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Abstract

It is well established that one can improve performance of
kernel density estimates by varying the bandwidth with the
location and/or the sample data at hand. Our interest in
this paper is in the data-based selection of a variable band-
width within an appropriate parameterized class of functions.
We present an automatic selection procedure inspired by the
combinatorial tools developed in Devroye and Lugosi (2001).
It is shown that the expected L1 error of the corresponding
selected estimate is up to a given constant multiple of the
best possible error plus an additive term which tends to zero
under mild assumptions.

Index Terms — Variable kernel estimate, nonparametric es-
timation, partition, shatter coefficient.

AMS 2000 Classification: 62G05.

1 Introduction

Assume we are given an i.i.d. sample X1, . . . , Xn drawn from an unknown
probability density f on R

d. One of the most popular estimates of f is the
fixed bandwidth kernel estimate defined by

fn(x) =
1

nhd

n
∑

i=1

K
(x − Xi

h

)

, x ∈ R
d , (1.1)

where K : R
d → R is a kernel with

∫

K = 1 and h > 0 is the bandwidth (or
smoothing parameter), see Rosenblatt (1956) or Parzen (1962). The termi-
nology fixed bandwidth means that the parameter h is held constant across
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x and the Xi’s (but it can depend on n). While the estimate (1.1) per-
forms well for most regular densities, its capabilities are known to decrease
when estimating more complex functions such as multimodal densities (Sain
and Scott, 1996). Moreover, as the dimensionality increases, the so-called
curse of dimensionality affects the quality of the estimation. Due to the
sparseness of data in higher dimensions, multivariate neighborhoods are of-
ten empty, particularly in the tails of the density. Therefore, larger and
larger bandwidths are necessary in the tails. However, this also has adverse
effect of oversmoothing the main features (such as bumps and modes, see
Sain, 2002). These drawbacks can be overcome, to some extent, by varying
the bandwidth in order to better capture the local behavior of the under-
lying density. For that purpose, two big families of variable (bandwidth)
kernel estimates have been considered in the literature.

The variable estimates of the first family have a bandwidth which is allowed
to vary with the location x. Its members are often referred to as balloon

estimates and take the form

fn(x) =
1

nh(x)

n
∑

i=1

K
(x − Xi

h(x)

)

.

Such estimates lead to substantial gains over the fixed bandwidth in higher
dimensional spaces and, to some extent, circumvent the curse of dimension-
ality (Terrell and Scott, 1992).
The second family of variable kernel estimates was originally considered by
Breiman, Meisel and Purcell (1977), who suggested varying the bandwidth
at each sample point, leading to the so-called sample point estimates

fn(x) =
1

n

n
∑

i=1

1

h(Xi)
K

(x − Xi

h(Xi)

)

. (1.2)

An appealing property of the above estimate is that a good choice of h(Xi)
allows to reduce the bias. As a matter of fact, Abramson (1982) shows
that the bias-rate usually reserved for fixed kernel estimates using negative
fourth order kernels is actually achievable by estimates of the form (1.2).
For a complete and comprehensive description of variable kernel estimates
and their properties, we refer the reader to Jones (1990) who also discusses
a variable bandwidth depending on both the location and the sample points.

To exploit the advantages offered by variable kernel estimates, one has to
design a good data-dependent way of determining the bandwidth function.
As an important (but negative) result towards this direction, Devroye and
Lugosi (2000) show that it is impossible to find an optimal way of selecting
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the smoothing function if this latter is allowed to depend on the location x
only. More precisely, consider the class of univariate variable estimates

fn,h(x)(x) =
1

n

n
∑

i=1

1

h(x)
K

(x − Xi

h(x)

)

,

where the bandwidth h(x) is allowed to be any measurable function h : R →
(0,∞) of x. Then a data-based variable kernel estimate has the form

fn,H(x)(x) =
1

n

n
∑

i=1

1

H(x)
K

(x − Xi

H(x)

)

,

where it is understood that H(x) = H(x; X1, . . . , Xn). Ideally, one would
like to find H(x) so that the expected error E{

