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Hole-conjugate states of the fractional quantum Hall effect host counter-propagating edge channels
which are thought to exchange charge and energy. These exchanges have been the subject of
extensive theoretical and experimental works; in particular, it is yet unclear if the presence of integer
quantum Hall edge channels stemming from fully filled Landau levels affects heat equilibration along
the edge. In this letter, we present heat transport measurements in quantum Hall states of graphene
demonstrating that the integer channels can strongly equilibrate with the fractional ones, leading
to markedly different regimes of quantized heat transport that depend on edge electrostatics. Our
results allow for a better comprehension of the complex edge physics in the fractional quantum Hall
regime.

The fractional quantum Hall (QH) effect emerges when
a two-dimensional electron system is subjected to a
strong perpendicular magnetic field B such that the fill-
ing factor ν = neh/eB takes fractional values (ne is the
carrier density, h Planck’s constant, and −e the elec-
tron charge). For hole-conjugate states, it takes the form
ν = N0+1−p/q, with N0 the integer part of ν correspond-
ing to fully filled Landau levels (LLs), q an odd number,
and p such that p/q < 1/2. The edge structure for such
states has been the subject of more than 30 years of re-
search, originally focused on ν = 2/3 (such that N0 = 0
and p/q = 1/3) [1,2]. Some of the earlier works proposed
the ν = 2/3 edge to be composed of one downstream chan-
nel with integer electrical conductance G0 = e2/h along
with one upstream channel with fractional conductance−1/3 × G0 [2]. It was later proposed that inter-channel
interactions and disorder-assisted charge tunneling be-
tween the downstream and upstream channels radically
change that structure. Strong interactions give rise to
a downstream charged mode with fractional electrical
conductance 2/3 × G0 and one upstream neutral mode
which only carries heat in the direction opposite to that of
charge transport [3]. This charge equilibration was then
generalized to other fractions [4,5]. Importantly, depend-
ing on ν the numbers of downstream fractional-charged
modes and upstream neutral modes are not necessarily
equal. Neutral modes were first observed in 2010 [6], then
extensively investigated using shot noise [7–9] and local
thermometry [10] measurements.

Recently, the question of heat equilibration between
neutral and charged modes has been the center of a
growing number of works, both experimental [11–14] and
theoretical [15–20]. While most experiments confirm a
charge equilibration (see e.g. Refs. [21,22] for notable
exceptions), heat equilibration is much less universal.
In gallium arsenide (GaAs) based 2-dimensional electron
gases, partial to full heat equilibration was first reported
at ν = 2/3,3/5,4/7 [11], and 8/3 [12]; however, a re-

cent experiment showed an absence of heat equilibra-
tion at ν = 2/3 even for large (> 300 µm) lengths [14].
Experiments in graphene reported no heat equilibration
at ν = 5/3 and 8/3 [13] over a few microns scale, and,
very recently, the observation of a temperature-induced
heat equilibration at ν = 2/3 and 3/5 [23]. This diver-
sity of observations is currently understood by the facts
that the charge and heat equilibration lengths can be
largely different depending on the coupling between the
counter-propagating edge modes [13], and that the ratio
between the number of coupled downstream modes Nd

and upstream modes Nu strongly affects the equilibra-
tion. Namely, for states with Nd = Nu (e.g. ν = 2/3), heat
equilibration is predicted to have slow algebraic length
dependence [18,19,23], and is not observed at low temper-
ature, even at large length scales [14]. On the contrary,
for Nd ≠ Nu it should be exponentially fast [18,19,23].
However, it is still unclear whether, for fractional ν > 1,
the N0 integer edge channels (ECs) stemming from the
fully filled LLs participate in the heat equilibration along
the edge [17]. If so, one should include them in the Nd

downstream modes, which can lead to Nd ≠ Nu in states
where ν = N0+2/3, radically changing heat equilibration.

We addressed this question by probing heat transport
in graphene at filling factor ν = 8/3. Fig. 1a shows
its edge structure, with N0 = 2 integer ECs stemming
from the fully filled zeroth LL, and a ν = 2/3-like pair
of counterpropagating fractional edge modes [17]. The
upstream mode can either exchange heat with only the
fractional downstream mode (Fig. 1b). This ’algebraic’
case is similar to ν = 2/3, with Nd = Nu = 1, such
that no heat equilibration is expected at low tempera-
ture and short/moderate lengths [13,14,23]. Conversely,
the upstream mode can exchange heat with all down-
stream channels (Fig. 1c), such that Nd = N0 + 1 = 3
and Nu = 1, implying a much more efficient heat equili-
bration. This difference is directly reflected in the heat
flow, affecting the number N of effective ballistic heat
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Figure 1. ν = 8/3 edge structure, without heat equilibration (a), with heat equilibration between fractional modes only
(b), and between all modes (c). Full/dashed arrows: charged/neutral modes, with their chirality. Arrow colour: temperature
gradient in the presence of a temperature bias: hot source (red) on the left, cold source (blue) on the right. (d), Schematic
representation of the experiment, with cold electrodes (blue) at T0 and the metallic island (red) at Tc. Red arrows: chiral edge
channels, gradient-coloured arrows: heat flows going in (Jin) and out of (JQ) the island. (e), Optical micrograph of the sample,
with the experimental wiring. The encapsulated graphene flake is shown in green. The greyed out electrodes are left floating,
and the hatched electrode is used as a current feed in cooldown 2.

transport channels [5,13,18,19]. In the non-equilibrated
(algebraic) case, all downstream and upstream modes are
ballistic and contribute independently, yielding N = 4. In
the fully equilibrated case, the upstream mode suppresses
heat transport down to N = 2.

