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Scheduling Algorithms for Federated Learning
with Minimal Energy Consumption ∗

Laércio Lima Pilla

Abstract—Federated Learning (FL) has opened the opportunity for collaboratively training machine learning models on heterogeneous
mobile or Edge devices while keeping local data private. With an increase in its adoption, a growing concern is related to its economic
and environmental cost (as is also the case for other machine learning techniques). Unfortunately, little work has been done to optimize
its energy consumption or emissions of carbon dioxide or equivalents, as energy minimization is usually left as a secondary objective.
In this paper, we investigate the problem of minimizing the energy consumption of FL training on heterogeneous devices by controlling
the workload distribution. We model this as the Minimal Cost FL Schedule problem, a total cost minimization problem with identical,
independent, and atomic tasks that have to be assigned to heterogeneous resources with arbitrary cost functions. We propose a
pseudo-polynomial optimal solution to the problem based on the previously unexplored Multiple-Choice Minimum-Cost Maximal
Knapsack Packing Problem. We also provide four algorithms for scenarios where cost functions are monotonically increasing and
follow the same behavior. These solutions are likewise applicable on the minimization of other kinds of costs, and in other
one-dimensional data partition problems.

Index Terms—Scheduling, optimization, machine learning, federated learning, energy conservation, dynamic programming, parallel
processing, knapsack problems.

F

1 INTRODUCTION

F EDERATED Learning (FL) is a distributed machine learn-
ing technique used for training a shared model col-

laboratively while not sharing local data [1], [2], [3], [4].
This technique reduces privacy and security risks while
also improving communication efficiency [1]. These features
make FL attractive for applications from next-word pre-
diction [5] and on-device item ranking [2], to cyberattack
detection [3] and graph classification [6]. Due to its data
privacy design, FL has also received significant attention
in medical applications. It has been used in brain tumor
segmentation [7], tumor classification [8], and chest X-ray
diagnosis for COVID-19 [9].

In its most standard form, FL is based on the idea of
a central server that coordinates the work of participating
devices (mostly heterogeneous mobile or edge devices, but
also local computers or Cloud instances in some application
cases). The server starts a training round by sending an
initial model to some of the devices. The devices train the
model with their own local data, and send the updated
model weights back to the server. The latter then aggregates
all updates and combines their model weights (e.g., by
averaging their values) in order to start the next training
round. This process is repeated until a given deadline is
met, a fixed number of training rounds is achieved, or until
the model converges to a target accuracy.

The accuracy of machine learning models (FL included)
has seen improvements at the cost of larger models and
exponentially-growing computational demands [10], [11],
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[12]. When combined with an increase in usage, this is lead-
ing to an increased attention to machine learning’s economic
and environmental costs [11], [12]. An initial study [13]
indicates that FL’s energy consumption can be one order of
magnitude greater than an equivalent centralized model,
while its carbon footprint may even be two orders of mag-
nitude larger (mostly due to the energy sources available for
people participating in training in different locations around
the globe). Energy is also of concern for FL due to the limited
batteries of mobile devices.

All of the aforementioned concerns make FL a prime
target for energy consumption optimizations. Yet, little work
has been done on the subject so far [14]. Energy consump-
tion is often seen as a secondary or tertiary objective after
accuracy and execution time [15], [16], [17], [18]. Addi-
tionally, the energy consumed during training is usually
modeled in a simple manner to reduce the complexity of the
optimization problems and ease the use of heuristics [17],
[18], [19], [20], [21], [22], [23].

