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This paper investigates the distributed coverage control algorithm of robotic sensor networks consisting of multiple quadcopters which guarantees its finite-time convergence. The proposed technique alters the objective function originated from the locational optimisation problem to accommodate the consensus constraint, and solves the problem within a given time limit. The coverage problem is solved by sending angular-rate and thrust commands to the quadcopters. By exploiting the finite-time stability theory, we ensure that the rotational and translational controllers of the quadcopters are finite-time stable, able to be implemented distributedly, and able to collaboratively drive the quadcopters towards the desired position and velocity of the Voronoi centroid independent of their initial states.

I. INTRODUCTION

Coverage control problem of the robotic sensor network (RSN) has attracted attention from the robotics community. One of the main tasks of an RSN is to maximise the coverage of the deployed sensors, which would lead to the best measurement data of the corresponding environment. The locational optimisation has been proposed to find the best locations of agents given an interest function; and centroidal Voronoi Tessellation has become a well-known tool to tackle this problem [START_REF] Okabe | Locational optimization problems solved through Voronoi diagrams[END_REF], and [START_REF] Cortes | Coverage Control for Mobile Sensing Networks[END_REF]. By adopting the locational optimisation problem, a simple proportional controller was initially developed [START_REF] Salhi | Facility Location: A Survey of Applications and Methods[END_REF], [START_REF] Cortes | Coverage Control for Mobile Sensing Networks[END_REF]. This algorithm is improved to tackle time-varying density coverage on a group of nonholonomic mobile robots in [START_REF] Lee | Multirobot Control Using Time-Varying Density Functions[END_REF]. Various coverage control strategies to relax the assumptions about unlimited, isotropic and homogenous sensing range, and convex environment have been addressed in [START_REF] Cortés | Spatially-distributed coverage optimization and control with limited-range interactions[END_REF], [START_REF] Pimenta | Sensing and coverage for a network of heterogeneous robots[END_REF], [START_REF] Parapari | Coverage control in nonconvex environment considering unknown non-convex obstacles[END_REF] and [START_REF] Kantaros | Distributed coverage control for concave areas by a heterogeneous Robot-Swarm with visibility sensing constraints[END_REF]. Adaptive coverage control to estimate the information density function has been studied in [START_REF] Martinez | Distributed interpolation schemes for field estimation by mobile sensor networks[END_REF], [START_REF] Schwager | Robust adaptive coverage control for robotic sensor networks[END_REF]. Regarding the communication topology, the result in [START_REF] Kantaros | Distributed communication-aware coverage control by mobile sensor networks[END_REF] has included a dynamically routing communication algorithm while optimising the coverage control problem. However, the coverage algorithm from the control perspective that guarantees timely convergence in a finite time has not been investigated among the existing strategies. Timeliness has become a crucial requirement in many applications, such as in a postdisaster evacuation and nuclear decommissioning, to prevent worsening situations [START_REF] Mei | Deployment strategy for mobile robots with energy and timing constraints[END_REF]. In control theory, timeliness relates to the settling or convergence time of an autonomous system This work was supported by the TAMOS (TActical Multi-Objective Swarming UAVs) project. from initial values to the origin. The study reported in [START_REF] Bhat | Finite-time stability of continuous autonomous systems[END_REF] has initiated the finite-time stability analysis in the control system by showing that the convergence time depends on the initial states. By utilising the proposed finite-time strategy, a finite-time consensus of a team of agents with single-integrator dynamics, double-integrator dynamics and nonholonomic dynamics were presented in [START_REF] Khoo | Robust finite-time consensus tracking algorithm for multirobot systems[END_REF], [START_REF] Du | Finite-time formation control of multiple mobile robots[END_REF]. The finite-time based controller has also found applications in the pose synchronisation of spacecraft whose poses are represented by dual-quaternion as reported in [START_REF] Wang | Finite-time control for spacecraft formation with dual-number-based description[END_REF]. However, since those results depend on the initial values, the system requires more time to converge to a formation if the agents are initially separated with a large distance. To overcome this problem, authors in [START_REF] Zuo | A new class of finite-time nonlinear consensus protocols for multi-agent systems[END_REF] proposed a finite-time consensus controller that guarantees the convergence within a specified boundary of settling time regardless of the initial states. Subsequently, work in [START_REF] Zuo | Nonsingular fixed-time consensus tracking for secondorder multi-agent networks[END_REF] has extended the result in [START_REF] Zuo | A new class of finite-time nonlinear consensus protocols for multi-agent systems[END_REF] to consensus of multi-agent systems with double-integrator. Furthermore, this approach has also been applied to design a finite-time consensus controller with the presence of time delays in a networked system in [START_REF] Wang | Fixed-Time Formation Control of Multirobot Systems: Design and Experiments[END_REF]. This paper presents a distributed coverage control algorithm of a multi-quadcopter sensor network that guarantees finite-time stability; whose contributions of this work are highlighted as follows. First, different from the existing approaches, we aim to solve the locational optimisation and consensus problems simultaneously. This scheme is to maintain the position and velocity of the Voronoi centroid and the formation shape of the agents. Second, the proposed strategy exploits the finite-time stability theory to ensure that the desired position and velocity, i.e., the Voronoi centroids, and the desired attitude are timely reached. Third, since we consider quadcopters as the agents, the algorithm also considers the nonlinear dynamics. The remainder of this paper is organised as follows. Section 2 briefly reviews the notions of graph theory, locational optimisation and quaternion. Section 3 states the main problem addressed in this paper. Afterwards, the main algorithms for finite-time coverage control of the quadcopter formation are presented in Section 4. Finally, numerical simulations validating the proposed algorithm are provided in Section 5, followed by concluding remarks in Section 6.