Fig. 1d shows our experimental principle. It was first
demonstrated in GaAs in the integer QH regime [24], and
later applied to the fractional QH effect [11,12]. Recent
experiments [13,23,25] have extended it to graphene. A
2-dimensional electron gas (here in graphene) is divided
in two regions electrically connected by a floating metal-
lic island, highlighted in red in Fig. 1b. A perpendic-
ular magnetic field B allows reaching the QH regime,
with equal ν in both regions. The dc electrical current
Idc is applied to one of the cold electrodes (in blue in
Fig. 1d), and flows downstream via the ECs (red lines
in Fig. 1d) to the island. The latter evenly splits the
current between the outgoing ECs in the two regions,
resulting in a net Joule power directly dissipated into
the island Jin = I2dc/(4νG0) [24–26]. This induces an
increase in the electron temperature Tc of the island,
while all other electrodes remain at base electron tem-
perature T0. The input heat flow Jin is evacuated from
the island through the outgoing ECs on both sides of
the island, each side carrying half of the outgoing heat
flow, JQ/2. Each ballistic channel carries a quantum-
limited heat flow Je

Q = 0.5κ0(T 2
c − T 2

0 ) [24,27,28], with

κ0 = π2k2B/3h (kB is Boltzmann’s constant). Neglecting
other contributions (e.g. coupling to phonons, see be-
low), the heat balance simply reads JQ = Jin, hence

JQ = 1

4νG0
I2dc = 2N

κ0
2
(T 2

c − T 2
0 ), (1)

where N is the number of ballistic heat-carrying chan-
nels flowing out of each side of the island (the total num-
ber thus being 2N). For integer QH states, N equals the

filling factor ν. For hole-conjugate fractional QH states,
N reflects the heat equilibration along the edge, as de-
tailed above. N can be directly extracted by measuring
the temperature Tc and comparing it to the input heat
flow according to Eq. 1.

Fig. 1e shows our implementation in a hexagonal boron
nitride (h-BN)-encapsulated monolayer graphene sam-
ple. The charge carrier type and density are tuned
using a graphite back gate upon which the voltage Vg
is applied. The Ti/Au metallic island has dimensions
6.8 µm ×1.25 µm ×100 nm, its distance to the clos-
est electrodes is ∼ 2.5 µm, and the width of the de-
vice is ∼ 5 µm. ECs flowing out of the two sides of
the island, denoted ’reflected’ (R) and ’transmitted’ (T)
with respect to the current feed, connect to measure-
ment electrodes in this order: noise, low-frequency con-
ductance, cold ground. We characterize charge trans-
port by measuring the 2-point differential conductances
G2pt = (dVR,T/dĨR,T)−1 (ĨR,T are the currents directly
applied to the measurement contacts on the R and T
side), the differential transmitted and reflected transcon-
ductances GR,T = (dVR,T/dIdc)−1 probing current redis-
tribution at the island, and the ’longitudinal-like’ differ-
ential conductance σxx = G2

0 × dVR/dĨT. The latter van-
ishes for well-defined QH states because the chiral paths
connecting the conductance measurement electrodes are
interrupted by a cold ground. The island’s electron
temperature increase ∆Tc induces current fluctuations
∆S = νG0kB∆Tc in the ECs flowing out of the island,
that we detect through two independent noise measure-
ment lines on each side (A and B in Fig. 1e).

We present measurements in two consecutive
cooldowns of the same device. All connections were kept
identical, except for the current feed which was swapped
between the R side in cooldown 1 (CD1) and the T side
in cooldown 2 (CD2).
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Figure 2. Conductances versus Vg, measured at B = 7 T and T = 10 mK for (a) cooldown 1 and (b) cooldown 2. Red
(resp. orange): 2-point conductance G2pt of the transmitted (resp. reflected) side (see legend on the upper right corner). Grey:
longitudinal-like conductivity σxx. Lavender: reflected transconductance GR. Blue: transmitted transconductance GT. c and
d: Zooms on the ν = 2→ 3 transition (dashed rectangles in (a) and (b)). The ν = 8/3 region is highlighted in blue. Horizontal
ticks in (d): guides for the eyes at the expected values of G2pt and GT/R. (e), Ratio between the Vg widths of the ν = 1,2,3
(blue) and ν = 8/3 (red) plateaus between cooldown 2 and cooldown 1. The maximum of the bars corresponds to the ratio of
the widths extracted from G2pt, and the minimum to the one extracted from σxx.

Fig. 2 shows conductance measurements as a func-
tion of the gate voltage, obtained at B = 7 T, for CD1
(Fig. 2a,c) and CD2 (Fig. 2b,d). Well-defined QH states,
at both integer and fractional ν, are characterized by
quantized plateaus in the 2-point conductances G2pt =
νG0, along with a vanishing σxx. On most of these
plateaus (except notably on ν = 1/3 in CD2), GR and
GT have equal values, quantized to 0.5× νG0, indicating
chiral charge transport and near-ideal current redistri-
bution at the island. Figs. 2c,d show a zoom on the
ν = 2 → 3 transition. The width of the ν = 8/3 plateau is
strongly reduced in CD2, with a non-zero local minimum
in σxx. Nevertheless, chirality and current redistribution
are still preserved: both transconductances are equal,
with a plateau at half-quantized value 0.5 × 8/3G0 [26].
We superimpose two traces in Fig. 2d, illustrating the
reproducibility of this feature.

Fig. 2e plots the ratio between the Vg widths of the
plateaus between CD2 and CD1. These spans can be
extracted from the quantized G2pt, or from the minima
in σxx; either show that for CD2, all integer QH plateaus
are wider while ν = 8/3 is markedly narrower. The Vg
position of each plateau can be similarly extracted [26];
we observe a systematic shift towards more negative Vg
at CD2, corresponding to an increased intrinsic electron
doping ∆ne ≈ 1.7 × 1010 cm−2.

Thermal measurements were performed for each
QH state in which the chirality and current redistribu-

tion criteria are enforced: ν = {1/3,1,2,8/3,3} for CD1,
and ν = {1,2,8/3,3} for CD2. We use auto- and cross-
correlations of the two noise lines to extract ∆Tc from
spurious noise contributions [26,29]. Fig. 3 shows ∆Tc
measured as a function of the dc current Idc. All filling
factors display the same qualitative behavior, in agree-
ment with Eq. 1, where ∆Tc increases linearly beyond a
thermal rounding at low Idc. Following Eq. 1, the slope
only depends on 1/√N × ν. The data show similar slopes
for both cooldowns, except ν = 8/3, with a markedly
higher slope at CD2. This observation, discussed in de-
tail below, is the main result of our work. Note that
for this last dataset, we kept Idc small, as both auto-
correlations became different above ∣Idc∣ ≈ 1 nA [26].