In this context, we present optimal scheduling algo-
rithms to minimize the energy consumption of Federated
Learning. Our algorithms define, for a target volume of
training data (number of mini-batches), how much local
data each device should use. We show that this schedul-
ing problem, in its general definition (without any specific
assumptions of the devices’ energy behavior), is equivalent
to a new generalization of a 0-1 knapsack problem that
can be solved in pseudo-polynomial time. We also present
four algorithms with lower complexity for specific energy
behavior scenarios where costs increase monotonically. All
of these algorithms have been designed for energy conser-
vation, but they can be directly applied to minimize the
carbon footprint, monetary cost, or any other cost function,
weighted or not. We can summarize our main contributions
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as follows:

? We provide a formulation of the minimal cost FL
schedule problem with lower limits, upper limits,
and arbitrary cost functions per device;

? We propose an optimal pseudo-polynomial solution
based on the new Multiple-Choice Minimum-Cost
Maximal Knapsack Packing Problem; and

? We present four optimal scheduling algorithms for
scenarios with monotonically increasing cost func-
tions with specific marginal cost behaviors, with or
without upper limits.

The remaining of this paper is organized as follows: Sec-
tion 2 introduces related work on FL, energy, and schedul-
ing. Section 3 provides a formulation of our scheduling
problem. Section 4 presents an optimal solution to this
problem based on a new knapsack problem and solution.
Section 5 shows algorithms optimized for specific scenarios.
Section 6 summarizes our experimental results. They are
further detailed in the appendices of the Supplemental
Material. Section 7 presents concluding remarks.

2 RELATED WORK

Federated Learning is the subject of a large body of work
in both research and development. We point our readers to
the surveys done by Lim et al. [3], Zhang et al. [24], and
Gu et al. [4] for a comprehensive view on the subject and
associated topics. Our focus here is dedicated to works that
deal with topics related to workload distribution, energy
optimization for FL, and energy profiling and modeling.

2.1 Workload Distribution
When FL was originally proposed by McMahan et al. [1],
no special attention was paid to the training time or to the
energy consumption of the mobile devices. It is only natural
then that no mechanism to control the workload distribution
(i.e., how many mini-batches each device should use for
training) was proposed at the time.

Wang, Wei, and Zhou [25] propose Fed-LBAP and Fed-
MinAvg as mechanisms to control the workload distribution
in order to minimize the computation time and accuracy loss
when training FL models. They identified the computation
time as the main bottleneck for FL. This argument has also
been emphasized by others that postulate a decrease on
the impact of communication during training with the rise
of 5G technologies [4], [21]. Wang, Yang, and Zhou [26]
have later presented an algorithm named MinCost for this
same optimization problem. We have previously proposed
OLAR [27] as an optimal greedy solution for minimizing the
computation time of FL. Nonetheless, all of these algorithms
help minimize the maximum cost (execution time, in this
case), while our energy consumption problem requires the
minimization of the total cost (its sum).

Outside FL, Khaleghzadeh, Manumachu, and Lastovet-
sky [28] introduce a branch-and-bound solution to minimize
the computation time when the cost function of each re-
source (how much time it takes to process a given amount
of data) is arbitrary — in other words, they do not follow
any specific behavior like being monotonically increasing.
Their algorithm has its worst-case complexity in O(n3T 3)

for n heterogeneous resources and a workload of size T .
Later, Khaleghzadeh et al. [29] have adapted this algorithm
to optimize both execution time and energy consumption
(i.e., find the Pareto front). Their new solution has its time
complexity in O(n3T 3 log(nT )). Meanwhile, our focus lies
only on energy consumption. As we will show later, our
solution for arbitrary cost functions has a time complexity
in O(T 2n), while the solutions for specific scenarios vary
between O(Tn2) and Θ(n).

A constraint in our workload distribution comes in the
form of lower and upper limits on the amount of work to
be given to each device. These limits play an important role
in our problem. Lower limits can be used to enforce device
participation at minimum levels (providing different data
sources), which could also help with fairness [30]. They
also help reduce the time a scheduling algorithm takes to
achieve its decisions [27]. Meanwhile, upper limits avoid
data over-representation from better-performing or more
energy-efficient devices [3]. They can be naturally found by
considering the amount of data available in a device [19]. Fi-
nally, they can also be used to set contracts with participants
and help incentivize their participation in training [20].

