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Abstract

A multivariate modified histogram density estimate depend-
ing on a reference density g and a partition P has recently
been proved to have good consistency properties according
to several information theoretic criteria. Given an i.i.d. sam-
ple, we show how to select automatically both g and P so that
the expected L1 error of the corresponding selected estimate
is within a given constant multiple of the best possible er-
ror plus an additive term which tends to zero under mild
assumptions. Our method is inspired by the combinatorial
tools developed in Devroye and Lugosi [1] and it includes a
wide range of reference density and partition models. Re-
sults of simulations are presented.

Index Terms — Modified histogram estimate, nonparametric
estimation, partition, Vapnik-Chervonenkis dimension.

AMS 2000 Classification: 62G05.

1 Introduction

General φ-divergences (Liese and Vajda [2]) are widely used in many fields
of statistics (data compression, telecommunication networks, classification,
pattern recognition, neural networks...), particularly in decision processes
based on density estimates and functionals of them. Many authors have put
forward their attractive properties as criteria of accuracy. However, consider-
ing convergence of estimates of a density in the sense of φ-divergences causes
some trouble. With standard histograms the situation is even hopeless as
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empty cells, occurring with high probability, make most of divergences infi-
nite. The modified histograms introduced by Barron [3] and Barron, Györfi
and van der Meulen [4] circumvent this problem. They are defined as follows.

Suppose that we observe independent R
d-valued random variablesX1, . . . , Xn

with common unknown density f .

• Denote by g a known density on R
d and by νg the associated probability

measure;

• Define a sequence of integers {ℓn}n≥1 such that 2 ≤ ℓn and let hn =
1/ℓn;

• Introduce a sequence of partitions P = {An1, . . . , Anℓn} such that
νg(Ani) = hn for i = 1, . . . , ℓn;

• Finally consider, for an = 1/(nhn + 1), the following density estimate
fn:

fn(x) =
[

(1 − an)
µn
(

An(x)
)

hn
+ an

]

g(x) =
nµn

(

An(x)
)

+ 1

nhn + 1
g(x) , (1)

where µn stands for the empirical measure associated with the sample
X1, . . . , Xn, i.e., µn(A) = (1/n)

∑n
i=1 1[Xi∈A], and An(x) equals Ani if

x ∈ Ani.

The estimate (1) is a mixture of a histogram-type density estimate and the
known density g. It can also be regarded as a piecewise transformation of g
itself: roughly speaking, this modified histogram results from the comparison
of the quantiles of g – the reference density – with the empirical quantiles
(see Figure 1 for an example).

For further results on modified histograms, we refer the reader to Barron,
Györfi and van der Meulen [4] who prove consistency in the sense of in-
formation divergence, Berlinet, Györfi and van der Meulen [5] who prove a
central limit theorem for Kullback-Leibler divergence, Györfi, Liese, Vajda
and van der Meulen [6], and Berlinet, Vajda and van der Meulen [7] who
extend the information divergence consistency properties respectively to the
χ2-divergence and to more general φ-divergences.

Once the observations are given two parameters have to be chosen to build
the modified histogram, namely a reference density g and a partition P . Re-
cent univariate results obtained by Berlinet and Brunel (see [8], [9]) show
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Figure 1: Modified histogram estimate (continuous line) of n = 100 Gaussian
(dotted line) data (ℓn = 8). The reference density is Gumbel (dashed line).

that the Kullback-Leibler cross-validation technique works well to select the
partition from the data and that it is asymptotically optimal. As far as we
know, no work has been devoted so far to select g and P simultaneously.
This article proposes to fill this gap, using a general multivariate data-based
combinatorial methodology presented in Devroye and Lugosi [1]. More pre-
cisely, we will show how to select both g and P – within given classes – so
that the expected L1 error of the corresponding selected estimate is up to a
given constant multiple of the best possible error plus an additive term which
tends to zero under mild assumptions. The paper is organized as follows. In
Section 2, we present the multivariate selection procedure and give the main
results. Examples are worked out in Section 3 and simulations are presented
in Section 4. Proofs are gathered in Section 5.

