
construct the modified histogram) and we replace X(α) by M and bα

X by a.
Note that multinormal densities gµ,Σ are in the form of (2.9). Nevertheless
Theorem 2.2 does not hold for such modified histograms.

Summarizing, we have found a partition equivariant under arbitrary affine
transformation. Consistency in information divergence of this new estimate
is a straightforward consequence of the next lemma (whom proof is straight-
forward).

Lemma 2.2 The information divergence is invariant under invertible trans-
formation of the data sample.

Corollary 2.1 Let fn be the data-driven modified histogram defined in (2.8).
Assume that D(f, gα) < ∞a.s. Moreover, assume that for i = 1, . . . , d, hi =
hi,n (therefore h = hn),

lim
n→∞

max
1≤i≤d

hi,n = 0 and lim
n→∞

nhn = ∞ ,

then
lim

n→∞
E(n0)D(f, fn) = 0a.s. and lim

n→∞
D(f, fn) = 0 a.s.

where E(n0) denotes the conditional expectation given the Xi’s for which 1 ≤
i ≤ n0.

Proof .

Fix X1, . . . , Xn0
such that D(f, gα) < ∞. Let f̃ (resp. f̃n) be the density to

estimate f (resp. the density estimator fn) in the transformed coordinate
system i.e.







f̃(x) =
∣

∣det
(

X(α)
)∣

∣f
(

X(α)(x − bα
X)

)

f̃n(x) =
∣

∣det
(

X(α)
)∣

∣fn

(

X(α)(x − bα
X)

)

.

f̃n is the regular modified histogram density estimate of f̃ (see page 6) with
g̃ as reference density. From Theorem 2.1, it follows that











lim
n→∞

D(f̃ , f̃n) = 0 a.s.

lim
n→∞

ED(f̃ , f̃n) = 0 .
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The conclusion follows from Lemma 2.2.
�

3 Selection of α

The performance of the data-driven modified histogram clearly depends upon
the choice of mj (j = 1, . . . , d), g̃ and α. Here we will restrict our attention
to the choice of α. Recent univariate results obtained by Berlinet and Brunel
(2004) show that the Kullback-Leibler cross-validation technique works well
for selecting m1 from the data. We will apply the same method to find the
best α.
Let X1, . . . , Xn0+n be i.i.d. observations from a density f and let Sn0

denote
the collection of all subsets of size d + 1 of {1, . . . , n0}. Fix mj (j = 1, . . . , d)
and g̃ (such as (2.6)). For α ∈ Sn0

, let us denote by fα
n the data-driven

modified multivariate histogram defined in (2.8). Expanding the actual in-
formation divergence error yields

D(f, fα
n ) =

∫

Rd

f(x) log f(x) dx −
∫

Rd

f(x) log fα
n (x) dx . (3.1)

The second integral could be written as E(log fα
n (X)), where the expecta-

tion is taken with respect to the evaluating point and not over the sam-
ple. The cross-validation device consists in removing one data point among
X⋆

1 , . . . , X
⋆
n and using the remaining (n−1) points to construct an estimator

of E(log fα
n (X)). This step is repeated for each X⋆

i (i = 1, . . . , n). Let fα,i
n

be the modified histogram density estimate defined after deleting the i-th
observation i.e.

fα,i
n (x) =

nµi
n

(

A(x)
)

+ 1

nh + 1
gα(x)

where gα is defined by (2.7) and

µi
n

(

A(x)
)

=
1

n − 1

∑

j 6=i

1{X⋆
j ∈A(x)} .

With this notation, an estimate of E(log fα
n (X)) is given by

1

n

n
∑

i=1

log fα,i
n (X⋆

i )

and since the first integral in (3.1) does not depend on α, we deduce a cross
validation criterion for the choice of α:
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choose α̂ ∈ Sn0
which minimizes CV (α) = − 1

n

n
∑

i=1

log fα,i
n (X⋆

i ) .

Note that if D(f, gα̂) < ∞ a.s., consistency of the selected estimate f α̂
n follows

from Corollary 2.1.
For fixed α, we have seen that the partition is affine equivariant. The next
theorem states the analogue with α selected by cross-validation.