We compared our data to Eq. 1, assuming negligible
electron-phonon cooling in the island. This is reason-
able given its small volume and the very low tempera-
tures [26]; previous experiments in graphene [13,23,25],
withsimilar dimensions, also reported negligible electron-
phonon cooling. Eq. 1 appears as black lines in Fig. 3.
The number of ballistic heat carrying modes N is fixed
to its expected value (N = ν for integer QH states, see
below for ν = 8/3), yielding an excellent agreement with
the slope of the data. The thermal rounding is repro-
duced by adjusting the base electron temperature T0
for each ν. These extracted T0 match with the equi-
librium Johnson-Nyquist noise measured at Idc = 0 [26].
For CD1, T0 ≈ 12 mK (for a fridge base temperature of
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Figure 3. ∆Tc versus Idc, for cooldown 1 (a) and 2 (b).
Symbols: experimental data (orange 9 : ν = 1/3, blue ○ :
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Black lines: fits (see text). Data and fits corresponding to
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8.7 mK), with the notable exception of ν = 1/3, where
T0 ≈ 42 mK. For CD2, T0 ≈ 15 mK, except at ν = 1,
where T0 ≈ 20 mK. We attribute those variations, par-
ticularly the increase at lower ν, to mechanical vibra-
tions [30]. Additional analysis (e.g. heat Coulomb block-
ade effects [31]), described in [26], yields a reasonable un-
certainty on the extracted T0 of about ±3 mK, translating
into a typical uncertainty on N of about ±0.1.

The relation between the slopes in ∆Tc(Idc) and quan-
tized heat transport appears clearly when replotting the
data in terms of the total heat flow leaving the island
JQ = I2dc/(4νG0) as a function of (T 2

c − T 2
0 ). This is

shown in Fig. 4, with T0 extracted from the above proce-
dure, such that the data (JQ is plotted in units of 0.5κ0)
naturally fall onto lines with integer slope 2N . The rep-
resentation of Fig. 4 shows heat transport properties of
each filling factor regardless of charge transport. As a
striking example, the data at ν = 1/3 and ν = 1 fall onto
the same N = 1 line, demonstrating that a fractional
and an integer ECs carry the same universally quan-
tized heat flow π2k2B/6h(T 2

c − T 2
0 ) [27,28], previously re-

ported in GaAs [11] and graphene [23,25]. Fig. 4 empha-
sizes the remarkable difference between both cooldowns
for ν = 8/3. On the one hand, in CD1 we observe a
quantized heat flow with N = 4 channels, correspond-
ing to non-equilibrated ballistic heat transport through
all downstream charged modes and the upstream neutral
mode. This is consistent with recent results in bilayer
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graphene [13]. On the other hand, for CD2, ν = 8/3
falls on top of ν = 2, corresponding to a quantized heat
flow with N = 2 channels. This unambiguously signals
a strong heat equilibration at ν = 8/3, corresponding to
the upstream neutral mode fully equilibrating with both
integer and fractional downstream charged modes.

The increase of disorder and doping revealed in Fig. 2
thus leads to a large change in the thermal conductance
of ν = 8/3 between the two cooldowns. This strongly
suggests that heat equilibration in CD2 is exponential,
confirming the fact that the integer ECs have to be con-
sidered in this equilibration process. Microscopically, the
increase electron doping, likely stemming from charged
impurities adsorbed at the surface of the sample while it
was exposed to ambient air during thermal cycling, can
favour efficient equilibration. Indeed, these impurities lo-
cally increase the electron density in the vicinity of the
edge, resulting in a sharper edge confinement potential
which increases the coupling between the more closely
packed ECs. Not only can the increased coupling drive
the heat equilibration in an exponential regime, but it
can also drastically affect the characteristic length [23],
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further favoring equilibration. Even though spatially sep-
arated [17], the fractional and integer channels can thus
be strongly coupled; interestingly, this can be related to
recent observations of charge tunneling between integer
channels at ν = 3 in graphene [32,33].

Finally, the small, non-zero σxx measured in CD2 raises
the question whether our observations stem from bulk
heat transport. It is unlikely, as this would effectively
increase N rather than diminish it [26].

In conclusion, we have observed the two opposite
regimes of heat equilibration on the edge in the fractional
QH regime, suggesting that exponential heat equilibra-
tion can occur at ν = 8/3. Our result demonstrate the
crucial importance of considering all downstream modes
in the heat equilibration, particularly the integer ECs
copropagating along the fractional edge modes. This
is likely to impact experiments realizing new quantum
circuits based on the non-trivial statistics of fractional
QH states at ν > 1.
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ELECTRONIC HEAT BALANCE CALCULATIONS

To obtain Eq. 1 in the main text, we first write the heat flow through a single integer quantum Hall edge channel
stemming from an electron reservoir labelled α with chemical potential µ + eVα (µ is the global chemical potential of
the sample in absence of dc bias) and temperature Tα:

Jαout = 1

h
∫ dε(ε − µ) [fα(ε) − θ(µ − ε)] = π2k2BT

2
α

6h
+ 1

h

(eVα)2
2

= κ0
2
T 2
α + G0

2
V 2
α , (1)

where fα(ε) is the Fermi function in the reservoir α, and θ(ε) is Heaviside’s step function. This formula can be
used to obtain the heat balance at integer filling factor ν in the central metallic island: 2∑ν1 Jcout = ∑ν1 JIout +∑ν1 JGout,
where JIout (resp. JGout) is the heat flow carried by a single edge channel leaving the current feed contact upstream of
the metallic island (resp. the upstream grounded contact on the other side of the metallic island), with temperature
T0 and chemical potential µ + Idc/(νG0) (resp. µ). Recalling that Vc = Idc/(2νG0), this yields:

2
ν∑
1

κ0
2
T 2
c + 2

ν∑
1

G0

2
( Idc

2νG0
)2 = 2

ν∑
1

κ0
2
T 2
0 + ν∑

1

G0

2
( Idc
νG0

)2 . (2)

Grouping the temperature and dc current-dependent terms on either side of the equation gives:

ν∑
1

I2dc
4ν2G0

= 2
ν∑
1

κ0
2

(T 2
c − T 2

0 ), (3)

which, in the case of integer filling factor where ν = N , yields main text Eq. 1:

1

4νG0
I2dc = 2N

κ0
2

(T 2
c − T 2

0 ). (4)

This equation can be generalized to the fractional case by singling out the contributions of the fractional charged
and neutral channels.
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SAMPLE FABRICATION AND CHARACTERIZATION

The sample was made of a van der Waals heterostructure (36 nm h-BN / monolayer graphene / 25 nm h-BN /
few nm graphite) assembled from top to bottom with a PDMS stamp covered by a PPC film. Metallic contacts,
including the central island and the graphite gate contact, where defined using electron beam lithography. The top
h-BN and about 10 nm of the bottom h-BN were etched using CHF3/O2 reactive ion etching to expose the graphene
edge. Metallic electrodes (5 nm Ti / 100 nm Au) were then deposited in the etched trenches so as to connect the
graphene. A second electron beam lithography was then realized to define the sample’s edges using CHF3/O2 reactive
ion etching. The room temperature mobility of the sample was extracted from 4 points measurements for both sides of
the sample, yielding µ = 1.7×105 cm2/Vs for the T-side, and µ = 3.8×105 cm2/Vs for the R-side. A small gate leakage
was present above Vg > 1 V. After cooldown 1, the sample was rapidly warmed up to room temperature, leading to
hoarfrost. It was then heated up to 150 ○C for about 30 minutes, pumped to secondary vacuum (∼ 10−4 mbar) in the
sample loadlock of our dilution refrigerator, then cooled down.