II. PRELIMINARIES

A. Graph Theory

A graph G(V, E) is a collection of n vertices V = {v 1 , v 2 , . . . , v n } connected by a collection of edges E ⊆ V × V.
If there exists an edge (v i , v j ) ∈ E, vertex v i is able to receive information from vertex j. If, for (v i , v j ) ∈ E, there exists (v j , v i ) ∈ E, the graph is called undirected. We refer

v j ∈ N i ⊂ V, for v j = v i , to the neighbor of vertex v i if (v i , v j ) ∈ E.

B. Locational Optimisation

Consider n robots deployed in an environment denoted by a convex set Q ⊂ R d . The set containing the position of all robots is denoted by P = {p i } n i=1 ⊂ Q with p i is the position of robot i. Sensing unreliability function g : Q × Q → R + : (x, p i ) → g(x, p i ), is a function that provides the quantitative information of the sensing performance at point x ∈ Q measured by agent i at p i . In our discussion, we assume the sensing unreliability function to be isotropic, increasing and convex. A function is isotropic if the value is independent on its direction. Hence, the function g(x, p i ) can be re-parametrised to a norm-valued function f : R → R + such that g(x, p i ) = f ( x -p i ), for i ∈ {1, 2, . . . , n}.

The distribution of information in the environment is represented by a density function, or information distribution function, and denoted by φ : Q → R + : x → φ(x). This density function indicates the importance of a quantity to measure at particular point q.

Generated by the sensor positions at time t, P, we are able to use the Voronoi tessellation of Q given by

V i (p i ) = {x ∈ Q : x-p i ≤ x-p j , ∀p j ∈ P, j = i}. (1)
With this Voronoi partitions, the objective function of the locational optimisation is formulated as 1

H(P) = n i=1 Vi g(x, p i )φ(q)dx. (2) 
The following lemma states the convexity of the objective function of the locational optimization.

Lemma 1 (Sensing Unreliability Function). Assume that the sensing unreliability function is isotropic, increasing, and convex in p i ∈ P, for all i ∈ {1, 2, . . . , n}. Then, for a positive density function, the cost function H in 2 is convex.

In our study, we will utilise the quadratic sensing unreliability function as, f ( x

-p i ) = x -p i 2 .
With the quadratic function, we may borrow some notions of rigid body motion. Consider the mass, moment of inertia and centroid of i-th Voronoi region expressed as

M Vi = Vi φ(x)dx, I Vi = Vi xφ(x)dx, and C Vi = I Vi M Vi , (3) 
1 In the following discussion, we use V i conveniently to refer to V i (p i ).

respectively. Therefore, applying the parallel-axis theorem of rigid-body motion [START_REF] Abdulghany | Generalization of parallel axis theorem for rotational inertia[END_REF] to the cost function (2) leads to an equivalent expression given by

H(p) = n i=1 I Vi + n i=1 M Vi p i -C Vi 2 , (4) 
where p = [p 1 , . . . , p n ] ∈ R nd denotes the vectorised positions of the robots. The coverage control problem could be considered as a problem that aims to designing control inputs of robots that are capable of driving them towards the optimal positions such that the objective function of the locational optimisation is minimised.