∫

|fn,H(x)(x) − f(x)|dx} is
close to the ideal value infh:R→(0,∞) E{

∫

|fn,h(x)(x) − f(x)|dx} for all den-
sities. Unfortunately, Devroye and Lugosi (2000) prove that if K is a sym-
metric nonnegative square-integrable kernel with compact support, then

inf
H:Rn+1→(0,∞)

sup
f∈FB

E
{ ∫

|fn,H(x)(x) − f(x)|dx}
infh:R→(0,∞) E{

∫

|fn,h(x)(x) − f(x)|dx} ≥ Cn
1
10 ,

where FB denotes the class of nondecreasing, convex-shaped densities f on
[0, 1] with sup(0,1) f(x) ≤ B and C is a positive universal constant. This
inequality shows that even with the knowledge that f ∈ FB, one cannot
efficiently design a variable bandwidth. In other words this class of variable
bandwidth kernel estimates is too large to be optimized.

Thus, one should constrain the class of possible bandwidth functions from
which selection is made. This is precisely the problem that we address in
the present paper, using a general multivariate data-based combinatorial
methodology presented in Devroye and Lugosi (2001). More precisely, we
will show how to select the smoothing function within an appropriate class
so that the expected L1 error of the corresponding selected estimate is up
to a given constant multiple of the best possible error plus an additive term
which tends to zero under mild assumptions. The paper is organized as
follows. In Section 2, we present the multivariate selection procedure. We
then specify the algorithm to the bandwidth function selection problem in
Section 3. Examples are worked out in Section 4 for different models of
variable kernel estimates, and Section 5 is devoted to the proofs.

2 Automatic parameter selection

Using ideas from Yatracos (1985), Devroye and Lugosi (2001) explore a new
paradigm for the data-based or automatic selection of the free parameters of
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density estimates in general so that the expected L1 error is within a given
constant multiple of the best possible error. To summarize in the present
context, assume we are given a class of density estimates parameterized
by θ ∈ Θ such that fn,θ denotes the density estimate with parameter θ.
Moreover, assume that each fn,θ may be written in the form

fn,θ(x) =
1

n

n
∑

i=1

Kθ(x, Xi) ,

where Kθ : R
d × R

d → R is a measurable function such that for each x,
E{|Kθ(x, X)|} < ∞. Such estimates are called additive and regular (De-
vroye and Lugosi, 2001, Chapter 10). Examples of additive and regular
estimates include the kernel, histogram, series and wavelet estimates. Now,
let m < n be an integer which splits the data X1, . . . , Xn into

• a set X1, . . . , Xn−m used for the construction of the density estimates;

• a validation set Xn−m+1, . . . , Xn.

Introduce the class of random sets

AΘ =
{

{

x : fn−m,θ(x) > fn−m,θ′(x)
}

: (θ, θ′) ∈ Θ2
}

(AΘ is the so-called Yatracos class associated with Θ) and define

∆θ = sup
A∈AΘ

∣

∣

∣

∣

∫

A
fn−m,θ − µm(A)

∣

∣

∣

∣

,

where µm(A) = (1/m)
∑n

i=n−m+1 1[Xi∈A] is the empirical measure associ-
ated with the subsample Xn−m+1, . . . , Xn. Then the minimum distance

estimate fn is defined as any density estimate selected among those fn−m,θ

with

∆θ < inf
θ∗∈Θ

∆θ∗ +
1

n
.

Note that the 1/n term is added to ensure the existence of such a density
estimate. According to Devroye and Lugosi (2001), Chapter 10, whenever
fn−m,θ is integrable (and not necessarily nonnegative), the selected fn sat-
isfies the following inequality, valid for all n and m ≤ n/2:

E

{
∫

|fn − f |
}

≤ 5

(

1 +
2m

n − m
+ 8

√

m

n

)

inf
θ∈Θ

E

{
∫

|fn,θ − f |
}

+ 8E

{

√

log 2SAΘ
(m)

m

}

+
5

n
(2.1)
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(for the sake of clarity, we drop the “dx” notation when no confusion is
possible). Here, SAΘ

(m) is the Vapnik-Chervonenkis shatter coefficient of
the class of sets AΘ (Vapnik and Chervonenkis, 1971), defined by

SAΘ
(m) = max

x1,..., xm∈Rd
Card

{

{x1, . . . , xm} ∩ A : A ∈ AΘ

}

.