2.2 Energy Optimization in FL
Instead of controlling the workload distribution, most
works that consider the energy consumption of FL devices
act on the clock frequency of their processors [15], [16], [17],
[18], [23], [31], among other options. For instance, Xu, Li,
and Zou [15] reduce the clock frequency of participating
devices while respecting a set training round deadline in
order to conserve energy. The same kind of strategy is
employed by SmartPC [16]. Tran et al. [17] optimize for
both time and energy by controlling the clock frequency and
the fraction of communication time allocated to the devices.
Meanwhile, Khan et al. [31] let Edge devices choose their
own clock frequencies by using rewards as an incentive
mechanism in a Stackelberg game.

The exploration of multiple optimization options con-
currently is not uncommon in the literature. Nguyen et
al. [18] optimize both time and energy consumption by
setting the transmission time, bandwidth allocation, and
clock frequency of devices. Yang et al. [23] consider in
addition the transmission power and learning accuracy
when minimizing the total energy consumption of FL over
wireless networks. In contrast, we prefer to act only on the
workload distribution as this keeps the optimization at the
software level (i.e., no changes take effect in the devices’
hardware). Still, acting on additional control points could
be explored in future work.

There are also some works that do not use the clock
frequency of the devices in their decisions, indicating other
venues for optimization. Luo et al. [32] optimize time and
energy together by choosing which devices should partici-
pate in a training round and by setting their local number of
epochs to compute. Li et al. [21] control the communication
compression in order to reduce the energy consumption
when computing and communicating the FL model. Zaw
et al. [22] set total energy consumption as a constraint when
minimizing the training time of FL.

Finally, Anh et al. [19] are the only ones to act on
something similar to the workload distribution when op-
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timizing the energy consumption of FL devices. They use
Deep Reinforcement Learning to decide, under uncertainty,
how many data units and energy units a device should
use for training in order to minimize the training time and
energy consumption. Still, instead of having a set workload
to distribute, this scheme tries to balance using as much data
in each device with using as little energy as possible.

2.3 Energy Modeling and Profiling
Many works in the FL community model the energy con-
sumption or execution time of training with each data unit
as constants [17], [18], [19], [20], [21], [22], [23]. This has
the benefit of simplifying the problem at the cost of gener-
ality. On the other hand, Khaleghzadeh, Manumachu, and
Lastovetsky [28] have shown that the actual performance
of parallel applications running on heterogeneous resources
may vary with workload size (i.e., costs are not constant).
Khaleghzadeh et al. [29] have later shown that this is also
the case for energy. We employ a general model with an
optimal solution in Sections 3 and 4, and we move to more
constrained scenarios in Section 5.

The energy consumed by a device during training is
strongly dependent on its resources and the machine learn-
ing model being used. For instance, Lane et al. [33] have
shown that the energy consumption for a single inference
may vary between one and three orders of magnitude
depending on the device and ML model. Qiu et al. [13]
illustrate differences in energy consumption during training
depending on the model, device, and FL strategy. Addi-
tionally, besides hardware heterogeneity, the models being
trained together may differ among devices, as is the case for
personalized FL [34].

Obtaining accurate energy consumption information for
scheduling on mobile devices can be done by monitoring
the devices’ utilization. For instance, Walker et al. [35] are
able to model power consumption for multiple applications
with low error (< 3.5% on average) using performance
monitoring counters available on mobile devices. Kim and
Wu [14] use external power meters to gather power informa-
tion from different devices at different clock frequencies and
states (busy or idle). They then organize devices at different
power and performance levels, and use this information in
combination with processor utilization information (from
Unix commands) to model energy.

In the specific case of FL, I-Prof [36] has been proposed
for profiling FL devices in order to predict the largest mini-
batch size they can handle while respecting energy con-
sumption and execution time limits. We believe I-Prof could
be adapted to gather the energy consumption information
required for our scheduling needs. Another option lies in
Flower [37], a FL framework that already has the capacity
to measure energy consumption on different devices, and
that has been shown to be extensible [38].

Finally, for a more general review of techniques to esti-
mate the energy consumption of ML models, we point our
readers to the survey by Garcia-Martin et al. [39].