10 µm

Vg

B

: σxx

A

1 MΩ

300 K 3.5 K 10 mK

5 MΩ

1 MΩ

1 MΩ

-
+

-
+

+

: GR

: G2pt

: GT

: G2pt

Figure 1. Layout of the wiring for the conductance measurements. Lines are color-coded (blue: T-side conductance; green:
back gate; red: dc current feed; purple: R-side conductance; black: cold ground).

CONDUCTANCE MEASUREMENTS

Setup

A detailed description of the conductance measurements is shown in Fig. 1. The measurements were performed
using lock-in techniques at low frequency, below 10 Hz. All lines, including current feed (red in Fig. 1) and back
gate (green in Fig. 1) are heavily filtered at the mixing chamber stage of our dilution refigerator using cascaded RC
filters. The effect of those filters (both in terms of series resistance and capacitive cutoff) are taken into account in
our data. All measurements are performed using differential amplifiers (CELIANS EPC-1B) referenced to the cold
ground (black in Fig. 1) The latter is directly connected (both electrically and thermally) to the mixing chamber
stage. The current feed line includes a 1 MΩ series bias resistor thermally anchored to the 3.5 K stage of our dilution
refrigerator.
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Zero magnetic field measurements

R
2p

ts
 (

k
)

1

10

Vg (mV)
-50 0 50

µ=250 000 cm²/Vs
VCNP=-15.5 mV

cooldown 1

Figure 2. Measurement of the 2-point resistance on the T side of the sample as a function of Vg, at B = 0 T and T = 12 mK.
Circles: data, line: fit.

Fig. 2 shows the measurement of the sample resistance versus gate voltage, at zero magnetic field and low tem-
perature, for cooldown 1. The charge neutrality point (CNP) is well fitted by the standard equation [1], yielding a
mobility of about 250000 cm2/Vs (this value is slightly different from the room temperature ones mentioned above,
mostly because the two point configuration used here does not allow for a precise estimation of the number of squares
used in the formula). The Vg position of the CNP is −15.5 mV. We were not able to perform this measurement for
cooldown 2; nonetheless, we present below results of a third cooldown with conductance features similar to that of
cooldown 2.

The ν = 8/3 plateau at cooldown 2

Figure 3 shows a more precise zoom on the ν = 8/3 plateau measured during cooldown 2. In particular, it shows
that the criteria for chirality and current reditribution are well enforced even though the longitudinal-like conductivity
is not exaclty zero.

Gate voltage position of the plateaus and increase of the intrinsic doping

We infer the presence of increased intrinsic doping in the second cooldown by comparing the gate voltage positions
of the quantum Hall plateaus for both cooldown, at the same value of the magnetic field B = 7 T. In absence of
zero magnetic field data for cooldown 2 (we were unfortunately forced to warm up the system before being able to
perform these additional measurements), we estimate the intrinsic electron density increase ∆n0 from the shift of the
plateaus center in cooldown 2 with respect to cooldown 1. The plateau center is obtained either from the 2 point
conductances, or from the longitudinal conductance, yielding a typical uncertainty on this estimation. The shifts for
filling factors ν = 2/3, 1, 2, 8/3, and 3 are shown in Fig. 4. All filling factors show a negative Vg shift, corresponding
to a net increase of the intrinsic electron density. The value of this increase ∆n0 ≈ 1.68× 1010 cm−2 is estimated from
the average ∆Vg ≈ 23 mV shift, knowing the capacitive coupling between the graphite back gate and the graphene
flake from the h-BN thickness. We argue that this increase is important enough to affect the edge electrostatics and
strengthen the coupling between the integer and fractional edge channels at ν = 8/3. In a similar fashion, the slight
increase in the width of the integer plateaus indicate an increase of the disorder, which remains small enough to allow
us observing fractional quantum Hall states.

Conductance versus dc current

We measured all conductances simultaneously to the noise measurement, allowing to check that the reflected and
transmitted transconductance remains reasonably constant as a function of the applied Idc. This is shown in Fig. 5,
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Figure 3. Zoom on the nu = 8/3 plateau on the conductance data at cooldown 2 shown in the main text. Blue: 2-point conduc-
tance G2pt measured on the reflected side). Dark grey: longitudinal-like conductivity σxx. Orange/red: transmitted/reflected
transconductance GT/R.
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Figure 4. Gate voltage shift of the plateaus center at cooldown 2 with respect to cooldown 1. Fractional states are shown in
red, integer in blue. The dashed line corresponds to the average shift, yielding the density increase ∆n0.

for cooldown 1 (left) and cooldown 2 (right). Except for ν = 8/3 in cooldown 2, which displays a variation of about
10 % between Idc = ±2 nA, all conductances are constant and very close to their expected values. Note that for this
measurement, the ac excitation current used for the lock-in measurement was about 0.1 nA.

NOISE MEASUREMENTS

Calibration

Temperature calibration

The noise which is measured is the following one :
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Figure 5. Transmitted (GT) and reflected (GR) transconductances as a function of Idc, for ν = 1/3 (black), ν = 1 (blue), ν = 2
(red), ν = 8/3 (purple), and ν = 3 (dark yellow). Measured GT (full circles) are shown for negative Idc, and GR (open circles)
for positive Idc. Note that both GT and GR are essentially symmetric with the sign of Idc. The lines are the expected values
for GR,T = G0ν/2.

Figure 6. Noise measurement circuit from the sample to the acquisition card. The resonator is made with a capacitor c2, an
inductor L with an effective resistance rL and a resistance R which represents the losses on the circuit.