This general methodology provides us with an automatic procedure to con-
struct a density estimate fn whose L1 error is (almost) as small as that of
the best estimate among the fn,θ, θ ∈ Θ. We emphasize that inequality
(2.1) is nonasymptotic, that is, the bound is valid for all n. The rest of the
analysis consists in obtaining upper bounds for the value of SAΘ

(m).

3 Selecting a variable kernel estimate

In this section, we will be concerned with the selection of a bandwidth
function in the variable kernel estimate, using the general combinatorial
tools presented above. Moreover, to improve performance over ordinary
kernel estimates for densities with varying behavior in different regions of the
space, we shall use different parameterized smoothing functions in different
regions of R

d. For that purpose, let P1 (resp. P2) be a class of partitions of
R

d such that each P1 = {B1
1 , . . . , B1

r1
} ∈ P1 (resp. P2 = {B2

1 , . . . , B2
r2
} ∈ P2)

has at most r1 (resp. r2) cells. Denote by J the set {1, . . . , r1}×{1, . . . , r2}
and by λ = (λj1j2 : (j1, j2) ∈ J) a generic vector of R

r1r2p.

To go straight to the point, we will assume that the variable bandwidth is
a parameterized measurable function h : R

d × R
d × R

r1r2p → (0,∞) of the
form

h(x, Xi, θ) =
∑

(j1,j2)∈J

φ(x, Xi, λj1j2)1B1
j1
×B2

j2
(x, Xi) ,

where the parameter θ = (P1, P2, λ) and, for fixed x and Xi, each map
λj1j2 7→ φ(x, Xi, λj1j2) is a polynomial function over R

p (the monomials are
combinations of the components λj1j2) of degree no more than ℓ. To each
partition (P1, P2) ∈ P1 × P2 and parameter vector λ = (λj1j2 : (j1, j2) ∈ J)
we may now associate the corresponding variable bandwidth estimate fn,θ(x)
defined with θ = (P1, P2, λ). In other words, for x ∈ R

d,

fn,θ(x) =
1

n

n
∑

i=1

∑

(j1,j2)∈J

1[φ(x,Xi,λj1j2
)>0]

φ(x, Xi, λj1j2)
K

( x − Xi

φ(x, Xi, λj1j2)

)

1B1
j1
×B2

j2
(x, Xi) ,

(3.1)
with the usual convention 0 ×∞ = 0. Observe that fn,θ is not a bona fide
density since it usually fails to integrate to one. Note also that we require
the functions φ to be polynomial in their parameters λj1j2 only. This allows
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us to deal with a large choice of bandwidth models, see the examples in
Section 4.

Now, we can use the combinatorial method described in Section 2 to select
θ from the set

Θ =
{

(P1, P2, λ) : P1 ∈ P1, P2 ∈ P2, λ ∈ R
r1r2p

}

,

and we let fn be the resulting minimum distance estimate. To apply (2.1), we
merely need to obtain upper bounds for the mth shatter coefficient SAΘ

(m)
of the Yatracos class associated with Θ. With a slight abuse of notation
we denote by SP(j) the jth shatter coefficient of the class of sets B1 × B2,
where B1 (resp. B2) is any cell of any partition in P1 (resp. P2), and,
for simplicity, we assume that K(x) = c1[||x||≤1], where c is an appropriate
normalizing factor.

Proposition 3.1 If AΘ is the Yatracos class defined by

Θ =
{

(P1, P2, λ) : P1 ∈ P1, P2 ∈ P2, λ ∈ R
r1r2p

}

,

then

SAΘ
(m) ≤21+(2+4p)r1r2 ℓ4r1r2p

[

(m(n − m) + 1)(2(n − m) − 1)(m + 1
)]2r1r2p

× SP

(

m(n − m)
)2r1r2 .

Note that the above upper bound is non random. The proof of Proposition
3.1 relies on a lemma of Bartlett, Maiorov, and Meir (1998). This lemma
bounds the number of distinct sign vectors that can be generated using poly-
nomial functions. However, we emphasize that other types of functional de-
pendencies are feasible. For example, Theorem 8.14, page 124 in Anthony
and Bartlett (1999) provides a portmanteau result for more general function
classes in terms of the number of arithmetic operations required for comput-
ing the functions. Combining the result of Proposition 3.1 with (2.1) leads
to the following performance bound for the minimum distance estimates fn.