3 DEFINITION OF THE SCHEDULING PROBLEM

We can combine the ideas related to workload distribution
(Section 2.1) and energy optimization (Section 2.2) into our

scheduling problem. The problem of minimizing the energy
consumption of heterogeneous devices during one round
of Federated Learning resembles the problem of scheduling
identical, independent, and atomic tasks on heterogeneous
resources, which have been previously seen in the context
of Collaborative and Grid Computing [40, Chapter 6.1].
Our model is similar to the one employed for minimizing
the duration of a training round [25], [26], [27], and for
partitioning data for matrix multiplication, FFT, and gene
sequencing applications [28], [29]. From now on, we will
refer to our mobile or Edge devices as resources, to the data
units or mini-batches to schedule as tasks, and to the energy
consumed by a device as its cost. Table 1 summarizes the
main notation used throughout this text.

Our problem definition makes three main assumptions,
namely that: (I) costs can be obtained, (II) costs are mainly
affected by the number of tasks in a resource, and (III) costs
are not affected by the actual contents of a task. While
the first and second points are motivated by related work
(Sections 2.3 and 2.1, respectively), the third point remains
to be confirmed. So far, reports have provided results for
the energy consumed for the whole training of a FL sys-
tem [13] or mostly for inference tasks [33], [39]. In other
words, energy consumption at the mini-batch level is a topic
that still requires more study. Nevertheless, even if future
research shows us energy consumption differences, we may
still be required to obfuscate these variations in order to
protect data privacy (as it is done for model parameters or
gradients [24]).

Consider a situation with n heterogeneous resources or-
ganized in a setR = {1, 2, . . . , n}. Together, these resources
must train their machine learning models with a workload
of total size T ∈ N. This workload is composed of identical,
independent, and atomic tasks1.

All resources have their own upper and lower limits on
the number of tasks that they can use for training during
the round. We represent these upper and lower limits as
U = {U1, . . . , Un} and L = {L1, . . . , Ln}, respectively
(Ui and Li ∈ N, ∀i ∈ R). A resource i ∈ R has its
own local cost function Ci:[Li, Ui] → R≥0 that represents
the energy consumed for a given number of tasks. This
cost includes training the model, organizing and handling
the mini-batches, communicating with the central server,
etc. We use C = {C1, . . . , Cn} to represent the set of cost
functions. Finally, consider the schedule X = {x1, . . . , xn}
that assigns xi ∈ [Li, Ui] tasks to each resource i ∈ R.

Definition 1 (Minimal Cost FL Schedule). Given an instance
(R, T,U ,L, C), the goal is to find an optimal schedule X∗ that
minimizes the total cost ΣC , i.e.:

minimizeX ΣC :=
∑
i∈R

Ci(xi) (1a)

subject to
∑
i∈R

xi = T, (1b)

Li ≤ xi ≤ Ui, ∀i ∈ R (1c)

1. In other words, the mini-batches cannot be distinguished, cannot
be fractioned, and their use for training does not depend on the
previous use of other mini-batches.
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TABLE 1
Summary of main notation and symbols (by order of appearance).

Symbol Meaning

n Number of resources or disjoint classes of items.
R Set of resources.
T Size of the workload or knapsack capacity.
Ui Upper limit of tasks of resource i.
Li Lower limit of tasks of resource i.
Ci(j) Cost of assigning j tasks to i.
xi Number of tasks assigned to resource i.
X Schedule assigning tasks to all resources.
X∗ Optimal schedule.
ΣC Total cost of a schedule.

Ni Disjoint class of items.
cij Cost of item j from class Ni.
wij Weight of item j from class Ni.
xij Binary variable for choosing item j from class Ni.
y Actual capacity of the knapsack occupied by the schedule.
Zr Partial solution value with the first r item classes.
τ Restricted knapsack capacity.
X (T ) Optimal solution for (MC)2MKP with capacity T .
K Minimal costs table for dynamic programming.
I Items table for dynamic programming.
T ∗ Capacity used in the optimal solution of (MC)2MKP.