C. Quaternion-based Rotation

To avoid singularity of the Euler-angle-based rotation, the rotational motions of a rigid body are parameterised using quaternions, whose set is denoted by H = {q ∈ R 4 |q q = 1}. Rotation from frame W b to frame W a can be represented by quaternion q 1 ∈ H. The element-wise expression of this quaternion is given by q

1 = η 1 q 1 = cos ϑ1 2 k 1 sin ϑ1 2
, where ϑ 1 is the rotation angle around the unit vector k 1 . In this paper, dot operator represents the quaternion multiplication of quaternions, for example,

q 3 = q 1 • q 2 , for q 1 , q 2 ∈ H. (5) 
A function T : H → R 4×4 is defined as

T (q 1 ) = η 1 -q 1 q1 η 1 I + S(q 1 ) , (6) 
where the cross product between two vectors v 1 , v 2 ∈ R 3 is represented using a skew-symmetric matrix operator

S ∈ R 3×3 such that v 1 × v 2 = S(v 1 )v 2 .
Utilising this function, expression (5) becomes

q 3 = T (q 1 )q 2 . (7) 
The angular velocity of frame W a relative to frame W b referenced in frame W b is defined using ω 1 ∈ R 3 . The relationship between the time derivative of quaternion q 1 and the angular velocity ω 1 is given by

q1 = 1 2 q 1 • 0 ω 1 = 1 2 T (q 1 ) 0 ω 1 = 1 2 T (q 1 )ω 1 , (8) 
where T = [-q 1 (η 1 I + S(q 1 )) ] because the first column of T (q 1 ) vanishes. Rotation matrix can also be constructed using quaternion via Rodrigues' formula. A rotation from frame W b to W a can be formulated as

R 1 = I + 2η 1 S(q 1 ) + 2S 2 (q 1 ). (9) 

III. PROBLEM FORMULATION

Consider a robotic sensor network consisting of n quadcopters deployed in a convex space Q ⊆ R d , and their connection topology represented by a connected undirected graph G n = (V n , E n ). In this work, we are employing the Delaunay graph and Delaunay triangulation to generate the Voronoi tessellation in [START_REF] Okabe | Locational optimization problems solved through Voronoi diagrams[END_REF]. The corresponding Laplacian of this graph is denoted by L n ∈ R n×n .

In the coverage control problem, the locational optimisation with consensus performance index can be constructed from (2) into

H(p) = H(p) + 1 2 (p -C V ) Ln (p -C V ). ( 10 
)
with

Ln = L n ⊗ I d ∈ R nd×nd , p = [p 1 , . . . , p n ] ∈ R nd and C V = [C V1 , . . . , C Vn ] ∈ R nd .
Fig. 1: Coordinate frame of a quadcopter.

Quadcopter i ∈ V n in the network has position, velocity, attitude and angular rate denoted by

p i ∈ Q, v i ∈ R 3 , q c
i ∈ H and ω c i ∈ R 3 , respectively. The coordinate frames are illustrated in Fig. 1 where we use the ENU coordinate convention. The motions of a quadcopter can be classified into two components: translation and rotation. The translational motion is imposed by the attitude and the total thrust of the propellers. In inertial frame, the mass-normalised translational dynamics of the quadcopter is governed by

pi = q c i • fi • q c * i -ḡ = R c i fi -ḡ, (11) 
where q c i ∈ S 3 is the unit quaternion denoting the current attitude of the quadcopter, ḡ = [0 0 g] the gravitational vector, for g being the gravitational acceleration, and fi = [0 0 f i ] the thrust control input, for f i being the total thrust input. Following [START_REF] Kantaros | Distributed coverage control for concave areas by a heterogeneous Robot-Swarm with visibility sensing constraints[END_REF], the rotational motion of the quadcopter is governed by