Smeasth,v = G2 × ∫
BW

dfF ( f
fc

) [S2
v,amp + ∣Z//∣2 (S2

i,amp + 4kBTRe( 1

ZRLC
) + S2

i,sample(TS , Tc = TS))] (5)

Where S2
i,amp and S2

v,amp, are the current and voltage noise of the amplifier, 4kBTRe( 1
ZRLC

) the thermal noise

of the resonator which is an LCR circuit, and S2
i,sample(TS , Tc) = 3kBTSνe

2/h + kBTcνe2/h the current noise of the
sample, where the metallic island can generally be at higher electron temperature Tc than the rest of the sample,
at temperature TS . The unknown are the amplifier noise, and the resonator noise. We determine these parameter
with a temperature calibration where we measured the equilibrium noise for temperature ranging between 10 and 200
mK, for various filling factors. Fig. 7a) shows typical raw spectra obtained from this calibration. We first remove
the contribution of the temperature-independent terms by calculating the difference between each spectrum and the
average of all spectra:

∆Sv = Smeasth − ⟨Smeasth ⟩T , (6)

yielding the curves shown in Fig. 7b), given by the equation, which assumes that all temperatures T , TS and Tc
are equal:

∆Smeasv = G2 ∫
BW

F ( f
fc

)2kB∆T ∣Z//∣2 [2Re( 1

ZRLC
) + νGel] (7)

The parameters of the LCR circuit will be found by fitting the above equation 7 from the measured noise for a
fixed value of ν. The voltage noise of the amplifier can be found from the intercept in temperature dependence of the
integrated noise. If we look at the equation 5, the noise of the amplifier doesn’t depend on the temperature. Then, we
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can do a linear fit, and find Sv,ampA ≃ 0.26 nV /
√
Hz and Sv,ampB ≃ 0.28 nV /

√
Hz. This calibration can be applied

to the measurement, to analyse the current noise of the sample. The calibrated noise is the following :

∆S = BW∆Smeasv

G2 ∫BW dfF ( f
fc

) ∣Z//∣2

∆S = 2kBνGel∆T

(8)

Figure 7. Temperature calibration at 14 T. a)b) Spectrum of the noise with the frequency for different temperature, where
a) is direct noise measurement and b)is ∆Sv with the fitting function (straight lines). The figure c) is the Smeas with the
temperature of the fridge, where the linear fit is the black line.

Auto and cross-correlations

We explain here the principle behind our using of auto and cross correlations to extract the temperature increase
∆Tc from spurious additional contributions. We first begin by establishing the formula linking ∆Tc to the current
noise spectral density ∆S flowing out of the sample. Following [2], a floating reservoir α at temperature Tα and
voltage Vα emits in the i-th edge channel flowing out of it a current fluctuation given by:

δIi = δITαi +G0δVα (9)

The first term δITαi corresponds to current fluctuations due to the finite temperature of the reservoir, with a spectral

density < (δITαi )2 >= 2G0kBTα; the second term corresponds to fluctuations of the voltage of the floating reservoir.

Importantly, in each of the edge channels, the first term is uncorrelated, < δITαi δITαj >= δi,j × 2G0kBTα, while the



7

second is correlated, i.e. it is equal at all times in all edge channels flowing out of the reservoir. We adopt the following
notations for the contacts: α = c for the central floating metallic island, α = A,B for the contacts connected to noise
measurement lines with complex input impedances ZA,B , and α = Ain,Bin for the current feed contacts upstream of
the floating island on the A,B side, the voltages of which are assumed to be without fluctuations. Assuming that we
are in the integer QH regime with filling factor ν, the current balances using Eq. 9 on contacts A, B and c read:

δVA(νG0 + 1/ZA) +∑
i

δITAi = (∑
i

δITci )A + νG0δVc (10)

δVB(νG0 + 1/ZB) +∑
i

δITBi = (∑
i

δITci )B + νG0δVc (11)

(∑
i

δITci )A + (∑
i

δITci )B + 2νG0δVc =∑
i

δITAini +∑
i

δITBini (12)

The thermal noise of the measurement impedances ZA,B is neglected here for simplicity, and (∑i δITci )A/B corre-
sponds to the sum of the thermal current fluctuations flowing from the metallic island to contacts A/B. We combine
these equations to express the voltage fluctuations δVA and δVA as a function of all other current fluctuations:

δVA(νG0 + 1/ZA) = −∑
i

δITAi + 1

2
(∑
i

δITci )A − 1

2
(∑
i

δITci )B + 1

2
∑
i

δITAini + 1

2
∑
i

δITBini (13)

δVB(νG0 + 1/ZB) = −∑
i

δITBi − 1

2
(∑
i

δITci )A + 1

2
(∑
i

δITci )B + 1

2
∑
i

δITBini + 1

2
∑
i

δITAini (14)

One can thus see right away that the terms containing thermal fluctuations of the metallic islands are anti-correlated,
while the thermal fluctuations of A/B are uncorrelated and those of Ain/Bin are positively correlated. Assuming
first that TA = TB = TAin = TBin = T0 (that is, only the metallic island heats up while all other contacts stay at base
electron temperature), we can calculate the auto and crosscorrelated voltage noise spectra:

< (δVA)2 >= 1∣νG0 + 1/ZA∣2 [3νG0kBT0 + νG0kBTc] (15)

< (δVB)2 >= 1∣νG0 + 1/ZB ∣2 [3νG0kBT0 + νG0kBTc] (16)

< δVA(δVB)∗ >= 1(νG0 + 1/ZA)(νG0 + 1/ZB)∗ [νG0kBT0 − νG0kBTc] (17)

This can finally be expressed as a function of the excess thermal current spectrum ∆S = νG0kBTc:

< (δVA)2 >= 1∣νG0 + 1/ZA∣2 [4νG0kBT0 +∆S] (18)

< (δVB)2 >= 1∣νG0 + 1/ZB ∣2 [4νG0kBT0 +∆S] (19)

< δVA(δVB)∗ >= − 1(νG0 + 1/ZA)(νG0 + 1/ZB)∗ ×∆S (20)

Thus, an increase of the metallic island electron temperature ∆Tc leads to positive autocorrelations, and negative
crosscorrelation. Following [3], we rely on this to separate the contribution of thermal noise due to the increase of the
metallic island’s electron temperature from additional spurious sources of noise. These sources can have three origins:
current fluctuations generated upstream of the island, after the island, and at the island interface. In the previous
calculations, the first two cased can be encompassed by introducing effective temperatures: TAin/Bin for the upstream
noise, and TA/B for the noise downstream of the island. Recalling the above equations, this leads to:
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< (δVA)2 >= 1∣νG0 + 1/ZA∣2 [2νG0kBTA + νG0kBTc + 1

2
νG0kBTAin + 1

2
νG0kBTBin] (21)

< (δVB)2 >= 1∣νG0 + 1/ZB ∣2 [2νG0kBTB + νG0kBTc + 1

2
νG0kBTBin + 1

2
νG0kBTAin] (22)

< δVA(δVB)∗ >= 1(νG0 + 1/ZA)(νG0 + 1/ZB)∗ [−νG0kBTc + 1

2
νG0kBTBin + 1

2
νG0kBTAin] (23)

As described in the main text, an additional upstream noise increases both auto and crosscorrelations by the same
amount, which can be subtracted by computing the difference between auto and crosscorrelation. Conversely, noise
downstream of the island will lead to different autocorrelations. In that case, it becomes problematic to extract the
thermal contribution, as the added noise cannot be easily subtracted. We thus discard the data as no reliable heat
transport analysis can be performed.