Mi(j) Marginal cost of assigning the jth task to resource i.
xti Partial assignment of tasks to resource i.
Xt Schedule assigning t tasks among the resources.

ΣCt Total cost of a schedule with t tasks.
Rlim Subset of resources with upper limits.
Runl Subset of resources without upper limits.
nlim Number of resources with upper limits.
γ Translation from disjoint classes to resources.

Throughout this text, we focus on non-trivial, valid
problem instances. In general, this means that no resource
has an upper limit that is smaller than its lower limit, and
that the number of tasks to assign is greater than the sum
of lower limits and smaller than the sum of upper limits.
Without loss of generality, we also assume that T > n.

3.1 Problem Example
Consider the situation where R = {1, 2, 3}, U = {6, 6, 5},
L = {1, 0, 0}, and C = {{1:2, 2:3.5, 3:5.5, 4:8, 5:10, 6:12},
{0:0, 1:1.5, 2:2.5, 3:4, 4:7, 5:9, 6:11}, {0:0, 1:3, 2:4, 3:5, 4:6,
5:7}}. Figs. 1 and 2 illustrate this as Gantt charts, where each
line represents a resource and the numbers in blue provide
the local cost of assigning a given number of tasks to each
resource. The representation as Gantt charts is possible here
because the costs are monotonically increasing, but this is
not a constraint to our scheduling problem.

Cost (energy)
1 2 3 4 5 6 7 8 9

1 2

4

4 5

R
es

ou
rc

es 1

2

3

1 5

3 4 5

31 2

32

Fig. 1. Gantt chart with the optimal schedule for T = 5 shaded in green.

Fig. 1 shows the optimal schedule when T = 5, i.e.,
X∗ = {2, 3, 0}. It provides a total cost ΣC = 7.5. Although

Cost (energy)
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1 2

4

4 5

R
es

ou
rc

es 1

2

3

5

3 4 5

32

321

1

Fig. 2. Gantt chart with the optimal schedule for T = 8 shaded in orange.

assigning all tasks to resource 3 would provide a smaller to-
tal cost, it would not respect L1. Meanwhile, Fig. 2 illustrates
the optimal schedule for T = 8, i.e., X∗ = {1, 2, 5} with
ΣC = 11.5. This assignment reaches both L1 and U3. We
can also notice that the solution for the second problem does
not contain the solution of the first smaller problem. This
provides us with the important insight that simple greedy
algorithms will not find optimal schedules.

4 OPTIMAL SOLUTION AS A KNAPSACK PROBLEM

The Minimal Cost FL Schedule problem, as shown in Defi-
nition 1, is structured as a minimization problem where the
solution has to include a valid item (schedule) from each
class of items (possible schedules for each resource). These
properties can be directly mapped to a previously unex-
plored knapsack problem, which we will call the Multiple-
Choice Minimum-Cost Maximal Knapsack Packing Prob-
lem ((MC)2MKP). Throughout this section, we will explain
this knapsack problem and show how it generalizes our
scheduling problem. We follow this discussion with the pre-
sentation of its recurrence function and an optimal dynamic
programming (DP) solution.

4.1 The Multiple-Choice Minimum-Cost Maximal Knap-
sack Packing Problem

(MC)2MKP inherits characteristics from other knapsack
problems. It shows some similarities to the Multiple-Choice
Knapsack Problem (MCKP) [41], a maximization knapsack
problem where the set of items is partitioned into classes.
Although MCKP in minimization form can be easily turned
into an equivalent maximization problem, its optimal so-
lution may not use the full capacity of the knapsack.
Meanwhile, the Minimum-Cost Maximal Knapsack Pack-
ing Problem (MCMKP) [42] is a less studied 0-1 knapsack
problem variation [43] where the objective is to fully occupy
the knapsack while also trying to minimize its total cost.
Nonetheless, it lacks the classes present in MCKP. In a
sense, (MC)2MKP acts as a generalization of MCMKP, just as
MCKP generalizes the ordinary 0-1 Knapsack Problem [41].