Theorem 3.1 Let AΘ be the Yatracos class defined by

Θ =
{

(P1, P2, λ) : P1 ∈ P1, P2 ∈ P2, λ ∈ R
r1r2p

}

.

Assume that for every (a, λ) ∈ R
d × R

p

∫

1

φ(x, a, λ)
K

( x − a

φ(x, a, λ)

)

dx < ∞ .
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Then, for m ≤ n/2, we have

E

{
∫

|fn − f |
}

≤ 5

(

1 +
2m

n − m
+ 8

√

m

n

)

inf
θ∈Θ

E

{
∫

|fn,θ − f |
}

+ 8

[

(

1 + (2 + 4p)r1r2

)

log 2 + 4r1r2p log ℓ + 2r1r2 log SP

(

m(n − m)
)

m

+
2r1r2p log

[

(m(n − m) + 1)(2(n − m) − 1)(m + 1)
]

m

]1/2

+
5

n
.

Theorem 3.1 generalizes to more complex bandwidths a result of Devroye,
Lugosi, and Udina (2000), who partition the sample and use a different
fixed bandwidth in each cell of the partition. The complexity of the class
of possible partitions among which we select appears in the bounds. Larger
families of partitions offer better flexibility, but it is more difficult to select
the best among them. To make the above theorem useful, the classes of
partitions Pk (k = 1, 2) have to be restricted in such a way that

log SP

(

m(n − m)
)

m
→ 0 as n → ∞ .

Recall that SP(m) ≤ SP1(m)SP2(m), where SPk
(m) stands for the mth

shatter coefficient of the class of sets which are cells of any partition in Pk

(k = 1, 2). As a simple but important example, consider d = 1, and let Pk

be the class containing all partitions of the real line into at most rk intervals.
Then SPk

(m) is just the mth shatter coefficient of the class of all intervals,
which equals m(m + 1)/2 + 1. More generally, if Pk stands for the class
of partitions of R

d into at most rk rectangles, then the shatter coefficient
SPk

(m) is known to be bounded by (m + 1)2d. Of course, other multivari-
ate examples, such as tree or Voronoi partitions, are feasible (see Devroye,
Györfi, and Lugosi, 1996, Chapter 13). In all those standard examples,

log SPk

(

m(n − m)
)

= O(log n) .

Therefore, keeping rk, p and ℓ fixed, and considering for example the choice
m = n/ log n, we obtain

E

{
∫

|fn − f |
}

≤ 5

(

1 + O
( 1√

log n

)

)

inf
θ∈Θ

E

{
∫

|fn,θ − f |
}

+ O

(

log n√
n

)

.

Since in most cases of interest, the optimal L1 error tends to zero much
slower than 1/

√
n, this inequality means that, asymptotically, the error of

the minimum distance estimate stays within a constant factor multiple of the
best possible error. Note also that rk, p and ℓ are allowed to tend to infinity
with n, but should not increase so fast that the second term in the upper
bound in Theorem 3.1 starts dominating. We will not be concerned with
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the actual details of the minimization algorithm. We realize however that
more work is needed to make the present method computationally feasible.

Of course, most kernel functions used in practice are not naive kernels.
However, most kernels can be well approximated by Riemann kernels of the
form

K(x) =

k
∑

i=1

αi1Ai
(x) ,

k < ∞ and α1, . . . , αk ∈ R. Thus, at the price of slightly worse constants in
the bounds, the results presented in the present paper can be easily adapted
to all important kernels. For a complete presentation, we refer the reader
to Devroye and Lugosi (2001), Chapter 11.

We close this section by exhibiting a collection of densities for which the
error commited by the selected variable kernel density estimate is less than
the usual kernel rate O(n−2/5). We start with a result of Devroye and Lugosi
(2000, Lemma 1). These authors use ideas of Sain and Scott (2002) to prove
that

sup
f∈FB

E

{
∫

|fn,h(x) − f |
}

≤
√

4B

n
,

where FB is the class of non decreasing, convex-shaped densities on [0, 1]
with sup[0,1] f(x) ≤ B, and fn,h(x) is the variable kernel density estimate
corresponding to the variable bandwidth

h(x) = sup
{

z > 0 : f ∗ Kz(x) = f(x)
}

. (3.2)

Here

K = 1[− 1
2
, 1
2
] and Kz(x) =

1

z
K

(x

z

)

.