2 Automatic parameter selection

2.1 The combinatorial method

Using ideas from Yatracos [10], Devroye and Lugosi [1] explore a new paradigm
for the data-based or automatic selection of the free parameters of density
estimates in general so that the expected L1 error is within a given constant
multiple of the best possible error. To summarize in the present context,
assume we are given a class of density estimates parameterized by θ ∈ Θ
such that fn,θ denotes the density estimate with parameter θ. Let m < n be
an integer which splits the data X1, . . . , Xn into
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• a set X1, . . . , Xn−m used for the construction of the density estimate;

• a validation set Xn−m+1, . . . , Xn.

Introduce the class of random sets

AΘ =
{

{

x : fn−m,θ(x) > fn−m,θ′(x)
}

: (θ, θ′) ∈ Θ2
}

(AΘ is the so-called Yatracos class associated with Θ) and define

∆θ = sup
A∈AΘ

∣

∣

∣

∣

∫

A

fn−m,θ − µm(A)

∣

∣

∣

∣

,

where µm(A) = (1/m)
∑n

i=n−m+1 1[Xi∈A] is the empirical measure associated
with the sample Xn−m+1, . . . , Xn. Then the minimum distance estimate fn
is defined as any density estimate selected among the candidates fn−m,θ with

∆θ < inf
θ∗∈Θ

∆θ∗ +
1

n
.

Note that the 1/n term is added to ensure the existence of such a density
estimate. According to Devroye and Lugosi [1], Chapter 10, whenever fn−m,θ
integrates to one, the selected fn satisfies the following inequality:

E

{
∫

|fn − f |
}

≤ 3 inf
θ∈Θ

E

{
∫

|fn−m,θ − f |
}

+ 8E

{

√

log 2SAΘ
(m)

m

}

+
3

n
.

(2)
Here, SAΘ

(m) is the Vapnik-Chervonenkis shatter coefficient of the class of
sets AΘ (Vapnik and Chervonenkis [11]), defined by

SAΘ
(m) = max

x1,..., xm∈Rd
Card

{

{x1, . . . , xm} ∩ A : A ∈ AΘ

}

.

This general methodology provides an automatic procedure to construct a
density estimate fn whose L1 error is (almost) as small as that of the best es-
timate among the fn,θ, θ ∈ Θ. We emphasize that inequality (2) is nonasymp-
totic, that is, the bound is valid for all n. The rest of the analysis is then
purely combinatorial and merely consists in obtaining upper bounds for the
value of SAΘ

(m).

As pointed out by a referee, a challenging question is whether the combina-
torial L1 selection procedure of Devroye and Lugosi [1] can be extended to
Lp norms (1 < p ≤ ∞) or to more general φ-divergences, such as Kullback-
Leibler information or Hellinger distance. According to the authors’ experi-
ence, the extension to Lp criteria seems feasible, at the price of some technical
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requirements extending Scheffé’s identity [12]. On the other hand, the di-
vergence case presents a more delicate problem. Here, one needs to carefully
assess the divergence between two measures as a supremum of functionals
over a suitable class of functions. Dual representations of divergences should
provide a good starting point, see for example Keziou [13].

2.2 Selecting a modified histogram

In this paragraph, we will be concerned with the selection of a density g
and a partition P in the modified histogram estimate, using the general
combinatorial tools presented above. Let us first describe the mathematical
model. We let G be a given class of candidate reference densities on R

d,
and we denote by νg the probability measure associated with each g ∈ G.
Consider P a family of candidate partitions of R

d such that each P ∈ P has
at most r cells (r ≥ 2, possibly function of n, and to be made precise later
on). To each density g ∈ G and each partition P = {A1, . . . , Aℓ} ∈ P such
that νg(Ai) = 1/ℓ, i = 1, . . . , ℓ, assign the corresponding modified histogram
fn,θ defined as in (1), with θ = (g, P ). We use the minimum distance estimate
to select θ from

Θ =
{

(g, P ) : g ∈ G, P = {A1, . . . , Aℓ} ∈ P, ℓ ≤ r, νg(Ai) = 1/ℓ
}

, (3)

the set of all possible pairs of reference densities and partitions. Denote by
fn the resulting minimum distance estimate. Now, to apply (2), we need to
obtain upper bounds for the mth shatter coefficient SAΘ

(m) of the Yatracos
class associated with Θ. The following theorem is a key combinatorial result
towards this direction. Denote by SD(j) the jth shatter coefficient of the
class of sets

D =
{

{

(x, z) ∈ R
d × R

∗
+ : αzg(x) − g′(x) > 0

}

: α ∈ R
∗
+, (g, g

′) ∈ G2
}

,

and, with a slight abuse of notation, denote by SP(j) the jth shatter coeffi-
cient of the class of sets which are cells of any partition in P .