Theorem 3.1 The choice of α by cross-validation is invariant under arbi-
trary affine transformations of data vectors. We can formulate it as follows.
Let the d-dimensional vectors X1, . . . , Xn0+n be transformed into Z1, . . . ,
Zn0+n with Zi = MXi + c where M is a d × d nonsingular matrix and c
is a vector in R

d. Suppose that we use the same density g̃ and the same
integers mj (j = 1, . . . , d) to construct the data-driven modified histograms
fα

n,X (with X1, . . . , Xn0+n ) and fα
n,Z (with Z1, . . . , Zn0+n). Then

α̂ minimizes − 1

n

n
∑

i=1

log fα,i
n,X(X⋆

i ) ⇔ α̂ minimizes − 1

n

n
∑

i=1

log fα,i
n,Z(Z⋆

i ).

Proof .

We will denote by {Ai1,...,id} (resp. {Bi1,...,id} ) the partition used to construct
the modified histogram from the sample X1, . . . , Xn0+n (resp. Z1, . . . , Zn0+n).
We have

1

n

n
∑

i=1

log fα,i
n,Z(Z⋆

i ) =
1

n

n
∑

i=1

log
nµi

n

(

B(Z⋆
i )

)

+ 1

nh + 1
gα(Z⋆

i )

where

gα(Z⋆
i ) =

1

|det(Z(α))| g̃
(

Z(α)−1Z⋆
i + bα

Z

)

.

Theorem 2.2 and its proof give







Z(α) = MX(α)

bα
Z = bα

X −
(

MX(α)
)−1

c
Bi1,...,id = MAi1,...,id + c .

Moreover, it is easily seen that µi
n

(

B(Z⋆
i )

)

= µi
n

(

A(X⋆
i )

)

. Putting all pieces
together, we obtain

− 1

n

n
∑

i=1

log fα,i
n,Z(Z⋆

i ) = − 1

n

n
∑

i=1

log fα,i
n,X(X⋆

i ) + log(| det(M)|) .
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Since M does not depend on α, the proof is complete.
�

4 Simulations

In this paragraph we are presenting some finite sample simulation results
on the efficiency of the data-driven modified histogram fα

n defined by (2.8)
compared with the regular modified histogram fn defined by (2.4). We use
two data sets.
We first simulated 50 samples of size n0 + n (n0 + n = 150, 300, 550) from
bivariate normal populations with zero means, unit standard deviations and
varying correlation coefficients ρ = 0, 0.25, 0.5, 0.75 and 0.95. For each sam-
ple, we have computed modified histograms fn and fα

n (α is selected by
cross-validation). These estimates are built with























g̃(x, y) = exp
(

− x − exp(−x)
)

exp
(

− y − exp(−y)
)

n0 = 50
m1 = m2 = 4 for n = 100
m1 = m2 = 5 for n = 250
m1 = m2 = 6 for n = 500 .

We display in Table 2 the average of D(f, fn) and D(f, fα
n ) and the gain Ga

in information divergence

Ga =
D(f, fn) − D(f, fα

n )

D(f, fn)
.

For the second set of data, points are generated from multivariate symmetric
Laplace distributions (see Anderson, 1992) with density

f(x) =
2

(2π)d/2|Σ|1/2
(xtΣ−1x/2)v/2Kv

(√
2xtΣ−1x

)

,

where v = (2 − d)/2, Σ is a d × d non-negative definite symmetric matrix
and Kv(u) is the modified Bessel function of the third kind given by

Kv(u) =
1

2

(u

2

)v
∫ ∞

0

t−v−1 exp
(

− t − u2

4t

)

dt , u > 0 .

We set d = 2, 4, 8, 10 and several sample sizes n0 + n. For each (d, n0 + n),
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Table 2: Comparison of performance between regular and data-driven mod-
ified histograms.

n ρ D(f, fn) D(f, fα
n ) Ga

100 0 0.36 0.23 0.36
250 0.32 0.15 0.53
500 0.29 0.11 0.62
100 0.25 0.36 0.24 0.33
250 0.32 0.15 0.53
500 0.30 0.11 0.63
100 0.5 0.39 0.23 0.41
250 0.35 0.15 0.57
500 0.31 0.11 0.65
100 0.75 0.50 0.23 0.54
250 0.41 0.15 0.63
500 0.36 0.10 0.72
100 0.95 0.85 0.24 0.72
250 0.73 0.14 0.81
500 0.64 0.11 0.83

we simulated 50 samples from a symmetric Laplace distribution with

Σ =











1 ρ . . . ρ

ρ
. . . . . .