Let us particularize formula (3.2) to the toy-class of linear densities on [0, 1],
defined by

F =
{

f(x) = ax + 1 − a

2
: 0 ≤ a ≤ 2

}

.

Working out expression (3.2), one obtains that h(x) falls into the general
class of bandwidth functions of the form

h(x, θ) =

3
∑

j=1

φ(x, λj)1Bj
(x) ,

where, for j = 1, 2, 3 and λj = (λ1
j , λ

2
j , λ

3
j ) ∈ R

3,

φ(x, λj) =
1

λ1
jx + 1 − λ1

j/2
+ λ2

jx + λ3
j ,
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and P = {B1, B2, B3} belongs to P, the class of partitions of [0, 1] into at
most three intervalls.

Using the notation λ =
(

λk
j : 1 ≤ j, k ≤ 3

)

for a generic vector of R
6, we can

run the combinatorial method to select θ from the set

Θ =
{

(P, λ) : P ∈ P, λ ∈ R
6
}

.

Note that the class of considered bandwith functions is not polynomial in its
parameters. Nevertheless our results are still valid in this extended frame-
work (see just before Theorem 3.1). With the choice m = n/ log n, the
selected minimum distance estimate fn then satisfies the inequality

sup
f∈F

E

{
∫

|fn − f |
}

= O

(

log n√
n

)

,

a much faster rate than the usual rate O(n−2/5).

4 Examples

Example 1 Biau and Devroye (2003) study the L1 minimax risk over the
multivariate class of bounded block decreasing densities. Extending former
results of Birgé (1987a, 1987b), these authors show first that a suitable
variable kernel estimate with linear varying bandwidth achieves the optimal
minimax rate. Second, they exhibit by the present combinatorial method a
data-dependent bandwidth of the form

h(x) =

q
∑

i=0

aix
i ,

and prove that the corresponding variable kernel estimate uniformly adapts
over the class of bounded block decreasing densities. Clearly, this model falls
into the general definition (3.1): just choose P = R

d and λ = (a0, . . . , aq) ∈
R

q+1.

Example 2 Denote by Vd the volume of the unit sphere in R
d and let k

be a positive real number. Terrell and Scott (1992) show that the following
variable bandwidth

h(x, k) =
( k

nVdf(x)

)1/d
(4.1)

is asymptotically equivalent to the k-nearest neighbor bandwidth presented
by Loftsgaarden and Quesenberry (1965) (known to perform well as dimen-
sionality increases). The problem is the selection of k. Since f is unknown,
it has to be replaced by a pilot estimate computed from an independent
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sample. One can choose, for example, a fixed kernel estimate f̂ designed
with a Gaussian kernel and a (fixed) bandwidth selected by a data-driven
method (Park and Marron, 1990). The resulting estimate is of the general
form (3.1): just take P = R

d, λ = k1/d and

φ(x, λ) =
λ

(

nVdf̂(x)
)1/d

.

Example 3 Abramson (1982) suggests using a variable bandwidth in-
versely proportional to the square root of the density at Xi, i.e., h(Xi) =
αf(Xi)

−1/2. This adaptive choice performs well for small sample size and
reduces the pointwise bias. We may still replace f by a pilot estimate com-
puted from an independent sample of size q. For simplicity, assume that f is
a density on [0, 1] and, in place of f , plug the histogram estimate f̂ anchored
at 0 using at most r cells defined by the bin width vector h̃ = (h̃1, . . . , h̃r),
i.e.,

f̂(x) =

r
∑

j=1

µ̃q(Bj)

h̃j

1Bj
(x) ,

where Bj = (
∑j−1

k=1 h̃k,
∑j

k=1 h̃k] for j = 1, . . . , r, and µ̃q denotes the em-
pirical measure computed from the independent sample. Here, we wish to
select α and h̃ with the combinatorial method. In this context, the estimate
suggested by Abramson (1982) reads

fn,θ(x) =
n

∑

i=1

r
∑

j=1

√

µ̃q(Bj)

α
√

h̃j

K

(

√

µ̃q(Bj)(x − Xi)

α
√

h̃j

)

1Bj
(Xi) , (4.2)

where θ = (α, λ1, . . . , λr), and λj =
√

h̃j . Note that the vector h̃ entirely

determines the partition (B1, . . . , Br). Each estimate (4.2) is a member of
the family (3.1).