qc i = 1 2 q c i • 0 u ω i = 1 2 T (q 1 )u ω i , (12) 
where in this paper the control input for the rotational motion is the angular rate u ω i . With the transformed constrained optimisation problem and the defined quadcopter dynamics in [START_REF] Kantaros | Distributed communication-aware coverage control by mobile sensor networks[END_REF] and [START_REF] Mei | Deployment strategy for mobile robots with energy and timing constraints[END_REF], the objectives of this work are to design the quaternion-based attitude and distributed coverage controllers which guarantee the convergence within a given settling time independent of the initial values.

IV. FINITE-TIME CONTROL DESIGN

A. Translational Control

In the following control design, we propose a distributed coverage controller with non-static Voronoi centroid that still guarantees the convergence to the optimal position and velocity in finite time independent of the initial positions with information only from neighbouring agents.

Recall the performance index of the coverage problem as defined in [START_REF] Schwager | Robust adaptive coverage control for robotic sensor networks[END_REF]. The corresponding optimal point of this optimisation given by p = C V -1 2 M -1 V Ln τ v for some vector τ v ∈ R nd . Given a connected graph, it follows that the last term vanishes due to the zero eigenvalue of the Laplacian matrix Ln such that (p 1 -C V1 ) = . . . = (p n -C Vn ) . In other words, we could say that the objective function H(p) is optimal when the position of the robots converge to the optimal point p = C V and the consensus is achieved. The optimal position of the velocity is v = ĊV For all agent i ∈ V n , consider the following errors

: ζi = [p i ṽ i ] and ζij = [p ij ṽ ij ] where pi = p i -C Vi , pij = sgn(p i -pj )|p i -pj |, ṽi = v i -ĊVi , ṽij = sgn(ṽ i - ṽj )|ṽ i -ṽj |.
Since there are two terms to optimise in [START_REF] Schwager | Robust adaptive coverage control for robotic sensor networks[END_REF], by employing these errors, we design a controller consisting of centroid stabiliser and the consensus stabiliser. The proposed centroid stabiliser, which is responsible for driving the robots toward the centroids, is expressed as

u g i = -κ g sgn( ζi )(| ζi | mv nv + | ζi | pv qv ), (13) 
with κ g = [k gp k gv ] , for k gp , k gv > 0, and some positive odd integers m v , n v , p v , q v , for m v > n v and p v < q v . Similarly, the consensus stabiliser, assigned to maintain the consensus, is given by

u c i = -κ c n j=1 a ij sgn( ζij )(| ζij | mv nv + | ζij | pv qv ), (14) 
with κ c = [k cp k cv ] and k cp , k cv > 0. Hence, the augmented controller reads

u f i = u g i + u c i + ḡ. (15) 
To analyse the performance of the designed control protocol, we require the following lemmas.

Lemma 2 ([17]

). Let x 1 , x 2 , . . . , x n ≥ 0. Then n j=1 x a j ≥ ( n i=1 x j ) a , for a ∈ (0, 1) In the following theorem, we present our next result about the finite-time convergence of the proposed coverage control protocol.

Lemma 3 ([17]). Let x 1 , x 2 , . . . , x n ≥ 0. Then n j=1 x a j ≥ n 1-a ( n i=1 x j ) a , for a > 1 Lemma 4 ([ 17 

Theorem 1 (Convergence of Finite-time Coverage Controller).

Consider a group of n agents connected via a connected Delaunay graph G n = (V n , E n ) with agent dynamics defined in [START_REF] Mei | Deployment strategy for mobile robots with energy and timing constraints[END_REF] and [START_REF] Kantaros | Distributed communication-aware coverage control by mobile sensor networks[END_REF]. Then, there exist some constants κ 1 , κ 2 > 0 such that the finite-time coverage problem can be solved by employing the coverage control protocol [START_REF] Du | Finite-time formation control of multiple mobile robots[END_REF] with settling time given by

T f < T f max := 1 κ 1 n v m v -n v + 1 κ 2 q v q v -p v , (16) 
where m v , n v , p v , q v are positive odd integers satisfying m v > n v and p v < q v .