...
...

. . . . . . ρ
ρ . . . ρ 1











ρ = 0; 0.5; 0.95 .

The density g̃ is a multivariate standard normal distribution and we take
mj = 3 (j = 1, . . . , d). For d = 2 and 4 we again take n0 = 50 to select α by
cross-validation. However, for higher dimension the optimization problem is
very heavy and takes too much time to reach an adequate solution. Thus,
for d = 8 and 10, we propose the following alternative. We choose the
transformation matrix X(α) in such a way that the image of X1, . . . , Xn0

has the same variance-covariance matrix as the density g̃ (identity in our
example). In other words, we replace X(α) with Σ̂1/2 where Σ̂ is an affine
equivariant estimate of the variance-covariance matrix of the distribution
(computed from X1, . . . , Xn0

). The rest of the construction does not change.
Note that the corresponding estimate no longer depends on α but on Σ̂. In
this regard it will be denoted by f Σ̂

n and for the sake of clarity the associated

reference density gα and vector bα
X will be denoted by gΣ̂ and bΣ̂

X . Consistency

Corollary 2.1 is still true for f Σ̂
n . We take n0 = 1000 for d = 8 and 10.
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Figure 5: Partition of data-driven modified histogram. Simulated samples are
the same as in Figure 3. g̃ is a product of Gumbel densities and m1 = m2 = 5.

D(f, fn) and D(f, fα
n ) are computed from Monte-Carlo method. The results

are displayed in Table 3.

5 Concluding Remarks

1) Our examples demonstrate rather strikingly that fα
n is on the whole better

than fn. The difference increases with the correlation and the dimension.
Moreover, keeping n and d fixed, D(f, fα

n ) is stable whatever the correlation.
It is worth pointing out that the partition is well adapted to the data cloud
even with high correlation (see Figure 5).

2) Unlike with the first set of data, fα
n is not better than fn when ρ = 0 for

the second set. It is due to the fact that the symmetric Laplace distribution
and the standard gaussian distribution have the same median. Therefore the
translation vector is close to zero and the reference density and the density to
estimate are close enough without the transformation. On the other hand, for
the first data set the two distributions do not have the same coordinatewise
median. The translation can be seen as a “bias corrector” between the two
densities.

3) For the second data set, the partition is not equivariant by affine transfor-
mation of the data sample when d = 8 or d = 10. All the same, the estimate
is performant and the computation is quick even in large dimension. We em-
phasize that the transformation-retransformation procedure just allows to
select a reference density which is not “too far” from the density to estimate.
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Table 3: Comparison of performance between regular and data-driven mod-
ified histograms.

D(f, fα
n )

d; n ρ D(f, fn) or Ga

D(f, f Σ̂
n )

2;250 0 0.12 0.12 0
0.5 0.18 0.13 0.28
0.95 0.73 0.12 0.84

4;1000 0 0.34 0.36 -0.06
0.5 0.55 0.37 0.33
0.95 2.32 0.37 0.84

8;10000 0 0.90 0.90 0
0.5 1.58 0.93 0.41
0.95 6.10 0.93 0.85

10;500000 0 1.08 1.12 -0.04
0.5 1.90 1.14 0.40
0.95 7.52 1.12 0.85

In other words our choice of the transformation matrix is motivated by the
fact that the reference density should be as close as possible to the density
f to estimate . Since f is unknown in practice, we select the affine trans-
formation such that the image of X1, . . . , Xn0

and the random variable with
density g̃ have the same variance-covariance matrix (with the help of the
linear transformation Σ̂−1/2) and the same median (by the vector translation

bΣ̂
X). Note that when f is elliptically symmetric, similar conditions on the

choice of the transformation matrix are discussed by Chakraborty (2001) in
the asymptotic study of the affine equivariant multivariate quantiles.
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