The case of current fluctuations generated at the island interface requires additional analysis. We present here a
simple model based on a single edge channel for simplicity. The imperfect interface is modelled by a scatterer with
transmission τ inserted before the island. We assume here that only one interface (the one connected to the A side) is
imperfect, such that the scatterer reflects the current stemming from contact Ain to contact A with a coefficient 1−τ .
The scatterer generates additional shot noise noted δI∗. Current conservation implies that the fluctuation thusly
generated on either side of the scatterer is opposite: by convention, we write −δI∗ the current fluctuation emitted in
the edge channel flowing to A, and +δI∗ the fluctuation emitted in the edge channel going to the island. This changes
the current balances shown in Eq. 12 to the following:
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δVA(G0 + 1/ZA) + δITA = −δI∗ + (1 − τ)δITAin + τ (δITc)A + τG0δVc (24)

δVB(G0 + 1/ZB) + δITB = (δITc)B +G0δVc (25)

(1 + τ)G0δVc + τ (δITc)A + (δITc)B = δI∗ + τδITAin + δITBin (26)

Expressing, as above, δVA/B as a function of all current fluctuations yields (noting F (τ) = τ/(1 + τ)):

δVA(G0 + 1/ZA) = −δITA − F (τ)
τ

δI∗ + F (τ) (δITc)A − F (τ) (δITc)B + [1 − τ + F (τ)] δITAin + F (τ)δITBin (27)

δVB(G0 + 1/ZB) = −δITB + F (τ)
τ

δI∗ − F (τ) (δITc)A + F (τ)
τ

(δITc)B + F (τ)δITAin + F (τ)
τ

δITBin (28)

(29)

Thus, the contribution of the shot noise < (δI∗)2 > is the same for auto and crosscorrelations, with a negative sign
for the cross correlations. While this is quite similar to the contribution of the thermal noise for a perfect interface,
it turns out that this same thermal noise has now different contributions in the two autocorrelations. This can be
intuitively understood by the fact that the side with the imperfect interface sees less noise stemming from the island.
In the end, by using the equal autocorrelation criterion mentioned above, one can again make sure that the noise
measured only stems from the increase island temperature Tc.

To sum up, we always discard datasets with differing autocorrelations, as it signals shot noise at either the island
interface, or downstream of it, and cannot be easily subtracted. We then extract the thermal noise contribution by
computing the averaged difference between autocorrelation and crosscorrelation < S >= ((A×A+B ×B)/2−A×B)2.
Systematically calculating < S > (provided, again, that the autocorrelations are equal) has the added benefit of
increasing our signal to noise ratio. In the main text, all ∆Tc are extracted from the computed < S >. We show
examples of the procedure in Fig. 8 for cooldown 1 at ν = 1/3, 2, and 8/3, as well as in Fig. 9 for cooldown 2 at
ν = 8/3. The autocorrelations are shown as red and orange symbols, the crosscorrelation as blue symbols, and < S >
as black symbols. We generally observe that there is no additional noise for integer ν, while fractional ν tend to
display the presence of additional noise. In particular, the additional noise at ν = 1/3 for cooldown 1 is substantial,
being comparable in amplitude to the thermal noise contribution. Note that other fractional filling factors, such as
ν = 2/3, or ν = 1/3 for cooldown 2, showed significantly different autocorrelation and were not considered in the heat
transport analysis. Similarly, at large bias, the autocorrelation at ν = 8/3 for cooldown 2 started differing notably; for
this reason we restricted ourselves to biases smaller than 1 nA for this dataset (see also Fig. 10 below).

Note that a poor interface at the floating island will also impact the conductance measurements, with the reflected
differential transconductance being larger than the transmitted one. Checking that the transconductance are equal and
quantized is thus crucial in these measurements. Interestingly, a bad transparency of the injection contact upstream
of the floating island will not necessarily appear in the conductance measurement, as the sample is current biased
(an imperfect transparency will reduce the voltage drop on the injection contact, and add noise, but won’t change
the amount of current fed flowing from this contact). Finally, our sample design is such that the floating island has a
larger interface length than the other contacts (which is usually the opposite in GaAs thermal transport experiments).
Thus, poor interfaces are more likely to stem from these contacts.

Note that the presence of additional noise, and its amplitude, is not universal. For instance, in ref. [4], the data at
ν = 1/3 does not seem to present spurious noise, as the authors only relied on autocorrelations to extract Tc. This is
likely due to edge contacts, which are known to locally dope graphene in their vicinity [5], and the microscopics of
which largely depends on the recipes used during the samples’ fabrication.

ν = 8/3 data

Fig. 10 shows the ∆Tc(Idc) data at ν = 8/3 for both cooldowns discussed in the main text. As mentioned in the
text, both measurements are strikingly different, with the second cooldown data showing a significantly higher slope,
corresponding to a smaller N . The lines are heat transport model fits, detailed below.
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shown in the main text. The grey dashed line are fits using the heat transport model with fixed N , also shown in the main
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Fig. 11 shows fits of ∆Tc versus Idc data discussed in the main articles with the heat transport model, with either N
fixed and T0 a free parameter (grey dashed lines, see also main text), or with both N and T0 as free parameters (black
lines). The agreement between either fits and the data is generally good; comparing the extrated values between the
two fits allows us to infer the limits and the precision of our approach. These values are summarized in Table I.