For the construction of (MC)2MKP, consider a set of n
disjoint classes N = {N1, . . . , Nn} of items to be packed
into a knapsack of capacity T . Each item j ∈ Ni has a
cost cij ∈ R≥0 and a weight wij ∈ N. The problem is
to choose exactly one item from each class such that the
cost sum is minimized while using the knapsack’s capacity
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to its maximum2. We use binary variables xij that take on
value 1 if and only if j is chosen in class Ni, and an integer
variable y that represents how much of the knapsack’s
capacity is being occupied by the items in a solution. With
this components in mind, we can define the (MC)2MKP as
follows:

Definition 2 (Multiple-Choice Minimum-Cost Maximum
Knapsack Packing Problem). Given a knapsack instance
(N , c, w, T ), the goal of (MC)2MKP is to find a maximal knap-
sack packing that minimizes the cost of selected items, i.e.:

minimizex,y
n∑
i=1

∑
j∈Ni

cijxij − y
n∑
i=1

∑
j∈Ni

cij , (2a)

subject to
n∑
i=1

∑
j∈Ni

wijxij ≤ T, (2b)

n∑
i=1

∑
j∈Ni

wijxij ≥ y, (2c)∑
j∈Ni

xij = 1, i = 1, . . . , n, (2d)

xij ∈ {0, 1}, i = 1, . . . , n, j ∈ Ni, (2e)
y ∈ [0, T ] (2f)

The formulation in Definition 2 is similar to the formu-
lation of MCKP [41]. For instance, rule (2b) constrains the
solutions to the ones that fit into the knapsack, and rule (2d)
says that a single item from each set must be included. The
outliers here are rules (2a) and (2c) that adapt the idea of a
maximal knapsack packing [42]. Given that maximizing the
occupancy of the knapsack has precedence over the minimal
cost, rule (2a) unifies both objectives by multiplying y by a
negative constant of absolute value larger than any possible
minimal cost. Despite this, the actual cost of the solution
relates only to the

∑∑
cijxij part of rule (2a). Meanwhile,

rule (2c) enforces that y can only be as high as the weight of
the items in the knapsack, forcing the solution to maximize
the knapsack’s occupancy.

4.1.1 Transformation from Scheduling to Knapsack Prob-
lem
Before going through the solution to this problem, we would
like to emphasize how (MC)2MKP generalizes the Minimal
Cost FL Schedule problem presented in Section 3.

As a first step, we can focus on the transformation
between problem instances (N , c, w, T ) and (R, T,U ,L, C).
This is based on the idea that a disjoint class Ni can be
composed by all possible schedules for resource i ∈ R, i.e.,
Ni = {Li, Li + 1, . . . , Ui}. In this situation, the cost and
weight of an item j ∈ Ni are set as cij = Ci(j) and wij = j.
The solution of (MC)2MKP (xij = 1) can be transformed
to its scheduling equivalent (xi in Definition 1) by setting
xi = j, ∀i ∈ R, xij = 1.

Concerning the generalization, (MC)2MKP relaxes two
different constraints from the Minimal Cost FL Schedule

2. Knapsack problem notations usually employ C to represent the
capacity of the knapsack and pij to represent profits (instead of costs).
We chose to use the notation T and cij in order to preserve some
similarity with our scheduling problem.

problem. The first difference is that the classes in (MC)2MKP
can contain items with any arbitrary weights, while our
scheduling problem considers all solutions in a given in-
terval with upper and lower limits. The second difference
relates to T : (MC)2MKP accepts packings that use less than
the total capacity of the knapsack, while our scheduling
problem requires assigning all tasks to resources. These
two distinctions are related: as our scheduling problem
considers solution intervals for each resource, there are
always solutions that assign all tasks. Meanwhile, given
the arbitrary weights of items in (MC)2MKP, there may be
no solution that fully occupies the knapsack, leading to the
second relaxation. Nonetheless, we can count on an optimal
solution to (MC)2MKP to also optimize the Minimal Cost FL
Schedule problem.