Theorem 2.1 If AΘ is the Yatracos class defined by (3), then

SAΘ
(m) ≤ SD(m)

[

SP

(

m(n−m)
)]4r

.

Consequently

E

{
∫

|fn − f |
}

≤ 3 inf
θ∈Θ

E

{
∫

|fn−m,θ − f |
}

+ 8

√

log 2 + log SD(m) + 4r log SP

(

m(n−m)
)

m
+

3

n
.

(4)
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Since in most cases of interest, bounds for SD(m) and SP

(

m(n − m)
)

are
polynomial in m and n (detailed examples are presented in Section 3), one
can choose m and r as functions of n such that the terms on the right hand
side of (4) are balanced. More precisely:

Corollary 2.1 Assume that the shatter coefficients SD(m) and SP

(

m(n −
m)
)

are polynomial in their arguments. Then the choices

m =
n

log n
and r = na, a > 0,

lead to

E

{
∫

|fn − f |
}

≤ 3 inf
θ∈Θ

E

{
∫

|fn−m,θ − f |
}

+ O

(

log n

n(1−a)/2

)

.

The optimal L1 error of the univariate modified histogram is known to go
to zero, under standard smoothness assumptions, at the rate n−1/3, provided
r ∼ n1/3. Therefore, the bound above essentially says that for polynomial
shatter coefficients SD(m) and SP

(

m(n−m)
)

and a = 1/3, we have asymp-
totically a performance that is guaranteed to be, up to a logarithm term,
within a factor of three of the optimal performance. Roughly, the logarithm
term appears as the price to be paid for using unrestricted classes of reference
densities.

In order to use Theorem 2.1, we have to make sure that infθ∈Θ E
∫

|fn−m,θ−f |
is not much larger than infθ∈Θ E

∫

|fn,θ − f |, that is, holding out m observa-
tions does not cause much trouble. Whereas this result holds for parameter
selection by the combinatorial method for most classical nonparametric den-
sity estimates (such as histograms, kernel estimates or wavelet estimates, see
Devroye and Lugosi [1], Chapter 10), things turn out to be more complicated
for the modified histogram estimate under study. Our result is as follows.

Theorem 2.2 Denote by µ the common distribution of the Xi’s, and suppose

that there exists a positive real number α such that ∀θ ∈ Θ
(

θ = (P, g), P =
{A1, . . . , Aℓ}

)

α ≤ µ(Ai) , i = 1, . . . , ℓ. (5)
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Then, for all m ≤ n/2, we have

E

{
∫

|fn − f |
}

≤

3

(

1 +
2m

n−m
+ 8

√

m

n
+

√
8mr

(n−m)
√
nα(1 − α)

)

inf
θ∈Θ

E

{
∫

|fn,θ − f |
}

+ 8

√

log 2 + log SD(m) + 4r log SP

(

m(n−m)
)

m
+

3

n
.

Corollary 2.2 Assume that the conditions of Theorem 2.2 are satisfied, and

that the shatter coefficients SD(m) and SP

(

m(n−m)
)

are polynomial in their

arguments. Then the choices

m =
n

log n
and r = na, 0 < a ≤ 1/2,

lead to

E

{
∫

|fn−f |
}

≤ 3

(

1+O
( 1√

log n

)

)

inf
θ∈Θ

E

{
∫

|fn,θ−f |
}

+O

(

log n

n(1−a)/2

)

.

Roughly speaking, condition (5) means that the set of candidate reference
densities G is not too far from the target f . It is in particular satisfied when
G is finite or when G is the class of Gaussian densities with bounded mean
and variance parameters, and νg ≪ µ for all g ∈ G. Let us now discuss some
examples.

3 Examples

In this section, we provide various useful bounds for the shatter coefficients
SP

(

m(n − m)
)

and SD(m). We first recall that the Vapnik-Chervonenkis

dimension V (Vapnik and Chervonenkis [11]) of a class H of sets is defined
as the largest integer p such that

SH(p) = 2p.