ν = 1 ν = 2 ν = 3 ν = 1/3 ν = 8/3
CD 1 - N fixed T0 = 11 mK T0 = 11 mK T0 = 12 mK T0 = 42 mK T0 = 12 mK

CD 1 - N free N = 1.4, T0 = 7.4 mK N = 2.3, T0 = 8.7 mK N = 3.1, T0 = 10 mK N = 1.5, T0 = 24 mK N = 3.5, T0 = 14 mK

CD 2 - N fixed T0 = 20 mK T0 = 15 mK T0 = 13 mK T0 = 16 mK

CD 2 - N free N = 1.9, T0 = 7.0 mK N = 2.4, T0 = 13 mK N = 2.7, T0 = 13 mK N = 1.9, T0 = 18 mK

Table I. Heat transport parameters extracted from the fits shown in Fig. 11. CD means cooldown.

The first observation is that leaving N as a free parameter generally leads to an overestimation of N , that is
particularly pronounced at nu = 1/3 and ν = 1. The associated T0 are generally smaller than for fixed N . In
particular, the T0 ≈ 7 mK obtained at ν = 1 are not physical, being lower than the calibrated base temperature of our
refrigerator of about 8.7 mK. The systematic overestimation of N likely stems from the fact that the fitting procedure
puts an important weight on the largest bias data, where the temperature increase is such that electron-phonon
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coupling starts playing a role and in effect increases the outgoing heat flow. In order to obtain a good fit of not only
the slope, but the absolute value of the data, the procedure in turn underestimates T0, which increases the absolute
value of the fit at finite bias. Except for the most problematic values at low filling factors, comparing both fitting
procedures allows fixing an upper bound for our determination of N of about 0.2 − 0.3.

Equilibrium noise
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Figure 12. Raw noise on line B (blue circles) and G2pt (red) versus Vg for cooldown 1. The position of the quantum Hall
plateaus are indicated by the vertical arrows. The horizontal dashed lines correspond to the computed value of the noise using
the calibration data and the extracted T0.
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Figure 13. a), raw noise on line B versus time, during the measurement run in cooldown 2 corresponding to the heat transport
data shown in the main text. The greyed out data, corresponding to ν = 1/3 and 2/3, is not discussed in the main text as it
did not satisfy the criterion of equal autocorrelations. The black horizontal dashed lines correspond to the computed value of
the noise using the extracted T0. The blue horizontal dashed line corresponds to the computed value of the noise, after taking
into account the slow noise drift occurring during the ν = 1/3 and 2/3 measurements (blue and red vertical arrows).

The values of T0 extracted from the heat balance fits can be compared with the amplitude of the noise measured
at equilibrium (that is, Idc = 0). Indeed, at equilibrium the raw value of the noise Smeasth,v for a given line is given
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by supplementary Eq. 5. We thus compute Smeasth,v with the T0(ν) extracted from the fits, and compare it to the
equilibrium noise. The latter can be obtain by different ways. First, one can directly measure the noise at Idc = 0
as a function of Vg, as illustrated in Fig. 12 for the first cooldown, showing plateaus corresponding to the different
filling factors, the value of which can be reproduced with supplementary Eq. 5. Second, one can look at the raw noise
data obtained for the heat transport measurement, and match the value obtained at zero bias with supplementary
Eq. 5. This is illustrated in Fig. 13 for the second cooldown; note that this second method is much more sensitive
to the slow drifts in the noise signals, that typically occur over several hours of measurement. In particular, Fig. 13
shows how the slow drifts occurring during the measurements at ν = 1/3 and 2/3, indicated by the vertical red and
blue arrows, have to be taken into account to match the equilibrium noise for the last measurement at ν = 8/3. With
both methods, we obtain a very reasonable agreement.
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Figure 14. χ2 extracted from linear fits of JQ(T 2
c − T 2

0 ) as a function of the assumed value T0, for various filling factors
in cooldown 2. Blue symbols and left Y-axis: χ2. Black dots: corresponding slope 2N . The horizontal thick dashed line
corresponds to the expected value of 2N , and the thin dotted lines to a ±10 % deviation. The red area corresponds to T0 in a±2 mK range of the T0 extracted from the fits shown in the main text.

A further check performed to ensure our confidence in the extraction of T0 consists in quantitatively inferring for
which T0 the data, expressed in terms of quantized heat flow (that is, by plotting JQ versus T 2

c − T 2
0 ), is the closest

to a linear behavior, and to which value of N this corresponds. The advantage of this approach is that it allows us
putting a stronger emphasis on the lowest bias data, where the electron-phonon coupling plays no role. We illustrate
it in Fig. 14, where we have plotted the χ2 of systematic linear fits of the JQ(T 2

c − T 2
0 ) data for different values of

T0, for ν = 1, 2, 3 and 8/3 in cooldown 2. We observed that the χ2 is generally minimal for values of T0 close to the
ones extracted using the fits shown in the main text, with corresponding values of N in good agreement with our
expectations.
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Electron-phonon cooling

In addition to heat transport due to the integer and fractional quantum Hall edge modes, the Joule heat dissipated in
the metallic island can also be evacuated through the electron-phonon coupling in the island. This cooling contribution
is usually written as Je−ph

Q = ΣΩ × (T δc − T δ0 ), with Σ a constant depending on the material, Ω the volume of the

metallic island, and δ ≈ 5 [2]. Here, the phonons are assumed to be thermalized at the same base temperature T0
as the equilibrium electrons (note that this might not always be the case, especially for low filling factors where the
extracted T0 is higher). The effect of this contribution is to bring a sublinear behavior of ∆Tc versus Idc at large Idc,
when the temperature increase becomes large enough; this sublinearity becomes all the more pronounced for increased
T0 or large volumes of the metallic island. In our case, the low T0 and the reduced size of the metallic island minimize
this contribution. Still, small sublinearities can be observed, and accounted for by adding the electron-phonon coupling
contribution to the model. This is exemplified in Fig. 15, which shows the ν = 2 data for cooldown 1, along with heat
transport models with and without electron-phonon coupling. The latter case, with the same T0 ≈ 11 mK, δ = 5 and
ΣΩ ≈ 0.8 nW/K−5, reproduces well the small sublinearity in the data. This being said, the effect is small enough to
be safely dismissed in our analysis.
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Figure 15. ∆Tc versus Idc at ν = 2. Symbols: experimental data for cooldown 1, shown in the main text. Black dashed
line: heat transport fit with N = 4 fixed and T0 = 11 mK (see main text). Dark blue line: heat transport model including
electron-phonon coupling, with T0 = 11 mK.
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Figure 16. ∆Tc versus Idc at ν = 3. Symbols: experimental data for cooldown 2, shown in the main text. Black dashed line:
heat transport fit with N = 3 fixed and T0 = 12.5 mK (see main text). Dark blue line: heat Coulomb blockade model, with
T0 = 15 mK.
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The range of base electronic temperatures attained in our experiment raises the question whether we are sensitive to
heat Coulomb blockade, a recently observed mechanisms wherein heat transport is reduced by one channel due to the
inability to change the metallic island’s charge state at energy and temperature much lower than its charging energy
Ec [6]. This effect is challenging to observed in its fully developed (that is, one ballistic heat transport channel being
fully suppressed), typically requiring kBT ∼ 0.02Ec [6]. From the geometry of our sample, we estimate Ec ≈ 70 mK,
substantially lower than the charging energy (∼ 300 mK) reported in the first observation of this effect. This is mainly
due to the fact that in our experiment, the metallic island is extremely close (15 nm) to the graphite back gate, largely
increasing its capacitance with respect to the experiment of ref. [6]. Using this value, we compare the theoretical
predictions to our experiment; unsurprisingly, the small value of the charging energy is such that the effect of heat
Coulomb blockade is very weak. This is illustrated in Fig. 16, showing the ν = 3 data for cooldown 2 along with its
heat transport fit with N = 3 fixed which yields T0 = 12.5 mK, and the heat Coulomb blockade model with T0 = 15 mK.
The latter model reproduces slightly better our data; however, the difference between the two models remains at the
limit of our experimental accuracy. Given this small difference, we neglect the effect of heat Coulomb blockade in our
analysis.