Example 4 Jones (1990) proposes to modify Abramson’s estimate by con-
sidering α as a function of the estimation point. Keeping the same notation
as in Example 3, with α = α(x, µ) polynomial in µ, the corresponding esti-
mates may be written as

fn,θ(x) =
n

∑

i=1

r
∑

j=1

√

µ̃q(Bj)

α(x, µ)
√

h̃j

K

(

√

µ̃q(Bj)(x − Xi)

α(x, µ)
√

h̃j

)

1Bj
(Xi) ,

with θ = (µ, λ1, . . . , λr). The estimate of Jones still falls in the general class
of variable bandwidth models (3.1).
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5 Proofs

The proof of Proposition 3.1 will strongly rely on the following lemma. We
make use of the function sgn(.) defined by

sgn(x) =

{

1 if x ≥ 0
0 if x < 0 .

Lemma 5.1 (Bartlett, Maiorov, and Meire, 1998)
Suppose that f1(.), . . . , fm(.) are fixed polynomials of degree at most ℓ in p
variables. Then the number of distinct sign vectors

(

sgn
(

f1(a)
)

, . . . , sgn
(

fm(a)
)

)

that can be generated by varying a ∈ R
p is at most

2(2ℓ)p(m + 1)p .

Proof of Proposition 3.1 We introduce the notation x1, . . . , xn−m for
the sample from R

d(n−m) used in the definition of fn−m,θ. It is deterministic
and the bounds below will hold uniformly over all such samples. To compute
the shatter coefficient, we will use y1, . . . , ym as the sample from R

dm to be
employed. We start as in Lemma 12.3, page 123 of Devroye and Lugosi
(2001). For each θ ∈ Θ, consider the m × (n − m) × r1 × r2 array zθ with
current element

z
(t,i,j1,j2)
θ = 1[φ(yt,xi,λj1j2

)>0]1S

(

yt − xi

φ(yt, xi, λj1j2)

)

1B1
j1
×B2

j2
(yt, xi) ,

t ≤ m, i ≤ n − m, j1 ≤ r1, j2 ≤ r2, and S = {x : ||x|| ≤ 1}. We shall
first bound the number of different values the array zθ can take as θ ranges
through Θ. Fix temporarily j1 = J1 and j2 = J2, and consider the submatrix

u
(J1,J2)
θ with current element z

(t,i,J1,J2)
θ . Since there are m(n − m) different

pairs (yt, xi), the bit vector

(1B1
J1

×B2
J2

(yt, xi) : t ≤ m, i ≤ n − m)

can take at most SP

(

m(n−m)
)

values as θ ranges through Θ. Consequently,

the number of different values the matrix u
(J1,J2)
θ can take is bounded by

the product of SP

(

m(n − m)
)

and the number of values the bit vector

(1[φ(yt,xi,λJ1J2
)>0]1[φ(yt,xi,λJ1J2

)≥||yt−xi||] : t ≤ m, i ≤ n − m)

can take as λJ1J2 runs through R
p. Since 1[φ(yt,xi,λJ1J2

)>0]1[φ(yt,xi,λJ1J2
)≥||yt−xi||]

equals
{

1 − 1[−φ(yt,xi,λJ1J2
)≥0] if yt = xi

1[φ(yt,xi,λJ1J2
)−||yt−xi||≥0] otherwise,
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we conclude that

Card{u(J1,J2)
θ : θ ∈ Θ}

≤ Card
{

(

1[R1(λJ1J2
)≥0], . . . ,1[Rm(n−m)(λJ1J2

)≥0]

)

: λJ1J2 ∈ R
p
}

SP

(

m(n − m)
)

,

where the m(n − m) functions Rk’s are defined by

Rk(λJ1J2) =







−φ(yt, xi, λJ1J2) if yt = xi

φ(yt, xi, λJ1J2) − ||yt − xi|| otherwise .

Since the Rk’s are polynomials over R
p of degree no more than ℓ, Lemma

5.1 shows that u
(J1,J2)
θ can take at most

2(2ℓ)p (m(n − m) + 1)p SP

(

m(n − m)
)

values. If follows that the array zθ can take at most

[

2(2ℓ)p (m(n − m) + 1)p SP

(

m(n − m)
)

]r1r2

,

and, similarly, that

Card
{

(zθ, zθ′) : (θ, θ′) ∈ Θ2
}

≤
[

2(2ℓ)p (m(n−m)+1)p SP

(

m(n−m)
)

]2r1r2

.