Proof. Using the translational controller [START_REF] Du | Finite-time formation control of multiple mobile robots[END_REF], the translational dynamics of the quadcopter can equivalently be expressed as

ζi = A ζi + Bu f i = 0 1 0 0 ζi + 0 1 u f i . (17) 
Define a Lyapunov function:

V f ( ζ(t)) = 1 2 n i=1
ζ2 i (t) With the system dynamics in [START_REF] Zuo | A new class of finite-time nonlinear consensus protocols for multi-agent systems[END_REF], the time derivative of the candidate function is given by

V f ( ζ) = V g ( ζ) + V c ( ζ). (18) 
The centroid stabiliser in the first term of ( 18) can be expanded into

V g ( ζ) ≤ -λ g min n i=1 ζi sgn( ζi )(| ζi | mv nv + | ζi | pv qv ), (19) 
in which we already utilise the smallest eigenvalue of A -Bκ g denoted by λ g min . By using the fact that | ζi | = ζi sgn( ζi ) along with Lemmas (2) and ( 3), the centroid stabiliser term could be written as

V g ( ζ) ≤ -λ g min n nv -mv 2nv n i=1 ζ2 i mv +nv 2nv + n qv -pv 2qv n i=1 ζ2 i pv +qv 2qv = -λ g min (n nv -mv 2nv (2V f ) mv +nv 2nv + n qv -pv 2qv (2V f ) pv +qv 2qv ). (20) 
Similarly, the inequality of the consensus stabiliser from the second term of ( 18) can be expressed as

V c ( ζ) ≤ -λ c min n i=1 ζi n j=1 a ij sgn( ζij )(| ζij | mv nv + | ζij | pv qv ), (21) 
where λ c min is the smallest eigenvalue of A -Bκ c . By utilising the property of the adjacency matrix and also the fact that | ζij | = ζij sgn( ζij ), by employing Lemmas 2 and 3, the consensus stabilizer term could be written as

V c ( ζ) ≤ - λ c min 2 n nv -mv 2nv n i=1 n j=1 a 2nv mv +nv ij ζ2 ij mv +nv 2nv + n qv -pv 2qv n i=1 n j=1 a 2qv pv +qv ij ζ2 ij pv +qv 2qv (22) 
To analyze the graph, consider two adjacency matrices of connected undirected graphs G α and G β denoted by

A α = [a 2nv/mv+nv ij ] ∈ R n×n and A β = [a 2qv/pv+qv ij ] ∈ R n×n ,
respectively. The corresponding Laplacians are given by L α and L β . It follows that the inequality of the consensus stabiliser can equivalently be expressed as

V c ( ζ) ≤ - λ c min 2 (n nv-mv 2nv (2 ζ L α ζ) mv +nv 2nv + n qv -pv 2qv (2 ζ L β ζ) pv +qv 2qv ), (23) 
with ζ = [ ζ 1 , . . . , ζ n ] ∈ R nd . Applying the Courant-Fischer theorem of the Laplacian matrices, ζ L α ζ ≥ λ α 2 ζ 2 and ζ L β ζ ≥ λ α 2 ζ 2 for 1 nd ζ = 0 nd , leads (23) to V c ( ζ) ≤ - λ c min 2 (n nv-mv 2nv (4λ α 2 V f ) mv +nv 2nv + n qv -pv 2qv (4λ β 2 V f ) pv +qv 2qv ). ( 24 
)
By adding ( 20) and ( 24) followed by some re-arrangements, the time derivative of the Lyapunov function can be written as

V f ( ζ) ≤ - 1 2 n nv -mv 2nv (2λ g min + λ c min (2λ α 2 ) mv +nv 2nv )(2V f ) mv +nv 2nv - 1 2 n qv -pv 2qv (2λ g min + λ c min (2λ β 2 ) pv +qv 2qv )(2V f ) pv+qv 2qv . ( 25 
) By denoting ξ = √ 2V f and ξ = 2 V f / √ 2V f for V f ( ζ) = 0, we have ξ ≤ - 1 2 n nv -mv 2nv (2λ g min + λ c min (2λ α 2 ) mv+nv 2nv )ξ mv +nv nv - 1 2 n qv -pv 2qv (2λ g min + λ c min (2λ β 2 ) pv +qv 2qv )ξ pv +qv qv . (26) 
Choosing positive odd integers m v , n v , p v , q v satisfying m v > n v and p v < q v and employing Lemma 4 with the Comparison Principle [START_REF] Khalil | Nonlinear systems[END_REF] yield the boundary of the settling time expressed as