4.2 Dynamic Programming Solution

Optimal solutions to (MC)2MKP can be found using a
dynamic programming technique similar to the one used
for MCKP [41], [44]. Let Zr(τ) be an optimal solution value
for a partial problem with the first r item classes that fully
occupies a knapsack with restricted capacity τ . Assume that
Zr(τ) :=∞ if no solution exists and that Z0(0) := 0. Zr(τ)
is defined in (3) and its value can be recursively computed
following (4).

Zr(τ) := min


r∑
i=1

∑
j∈Ni

cijxij

∣∣∣∣∣∣∣∣∣∣∣

r∑
i=1

∑
j∈Ni

wijxij = τ,∑
j∈Ni

xij = 1, i = 1, . . . , r,

xij ∈ {0, 1}, i = 1, . . . , r,
j ∈ Ni


(3)

Zr(τ) = min
j∈Nr,wrj≤τ

(Zr−1(τ − wrj) + crj) (4)

Using the optimal solutions for partial problems found
byZ , we defineX (T ) as the optimal solution for (MC)2MKP
with capacity T as shown in (5). Simply put, it takes the
optimal solution for a capacity T if it exists, or it takes
the optimal solution found with the highest occupancy. The
combined use of X and Z lets us find a maximum knapsack
packing that also provides the minimum cost.

X (T ) =

{
Zn(T ) if Zn(T ) 6=∞,
X (T − 1) otherwise

(5)

We use the ideas behind (4) and (5) to propose Algo-
rithm 1, which presents a dynamic programming implemen-
tation for the optimal solution of (MC)2MKP. Algorithm 1
uses two matrices, K and I , to store the minimal costs that
are progressively computed and the items that are part of
these solutions, respectively. The algorithm first stores all
possible solutions for Z1 (lines 7–9) and then iteratively
computes the optimal solutions for increasing numbers of
item classes and all knapsack capacities (lines 10–19). By its
end, it finds the highest knapsack occupancy possible and its
minimum cost (lines 21–24), and it goes in the reverse order
through the item classes to extract the items that belong in
the optimal solution (lines 25–28).
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Algorithm 1 shows a space bound in O(Tn) and it
requires O(T

∑n
i=1 |Ni|) operations. Both are equivalent to

the complexity found in the DP solution for MCKP [41]. In
the context of our scheduling problem, we can have at most
T assignments possible for each resource. This gives us a
worst-case complexity in O(T 2n).

Algorithm 1 A DP solution to (MC)2MKP.
Input: Set of disjoint classes of items N = {N1, . . . , Nn}

with costs cij and weights wij , i = 1, . . . , n, j ∈ Ni.
Knapsack capacity T .

Output: Total cost ΣC , required capacity T ∗, and list of
items in the solution X = {x1, . . . , xn}.

1: for i = 1, . . . , n do . Initialization of minimal costs
2: for t = 0, . . . , T do . and partial solutions matrices.
3: K[i][t]←∞ ; I[i][t]← ∅
4: end for
5: xi ← ∅
6: end for
7: for j ∈ N1 do . Only solutions for Z1.
8: K[1][w1j ]← c1j ; I[1][wij ]← j
9: end for

10: for i = 2, . . . , n do . Computes Zi for all capacities.
11: for j ∈ Ni do . Using all items in Ni.
12: for t = wij , . . . , T do
13: if K[i− 1][t− wij ] + cij < K[i][t] then

. Best solution for Zi(t) so far.
14: K[i][t]← K[i− 1][t− wij ] + cij
15: I[i][t]← j
16: end if
17: end for
18: end for
19: end for
20: T ∗ ← T
21: while K[n][T ∗] =∞ do . Finds T ∗.
22: T ∗ ← T ∗ − 1
23: end while
24: ΣC ← K[n][T ∗] . Finds ΣC .
25: t← T ∗

26: for i = n, . . . , 1 do . Finds X .
27: j ← I[i][t] ; xi ← j ; t← t− wij
28: end for
29: return ΣC , T ∗, X

4.2.1 Proof of optimality
The optimality of Algorithm 1 can be easily demonstrated
by induction and is kept here for the sake of completeness.
We first highlight the optimality of the base case for Z1 in
Lemma 1. We then prove the induction step in Lemma 2.
Finally, we combine these ideas with the selection of the
minimum cost solution with the highest knapsack occu-
pancy in Theorem 1.