Write now W =
{

(w, w′) : (w, w′) = (zθ, zθ′) for some (θ, θ′) ∈ Θ2
}

. For
fixed (w, w′) ∈ W, let U(w,w′) denote the collection of all (θ, θ′) such that
(zθ, zθ′) = (w, w′). For (θ, θ′) ∈ U(w,w′), we will use the following notation:

θ = (P1, P2, λ) and θ′ = (P ′
1, P

′
2, λ

′) ,

with

P1 = {B1
1 , . . . , B1

r1
}, P2 = {B2

1 , . . . , B2
r2
}, λ = (λj1j2 : (j1, j2) ∈ J)

and

P ′
1 = {B′1

1 , . . . , B
′1
r1
}, P ′

2 = {B′2
1 , . . . , B

′2
r2
}, λ′ = (λ′

j1j2 : (j1, j2) ∈ J).

For every t ≤ m, consider the sets

It =
{

(i, j1, j2) : z
(t,i,j1,j2)
θ 6= 0, i ≤ n − m, j1 ≤ r1, j2 ≤ r2

}

and

I ′t =
{

(i, j1, j2) : z
(t,i,j1,j2)
θ′ 6= 0, i ≤ n − m, j1 ≤ r1, j2 ≤ r2

}

.
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Observe that yt belongs to

Aθ,θ′ =
{

x : fn−m,θ(x) > fn−m,θ′(x)
}

if and only if

∑

(i,j1,j2)∈It

1

φ(yt, xi, λj1j2)
z
(t,i,j1,j2)
θ >

∑

(i,j1,j2)∈I′t

1

φ(yt, xi, λ′
j1j2

)
z
(t,i,j1,j2)
θ′ .

Within the set U(w,w′), the values z
(t,i,j1,j2)
θ and z

(t,i,j1,j2)
θ′ are fixed for all

t, i, j1 and j2. Therefore, since the xi’s and yt’s are fixed,

∑

(i,j1,j2)∈It

1

φ(yt, xi, λj1j2)
z
(t,i,j1,j2)
θ

may be written in the form
Pt(λ)

Qt(λ)
,

where the functions λ 7→ Pt(λ) (resp. λ 7→ Qt(λ)) are polynomials over
R

r1r2p of degree no more than (n−m− 1)ℓ (resp. (n−m)ℓ). Similarly, the
quantity

∑

(i,j1,j2)∈I′t

1

φ(yt, xi, λ′
j1j2

)
z
(t,i,j1,j2)
θ′

may be written in the form
P ′

t(λ
′)

Q′
t(λ

′)
,

where P ′
t (resp. Q′

t) are polynomials over R
r1r2p of degree no more than

(n − m − 1)ℓ (resp. (n − m)ℓ). Set now λ̃ = (λ, λ′) ∈ R
2r1r2p and, for

t = 1, . . . , m, define

Rt(λ̃) = Pt(λ)Q′
t(λ

′) − P ′
t(λ

′)Qt(λ) .

Observe that each Rt is a polynomial function over R
2r1r2p of degree no

more than (2(n−m)− 1)ℓ. Therefore, applying again Lemma 5.1 we obtain

Card
{

{1[y1∈Aθ,θ′ ]
, . . . ,1[ym∈Aθ,θ′ ]

} : (θ, θ′) ∈ U2
(w,w′)

}

≤ Card
{

{1[R1(λ̃)>0], . . . ,1[Rm(λ̃)>0]} : λ̃ ∈ R
2r1r2p

}

≤ 2(2ℓ)2r1r2p
(

(2(n − m) − 1)(m + 1)
)2r1r2p

.

Putting all pieces together, we obtain

SAΘ
(m) ≤ 2(2ℓ)2r1r2p

(

(2(n − m) − 1)(m + 1)
)2r1r2p

CardW
≤ 21+(2+4p)r1r2 ℓ4r1r2p

[

(m(n − m) + 1)(2(n − m) − 1)(m + 1)
]2r1r2p

× SP(m(n − m))2r1r2 .

�
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