T f < T f max := 1 κ 1 n v m v -n v + 1 κ 2 q v q v -p v , with κ 1 = 1 2 n nv -mv 2nv (2λ g min + λ c min (2λ α 2 ) mv +nv 2nv
), and

κ 2 = 1 2 n qv -pv 2qv (2λ g min + λ c min (2λ β 2 ) pv +qv 2qv ).
It can be observed that the system is finite-time stable, i.e.,

lim t→T f max V f ( ζ) = 0, implying that lim t→T f max ζ = 0.
By utilising the translational control input in [START_REF] Du | Finite-time formation control of multiple mobile robots[END_REF], we may obtain the thrust via

f i = (u f i ) R c i [0 0 1] . B. Rotational Control
Since the translational motion depends on the rotational motion, we need to design the attitude controller which guarantees the finite-time stability.

Given the current and desired attitudes of i-th quadcopter denoted by

q c i = [η c i qc i ] and q d i = [η d i qd i ]
, respectively, the error quaternion can be obtained via

q e i = q c * i • q d i = T (q c * i )q d i = [η e i qe i ] .
For controller analysis, an error vector is also defined as follows:

e q e i = 1 ∓ η e i qe i . (27) 
Differentiating this error yields the error dynamics expressed as

ėq e i = 1 2 T (q e i )u ω i . (28) 
In this attitude control scheme, by employing the error vector, the angular-rate control command is defined as

u ω i = -κ ω sgn ẽq e i |ẽ q e i | mw nw + |ẽ q e i | pw qw (29) 
with ẽq e i = [ T (q e i )] e q e i and k ω > 0. The following theorem states our first result on the attitude controller of a quadcopter.

Theorem 2 (Convergence of Finite-time Rotational Controller). Let the attitude dynamics of a quadcopter be given by ( 12) and the error vector between the current and desired attitudes given by ( 27). Then, given the control protocol (29), there exist some positive constants k ω such that the equilibrium point of the error vector is finite-time stable with settling time given by

T a < T a max := 1 κ ω n w m w -n w + q w q w -p w , ( 30 
)
where m w , n w , p w , q w are positive odd integers satisfying m w > n w and p w < q w .

Proof. Define a Lyapunov function:

V a (e q e i ) = 1 2 e q e i e q e i .

Taking the derivative of the Lyapunov function yields

V a (e q e i ) = -κ ω 1 2 ẽ q e i sgn ẽq e i |ẽ q e i | mw nw + |ẽ q e i | pw qw , (32) 
where ẽq e i = [ T (q e i )] e q e i and the error dynamics with the proposed control command have been utilised. Since ẽq e i = ẽq e i sgn ẽq e i , (32) can be expressed as V a (e q e i ) = -κ ω 1 2 ẽ2

q e i mw +nw 2nw

+ ẽ2

q e i pw +qw 2qw

(33)

Subtituting 2V a = ẽ2

q e i to 33 leads to V a (e q e i ) = -κ ω 1 2 (2V a ) mw +nw 2nw + (2V a ) pw +qw 2qw . (34) 
By taking = √ 2V a and ˙ = 2 V a / √ 2V a , for V a > 0, (33) can equivalently be rewritten as

˙ = -κ ω mw nw -κ ω pw qw . ( 35 
)
Therefore, utilising the comparison principle [START_REF] Khalil | Nonlinear systems[END_REF] and Lemma 4 with some positive odd integers m w , n w , p w , q w , for m w > n w and p w < q w , we may conclude that the settling time of the attitude system can be expressed as

T a < T a max := 1 κ ω n w m w -n w + q w q w -p w ,
and the system is finite-time stable, i.e., lim t→T a max V a (e q e i ) = 0, implying that lim t→T a max e q e i = 0