x

eV

0

h-BN

h-BN

Figure 17. Top: side-view schematics (not to scale) of the h-BN/graphene/h-BN stack, with positively charged impurities (red
balls) randomly scattered at its surface and on its edges in cooldown 2. Bottom: sketch of the electrostatic potential profile
along the edge in absence of gate voltage. The black dashed line symbolizes the configuration of cooldown 1, and the red line
the one of cooldown 2.

Bulk heat transport and edge electrostatics

We argue here that the observed decrease in the thermal conductance at ν = 8/3 in the second cooldown cannot
stem from bulk contribution, despite the non-zero value of σxx. Indeed, electronic conduction in the bulk remains
much smaller than on the edge, as shown by the fact that the reflected and transmitted transconductances are equal
and reach their expected values (note also that the minimum of σxx at ν = 8/3 corresponds to less than 1 % of the
electronic current carried through the bulk). The associated electronic bulk heat conduction should thus be negligible.
Chargeless heat transport through the bulk cannot account either for the large change in N observed in the second
cooldown: the most drastic case where the upstream neutral edge mode is completely reflected across the bulk yields
at best N = 3, far beyond our uncertainty. Besides, the geometry of our sample, where the distance between the
two edges is twice larger than the distance between the floating island and the nearest cold electrodes, is such that
parasitic bulk heat conduction (be it charged or neutral) would effectively increase N rather than diminish it.

Fig. 17 shows a schematic representation of the charged impurities randomly adsorbed on the sample’s surface
during thermal cycling between cooldowns 1 and 2. As seen from the conductance data shown in main text Fig.
2, these impurities lead to an average increase of the intrinsic electron doping, such that they should be essentially
positively charged. The positive charges adsorbed near the sides of the sample lower the electrostatic potential close
to the edge, making the confinement potential sharper (red line in bottom graph of Fig. 17). In heterostructures such
as ours where the graphene is separated from the graphite gate by the encapsulating h-BN, several works [7, 8] suggest
that the typical length scale for the confinement potential is given by the thickness of the h-BN layer, that is 10-50
nm. Calculating the precise confinement potential as well as the lateral position of the edge channels in a graphene
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heterostructure has been the subject of very recent studies; in particular, a recent work [8] shows that adding a local
gate near the edge of a graphene/hBN heterostructures decreases the distance between edge channels by more than
a factor 2. More precisely, they show that adding a local gate at 30 nm above a graphene flake that itself sits 30 nm
above a global gate causes the distance between the nu=1 and nu=2 edge channels to decrease from about 70 nm to
less than 30 nm. Even though this work does not exactly correspond to the geometry discussed in our work, there are
enough similarities between the two (in particular the hBN thickness) to provide a reasonable estimate of the edge
confinement.

COOLDOWN 3

To investigate the reproducibility of our results, in particular the evolution of the conductance features, we have
performed a third cooldown of the same sample after having kept it for several months in a dry atmosphere. We give
here a brief summary of the results of this cooldown. The conductance versus Vg data obtained at B = 7 T, and shown
in Fig. 18, displays generally similar features as in cooldown 2. In particular, the position of the QH plateaus is the
same, with an average gate voltage shift of about −26 mV with respect to cooldown 1 (as a reminder, this shif was
equal to −23 mV for cooldown 2. The size of the ν = 8/3 plateau is also comparable to that of cooldown 2, although
suprisingly slightly larger.
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Figure 18. a, Conductances versus gate voltage Vg, measured at B = 7 T and T = 12 mK for cooldown 3. Red (resp. orange):
2-point conductance G2pt of the transmitted (resp. reflected) side. Grey: longitudinal-like conductivity σxx. Lavender: reflected
transconductance GR. Blue: transmitted transconductance GT. b: Zoom on the ν = 2 → 3 transition. The position of the
ν = 8/3 plateau is indicated by the yellow shaded region for cooldown 1, and the orange shaded region for cooldown 2.

The resistance versus gate voltage data at zero magnetic field is shown in Fig. 19. It clearly displays a shift of
the CNP towards negative Vg. A fit of the data using the same equation as in Fig. 2 yields a mobility of about
100000 cm2/Vs, indeed significantly smaller than at cooldown 1. The Vg position of the CNP is −46.5 mV, corre-
sponding to a gate voltage shift of −31 mV that is comparable to the −26 mV Vg shift of the QH plateaus determined
above.

We have performed heat transport measurement with the procedure described in the main text and in the sections
above. Fig. 20 shows measurements of the auto and cross-correlations as a function of Idc for cooldown 3, at various
filling factor. While both autocorrelations are equal for ν = 2 and 3, we found them to be significantly different for
ν = 1 and 8/3, indicating the presence of spurious noise contributions that cannot be easily subracted (see above). We
relate this to an imperfect quantization of the reflected and transmitted transconductances at ν = 1 (see Fig. 18a),
and to the fact that the ν = 8/3 plateaus for both sides are not identical in Vg. Analyzing the ν = 2 and 3 data in
terms of heat flow yields the correct quantization shown in Fig. 21, with a base electron temperature T0 ≈ 27 mK at
ν = 2 and T0 ≈ 24 mK at ν = 3.
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