If SH(p) = 2p for all p, then we say that V = ∞. A classical consequence
of Sauer’s lemma [14] shows that if H has Vapnik-Chervonenkis dimension
V <∞, then

SH(j) ≤ (j + 1)V . (6)

Let us first derive SP(j) for several classes of partitions P – recall that SP(j)
means the jth shatter coefficient of the class of sets which are cells of any
partition in P . We first consider the univariate case d = 1.
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3.1 Univariate modified histograms

As a simple but important example, consider d = 1, and let P be the class
containing all partitions of the real line into at most r intervals. Denoting
by G the distribution function associated with any reference density g, the
intervals Ai for P = {A1, . . . , Aℓ} ∈ P are defined as follows:

Ai =
(

G−1
(i− 1

ℓ

)

, G−1
( i

ℓ

)]

, i = 1, . . . , ℓ− 1 ,

Aℓ =
(

G−1
(

1 − 1

ℓ

)

, G−1(1)
)

,

where G−1 denotes the quantile function defined on [0, 1] by G−1(u) =
inf{x ∈ R : G(x) ≥ u}. Within this framework, SP(j) is at most the jth
shatter coefficient of the class of all intervals, which equals j(j + 1)/2 + 1.
Note that Berlinet and Brunel [8], [9] study a univariate cross-validation-
based method to select ℓ (but not g and ℓ simultaneously).

Let us now focus attention on the shatter coefficient SD(m) for two useful
classes of univariate reference densities G. Recall that

D =
{

{

(x, z) ∈ R
d × R

∗
+ : αzg(x) − g′(x) > 0

}

: α ∈ R
∗
+, (g, g

′) ∈ G2
}

.

Exponential family. A family G of densities on R is called an exponential

family if each density in G may be written in the form

gξ(x) = cγ(ξ)β(x)e
Pk

i=1
πi(ξ)ψi(x) , (7)

where ξ belongs to some parameter set Ξ, ψ1, . . . , ψk : R → R, β : R →
[0,∞), γ > 0, π1, . . . , πk : Ξ → R are fixed functions, and c is a positive
normalization constant. Examples of exponential families include classes of
Gaussian, gamma, beta, Rayleigh, and Maxwell densities. Note that for
α > 0, αzgξ(x) > gξ′(x) if and only if

log z +
k
∑

i=1

(

πi(ξ) − πi(ξ
′)
)

ψi(x) + log
αγ(ξ)

γ(ξ′)
> 0 . (8)

By a mapping that makes each of the functions of x and z a new variable,
it is easy to see that inequality (8) is just a homogeneous linear inequality
a1λ1 + . . . + ak+2λk+2 > 0, with the coefficients ai depending upon the pair
(ξ, ξ′) only. The Vapnik-Chervonenkis dimension for a collection of linear
halfspaces in R

k+2 is not more than k+2 (Devroye and Lugosi [1], Corollary
4.2). As a consequence, by (6),

SD(m) ≤ (m+ 1)k+2 .
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Series estimates. Let ψ1, . . . , ψk be fixed nonnegative basis functions from
R
d to R such that

∫

ψi = ti for 1 ≤ i ≤ k. We define the class G as the
collection of all linear combinations

gξ(x) =
k
∑

i=1

aiψi(x)

with coefficient ξ = (a1, . . . , ak) satisfying
∑k

i=1 aiti = 1. Clearly, for α > 0,
αzgξ(x) > gξ′(x) if and only if

k
∑

i=1

αaizψi(x) −
k
∑

i=1

a′iψi(x) > 0 .

Making again each of the functions ψi(x) and zψi(x) a new variable, we are
led to a homogeneous linear inequality b1λ1+. . .+b2kλ2k > 0, with coefficients
bi depending upon the pair (ξ, ξ′) only. Therefore

SD(m) ≤ (m+ 1)2k .

3.2 Multivariate modified histograms

The aim of this paragraph is to study multivariate modified histograms de-
fined via a multinormal reference density. This leads us to consider the class

G =
{

gm,Σ(x) =
1

(2π)d/2
√

det(Σ)
e−

1

2
(x−m)T Σ−1(x−m)

}

,

where m is an arbitrary element of R
d and Σ is a symmetric positive definite

d × d matrix. For a given reference density gm,Σ ∈ G and a given integer
ℓ ≥ 2, we let the partition P be as follows.