Based on Eqs. (30) and ( 16), the computation of the boundary of the settling time of this coverage controller is indeed dependant to some controller parameters and the algebraic graph topology but independent to the initial values. Furthermore, the quadcopters will reach the optimal position and velocity within the settling time T sys = T a + T f < T a max + T f max . To obtain the desired quaternion, given translational control input [START_REF] Du | Finite-time formation control of multiple mobile robots[END_REF] and desired heading ψ d i , let a heading vector x c i = [cos ψ d i sin ψ d i 0] . Then, we may have a rotation matrix

R d i = [x d i y d i z d i ] composed of z d i = u f i / u f i , y d i = z d i × x c i / z d i × x c i , and 
x d i = y d i × z d i / y d i × z d i . V. SIMULATION
In this section, a numerical simulation is provided for validation of the proposed control protocols. The simulation is performed on Gazebo simulator with Mavros controller package and Robot Operating System (ROS) [START_REF] Lim | mavros controllers -Aggressive trajectory tracking using mavros for PX4 enabled vehicles[END_REF]. A computer with Linux-based operating system, 3.2-GHz processor, and 16-GB RAM is utilised to run the simulation. The screenshot of the simulator can be observed in Fig. 2. In this simulation, we deploy 16 quadcopters randomly in a space. These quadcopters are equipped with sensors to acquire a planar space whose boundaries are {(0, 0), (0, 2), (2, 2), (2, 0)}. We also consider the altitude of the quadcopter to be constant and the quadcopters will only adjust the x -y position and velocity. The planar information distribution of this scenario is uniform, that is, φ(x, y) = 1. The parameters of the controller are m v = m w = 5, n v = n w = 3, p v = p w = 3, q v = q v = 5, κ ω = 0.8, κ g = 0.5, κ c = 0.4. The Delaunay graph used in this scenario has the smallest non-zero eigenvalue of λ 2 = 0.4615. Based on Theorems 2 and 1, we may obtain the estimate maximum settling time is T sys = 20.21s.

By applying the control protocols in ( 29) and ( 15) to the quadcopter as modelled in ( 12) and ( 11), we obtain the resulting trajectory of robots and the Voronoi partition illustrated in Fig. 3. We can also observe the error convergence trajectory p i -C Vi and the objective function of this finite-time case depicted in Figs. 4a and4b, respectively. Fig. 3 demonstrates that the controller has successfully drive the robots such that their positions align with their centroids. Since the density function is uniform within the boundary, we observe that the number of robot deployed per a unit area is constant. Fig. 4a verifies that the error between the position and the optimal position is minimised before the expected settling time T max . In Fig. 4b, we also see the convergence of the objective function to an optimal value when the centroids are reached. These simulation results verifies that the protocol [START_REF] Du | Finite-time formation control of multiple mobile robots[END_REF] can successfully solve the coverage control problem and drive the quadcopters close to the optimal positions with a finite-time convergence.

VI. CONCLUSION

In this work, some control protocols to overcome the coverage control problem of quadcopter sensor networks with finite-time stability in a distributed manner have been investigated. By reformulating the locational optimisation problem, the translational control protocol was designed to drive the quadcopters to follow the position and velocity of the Voronoi centroid from the coverage control problem. The translational control command was then supplied to the rotational controller to calculate the desired attitude of the quadcopter. Since the planar translation of the quadcopter was coupled with its attitude, we also proposed a rotational control protocol for each quadcopter based on quaternion to follow the desired attitude. Those translational and rotational protocols were carefully analysed using the finitetime stability theory to ensure that the quadcopters position and velocity converge to the Voronoi centroid position and velocity within a designed settling time, independent of the initial values. Through simulation on the Gazebo simulator with ROS, we have validated the performance of the proposed control protocols.

  ]). The equilibrium point of the scalar system ẋ = -αx a b -βx c d , x(0) = x 0 , where α, β > 0, and a, b, c, d are positive odd integers satisfying a > b and c < d, is finite-time stable with the settling time given by
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 2 Fig. 2: Quadcopters on Gazebo Simulator.
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 3 Fig. 3: Trajectories and optimal centroidal Voronoi regions with double-peak distribution.

  Convergence result of the centroid errors of coverage problem with double-peak distribution. Convergence result of the objective function of coverage problem with double-peak distribution.
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 4 Fig. 4: Convergence result of the objective function of coverage problem with double-peak distribution.