• Set ℓ = ℓ1 . . . ℓd, with ℓ1, . . . , ℓd positive integers, and let hj = 1/ℓj for
j = 1, . . . , d;

• For j = 1, . . . , d and ij = 1, . . . , ℓj − 1, compute the quantiles of or-
der ijhj of a univariate standard normal N (0, 1); denote by qj,ij these
quantiles, with the convention qj,0 = −∞ and qj,ℓj = +∞;

• Consider the grid defined by the above family {qj,ij}; this grid leads to

a partition of R
d into ℓ hyperrectangles, say Ãi1,...,id , 1 ≤ j ≤ d, 1 ≤

ij ≤ ℓj;

9



• Fix Tm,Σ the affine transformation

Tm,Σ(x) = Σ1/2x+m,

and let {Ai1,...,id} be the image-partition of {Ãi1,...,id} by Tm,Σ (see Fig-
ure 2 that depicts a bivariate example).

Finally take
P =

{

Ai1,...,id
}

1≤j≤d
1≤ij≤ℓj

.

Ã1,1 Ã1,2 Ã1,3

Ã2,1 Ã2,2 Ã2,3

Ã3,1 Ã3,2 Ã3,3

Tm,Σ

A1,1
A1,2

A1,3

A2,1

A2,2

A2,3

A3,1

A3,2

A3,3

Figure 2: Transformation of a partition in R
2.

Denote by νm,Σ the probability measure associated with the reference gm,Σ.
It is easily seen that, for any cell Ai1,...,id of the partition P ,

νm,Σ(Ai1,...,id) = 1/ℓ .

Note however that the decomposition ℓ = ℓ1 . . . ℓd is not necessarily unique.
Thus, given gm,Σ ∈ G and ℓ ≥ 2, we have just constructed a partition of R

d

into ℓ sets of νm,Σ-measure 1/ℓ. Clearly, each set in any such partition is
an intersection of at most 2d hyperplanes (it is a polytope with at most 2d
faces). Therefore

SP(j) ≤ (j + 1)2d(d+1)

(see for example Devroye, Györfi and Lugosi [15]).
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Let us now consider the shatter coefficient SD(m). Here, G is the class of
multinormal densities, hence it is a multivariate exponential family. More
precisely, setting ξ = (m,Σ), each gξ in G may be written in the form

gξ(x) = cγ(ξ)β(x)e
Pk

i=1
πi(ξ)ψi(x) ,

with the notation of (7) – just replace R with R
d – and with k = d(d+ 3)/2.

We conclude that
SD(m) ≤ (m+ 1)d(d+3)/2+2.

Note that the bounds on the shatter coefficients in the examples presented
above are polynomial in their arguments, so that Corollary 2.1 and Corol-
lary 2.2 apply. One can argue that the bound r = na is somewhat restrictive.
However, extensive simulations (see Berlinet and Biau [16]) reveal that the
number of cells ℓ should be very small with respect to n. Therefore, in prac-
tice, the bound r = na does not harm too much. Moreover, it is consistent
with the results of Barron, Györfi and van der Meulen [4], who proved that
a univariate Kullback-Leibler-based choice of ℓ is of order n1/3.

4 Simulations

In this section, we illustrate the theory with univariate simulation results
enlightening the efficiency of the combinatorial method. The density to be
estimated, a Beta (2, 2), is shown in Figure 3 .

0 1
0

0.8

1.6

Figure 3: Density Beta (2, 2) to be estimated.
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Figure 4: Collection of reference densities.

We consider a class G of references including 9 densities, presented in Figure
4. Given a reference g in the collection G and an integer ℓ, the associated
partition is constructed via the quantiles of the density g, as explained in
Paragraph 3.1. Thus, in this context, the method will automatically select a
parameter θ from the set

Θ =
{

(g, ℓ) : g ∈ G, 2 ≤ ℓ ≤ r
}

.

The resulting minimum distance estimate is denoted fn.

As suggested by a referee, we also shed light on the advantages of selecting
both the partition and the reference density in contrast to the case where
only the partition is selected. To this aim, for each fixed reference density
g ∈ G, we run the combinatorial method to select the sole number of cells ℓ
from the set Θg = {ℓ : 2 ≤ ℓ ≤ r}, and we denote by fn,g the elected estimate.

To assess the quality of the selected estimates, we compare the L1 perfor-
mances of the elected fn and fn,g with the best estimates fn,θ⋆ and fn,θ⋆

g
in

the corresponding classes, that is

θ⋆ ∈ argmin
θ∈Θ

{
∫

|fn,θ − f |
}

,

12



and, for a fixed g,

θ⋆g ∈ argmin
θ∈Θg

{
∫

|fn,θ − f |
}

.

Table 1 and Table 2 summarize the results. For each of the references g, we
display in Table 1 the L1 error of fn,g and fn,θ⋆

g
, and we present in Table 2 the

error of the estimates fn and fn,θ⋆ . We also show the number ℓ̂n of selected
classes. All results are averaged over 50 repetitions.

n = 200,m = 50, r = 16 n = 1000,m = 150, r = 30

g
∫

|fn,g − f |
∫

|fn,θ⋆
g
− f | ℓ̂n

∫

|fn,g − f |
∫

|fn,θ⋆
g
− f | ℓ̂n

g1 0.2060 0.1536 9.68 0.1205 0.0958 17.20
g2 0.3254 0.2961 12.92 0.2379 0.2228 24.24
g3 0.1677 0.1103 7.28 0.1043 0.0695 15.12
g4 0.1767 0.1036 8.28 0.1119 0.0849 14.08
g5 0.4327 0.4000 14.28 0.3358 0.3176 24.72
g6 0.2340 0.1891 10.84 0.1419 0.1141 18.08
g7 0.8241 0.8135 15.64 0.6714 0.6633 29.44
g8 0.2241 0.1743 9.04 0.1424 0.1144 17.04
g9 0.2399 0.1728 10.92 0.1370 0.1089 19.12

Table 1: Combinatorial method results for the selection of P .

n = 200,m = 50, r = 16 n = 1000,m = 150, r = 30
∫

|fn − f |
∫

|fn,θ⋆ − f | ℓ̂n
∫

|fn − f |
∫

|fn,θ⋆ − f | ℓ̂n

0.2249 0.0995 8.28 0.1469 0.0694 16.32

Table 2: Combinatorial method results for the selection of the pair (g, P ).

The L1 error ratios selected / optimal never exceed 2.26, and all of these
results enlighten the good performances of the combinatorial method in gen-
eral. They also clearly show the advantages of selecting both the partition
and the reference density in contrast to the case where only the partition is
selected. As a matter of fact, the L1 performances of fn over the fn,g’s are
significantly better for 5 reference models out of 9, and roughly similar for
2. Unsurprisingly, the best performances of fn,g are obtained for the densi-
ties g3 (triangle) and g4 (truncated Gaussian N (0.5, 1)), which resemble the
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most the density Beta (2, 2). In practice, when one has no or few a priori
information on the target density, the selection approach presented in the
present paper is preferable.

5 Proofs

5.1 Proof of Theorem 2.1

We just have to prove that

SAΘ
(m) ≤ SD(m)

[

SP

(

m(n−m)
)]4r

,

and the second part of the theorem will directly follow from inequality (2).

Let y1, . . . , ym be m distinct vectors in R
d. For each θ = (g, P ) ∈ Θ, P =

{A1, . . . , Aℓ}, consider the m × r matrix zθ such that the element in its tth
row and jth column is

z
(t,j)
θ =







1[yt∈Aj ]

∑n−m
i=1 1[Xi∈Aj ] for t ≤ m, j ≤ ℓ ,

0 otherwise .

Clearly,

1[yt∈Aj ]1[Xi∈Aj ] = 1 if and only if (yt, Xi) ∈ Aj × Aj .

Since there are m(n − m) different pairs (yt, Xi), the number of different

values the jth column (z
(1,j)
θ , . . . , z

(m,j)
θ ) of the matrix zθ can take as we vary

θ ∈ Θ is at most the shatter coefficient SC

(

m(n−m)
)

of the class of sets C
of the form A × A, where A is any set in any possible partition in P . This
shatter coefficient is clearly bounded by the square of the shatter coefficient
SP

(

m(n − m)
)

. Hence the jth column of the matrix zθ can take at most
[

SP

(

m(n−m)
)]2

values. But since the matrix zθ has r columns, it can take
at most

[

SP

(

m(n−m)
)]2r

values. Thus if we set

W =
{

(zθ, zθ′) : (θ, θ′) ∈ Θ2
}

,

we have
CardW ≤

[

SP

(

m(n−m)
)]4r

.

14



For fixed (w,w′) ∈ W, let U(w,w′) denote the collection of all (θ, θ′) such
that (zθ, zθ′) = (w,w′). For (θ, θ′) ∈ U(w,w′)

(

θ = (g, P ), θ′ = (g′, P ′),
P = {A1, . . . , Aℓ}, P ′ = {A′

1, . . . , A
′
ℓ′}
)

and t ≤ m, we have

yt ∈ Aθ,θ′ =
{

x : fn−m,θ(x) > fn−m,θ′(x)
}

if and only if

∑ℓ
j=1 z

(t,j)
θ + 1

(n−m)h+ 1
g(yt) >

∑ℓ′

j=1 z
(t,j)
θ′ + 1

(n−m)h′ + 1
g′(yt) ,

where h = 1/ℓ and h′ = 1/ℓ′. Within the set U(w,w′), z
(t,j)
θ and z

(t,j)
θ′ are fixed

for all t and j. Therefore, with the notation

zt =

∑ℓ
j=1 z

(t,j)
θ + 1

∑ℓ′

j=1 z
(t,j)
θ′ + 1

for 1 ≤ t ≤ m,

we obtain that yt ∈ Aθ,θ′ if and only if

(n−m)h′ + 1

(n−m)h+ 1
zt g(yt) − g′(yt) > 0 .

It follows that

Card
{

{1[y1∈Aθ,θ′ ]
, . . . ,1[ym∈Aθ,θ′ ]

} : (θ, θ′) ∈ U(w,w′)

}

≤ Card
{

{1[αz1g(y1)−g′(y1)>0], . . . ,1[αzmg(ym)−g′(ym)>0]} : α ∈ R
∗
+, (g, g

′) ∈ G2
}

≤ SD(m) .

Putting all pieces together, we obtain

Card
{

{y1, . . . , ym} ∩ Aθ,θ′ : (θ, θ′) ∈ Θ2}
}

≤ SD(m) CardW
≤ SD(m)

[

SP

(

m(n−m)
)]4r

.

The proof of Theorem 2.1 is finished. �

5.2 Proof of Theorem 2.2

The proof of Theorem 2.2 is a consequence of Theorem 2.1 and the following
lemma.
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Lemma 5.1 Denote by µ the common distribution of the Xi’s, and suppose

that there exists a positive real number α such that ∀θ ∈ Θ
(

θ = (P, g), P =
{A1, . . . , Aℓ}

)

α ≤ µ(Ai) , i = 1, . . . , ℓ.

Introduce

Jn,θ =

∫

|fn,θ − f | .

If m is a positive integer such that 2m ≤ n, then

infθ∈Θ E
{

Jn−m,θ
}

infθ∈Θ E
{

Jn,θ
} ≤ 1 +

2m

n−m
+ 8

√

m

n
+

√
8mr

(n−m)
√
nα(1 − α)

.

Proof of Lemma 5.1 Note first that the modified histogram is not an
additive estimate in the sense of Devroye and Lugosi [1] so that their Theorem
10.2 does not apply. Nevertheless we can start with the inequality that they
prove:

inf
θ∈Θ

E{Jn−m,θ} ≤ inf
θ∈Θ

E{Jn,θ}
(

1 + 2 sup
θ∈Θ

E
{ ∫

|fn−m,θ − fn,θ| dx
}

E
{ ∫

|fn,θ − Efn,θ| dx
}

)

.

Fix x and θ = (g, P ) for now and define Kθ(x,Xi) = 1[Xi∈A(x)]. Recall that
A(x) denotes the cell of the partition P (which has ℓ cells) in which x falls.
Observe that

fn,θ(x) =
1

nh+ 1

(

1 +
n
∑

i=1

Kθ(x,Xi)
)

g(x) ,

where h = 1/ℓ. Introduce

Yi = Kθ(x,Xi) − E
{

Kθ(x,Xi)
}

,

and denote the partial sums of Yi’s by Sj = Y1 + . . . + Yj. Observe the
following:

(nh+ 1)|fn−m,θ(x) − fn,θ(x)|

=

∣

∣

∣

∣

nh+ 1

(n−m)h+ 1

(

1 +
n−m
∑

i=1

Kθ(x,Xi)
)

−
(

1 +
n
∑

i=1

Kθ(x,Xi)
)

∣

∣

∣

∣

g(x)

=

∣

∣

∣

∣

mh

(n−m)h+ 1

(

1 +
n−m
∑

i=1

Kθ(x,Xi)
)

−
n
∑

i=n−m+1

Kθ(x,Xi)

∣

∣

∣

∣

g(x)

=

∣

∣

∣

∣

mh

(n−m)h+ 1
(Y1 + . . .+ Yn−m) − (Yn−m+1 + . . .+ Yn)

+
m

(n−m)h+ 1

(

h− E
{

Kθ(x,X1)
}

)

∣

∣

∣

∣

g(x) ,
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so that

E
{

(nh+ 1)|fn−m,θ(x) − fn,θ(x)|
}

≤
[

m

n−m
E
{

|Sn−m|
}

+ E
{

|Sm|
}

+
m

(n−m)h+ 1

∣

∣h− E
{

Kθ(x,X1)
}∣

∣

]

g(x) .

Also,
(nh+ 1)|fn,θ(x) − Efn,θ(x)| = |Sn| g(x) ,

which implies

E
{

(nh+ 1)|fn,θ(x) − Efn,θ(x)|
}

= E
{

|Sn|
}

g(x) .

If 2m ≤ n, a straightforward consequence of Lemma 10.1 and Lemma 10.3
in Devroye and Lugosi (2001) leads to

E
{

|fn−m,θ − fn,θ|
}

E
{

|fn,θ − Efn,θ|
} ≤ m

n−m
+4

√

m

n
+

m

(n−m)h+ 1

√
8
∣

∣h− E
{

Kθ(x,X1)
}∣

∣

√
nE
{

|Y1|
} .

(9)
Let p(x) stand for µ

(

A(x)
)

. Clearly,
{

E
{

Kθ(x,X1)
}

= p(x)
E
{

|Y1|
}

= 2p(x)
(

1 − p(x)
)

.

By assumption, and using the fact that ℓ ≥ 2, we obtain, still holding x fixed,

α ≤ p(x) ≤ 1 − α .

Note that 0 < α ≤ 1/2. By (9)

E
{

|fn−m,θ − fn,θ|
}

E
{

|fn,θ − Efn,θ|
} ≤ m

n−m
+ 4

√

m

n
+

m

(n−m)h+ 1

√
8 |h− p(x)|

2
√
n p(x)

(

1 − p(x)
) .

Moreover
1

p(x)
(

1 − p(x)
) ≤ 1

α(1 − α)
.

On the other hand,

|h− p(x)| ≤ max
(

1,
p(x)

h

)

h ≤ rh .

Putting all pieces together, we obtain

m

(n−m)h+ 1

√
8 |h− p(x)|

2
√
n p(x)

(

1 − p(x)
) ≤ mh

(n−m)h+ 1

√
2 r√

nα(1 − α)

≤
√

2mr

(n−m)
√
nα(1 − α)

.
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This implies that for any fixed θ

E

{
∫

|fn−m,θ − fn,θ| dx

}

≤
(

m

n−m
+ 4

√

m

n
+

√
2mr

(n−m)
√
nα(1 − α)

)

E

{
∫

|fn,θ − Efn,θ| dx

}

.

This completes the proof of the lemma. �
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[6] Györfi, L., Liese, F., Vajda, I. and van der Meulen, E. C., 1998, Distri-
bution estimates consistent in χ2-divergence. Statistics, 32,31–57.

[7] Berlinet, A., Vajda, I. and van der Meulen, E. C., 1998, About the
asymptotic accuracy of Barron density estimates. IEEE Transactions

on Information Theory, 44,999–1009.

18



[8] Berlinet, A. and Brunel, E., 2000, Choix optimal du nombre de
classes pour l’estimateur de Barron de la densité. Comptes Rendus de

l’Académie des Sciences de Paris, 331,713–716.

[9] Berlinet, A. and Brunel, E., 2004, Cross-validated density estimates
based on Kullback-Leibler information. Journal of Nonparametric

Statistics, 16,493–513.

[10] Yatracos, Y.G., 1985, Rates of convergence of minimun distance estima-
tors and Kolmogorov’s entropy. The Annals of Statistics, 13,768–774.

[11] Vapnik, V.N. and Chervonenkis, A.Ya., 1971, On the uniform conver-
gence of relative frequencies of events to their probabilities. Theory of

Probability and its Applications, 16,264–280.
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