Lemma 1. The solutions in Z1 are optimal.

Proof. The only possible solutions for Z1 are Z1(w1j) = c1j
for all j ∈ N1, therefore they are optimal.

Lemma 2. If the solutions in Zi are optimal, then the solutions
in Zi+1 are also optimal.

Proof. By the definition in (4), we know that the value of
Zi+1(τ) for τ ∈ [0, T ] will be equal to the minimal cost
among all possible pairs of solutions in Zi (with weight
τ −w(i+1)j) and items from Ni+1 (with weight w(i+1)j ≤ τ )
that, together, fill a knapsack with capacity τ . In order to
have a better solution for Zi+1(τ), one of two conditions are
necessary: another pair of solution from Zi and item from
Ni+1 would need to have a smaller cost (a contradiction,
as the minimal value for all combinations is already taken),
or another solution with a smaller cost from the previous i
item classes would be required (another contradiction, as Zi
is optimal by definition). Therefore, the solutions for Zi+1

are optimal.

Theorem 1. X (T ) provides the optimal solution for (MC)2MKP.

Proof. Lemmas 1 and 2 prove the optimality of the base
case and the induction step for Z , therefore the solutions
provided by Z are optimal (i.e., minimal). X (T ) returns the
solution of Z(τ) for the highest value of τ ∈ [0, T ], thus it
provides the minimum cost for the maximal knapsack pack-
ing possible, making its solution for (MC)2MKP optimal.

5 OPTIMIZATIONS FOR SCENARIOS WITH MONO-
TONICALLY INCREASING COST FUNCTIONS

As we have seen previously, an optimal solution for the Min-
imal Cost FL Schedule can be found in pseudo-polynomial
time in O(T 2n) for any arbitrary, valid problem instance.
Algorithm 1 makes no special assumptions regarding the
behavior of cost functions in relation to the number of tasks
assigned to a given resource. Meanwhile, other works in
the state of the art model the execution time or energy
consumption of FL tasks as linearly-proportional to the
number of tasks (mini-batches) [17], [18], [19], [20], [21],
[22], [23]. This kind of assumption has a direct impact on
an algorithm’s design and it can lead to simpler, faster
solutions.

In this section, we discuss more optimized solutions for
variants of our scheduling problem where the cost functions
of all resources increase monotonically and follow the same
behavior. Section 5.1 provides additional definitions related
to marginal costs that affect the choice of algorithm. Sec-
tion 5.2 includes a simple set of rules to remove the lower
limits on our scheduling problem. These rules serve only
to simplify the presentation of our algorithms, having no
impact on the actual quality of solutions or constraints of
the problem. Sections 5.3 and 5.4 present optimal algorithms
for increasing and constant marginal costs, respectively.
Finally, Sections 5.5 and 5.6 focus on the optimal solutions
for problems with decreasing marginal costs without and
with upper limits. Based on all the optimal algorithms being
proposed, Table 2 presents the algorithms that provide the
lowest time complexity for each scenario.

5.1 Additional Definitions and Notation

Given a resource i ∈ R and its respective cost function Ci,
we can define its marginal cost function Mi:[Li, Ui] → R≥0
to represent the cost of assigning each additional task to i
based on (6). By considering only non-negative marginal
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TABLE 2
Solutions with the smallest complexity for the variations of our scheduling problem. We assume T > n.

Arbitrary Costs Marginal Costs
Increasing Constant Decreasing

Without upper limits (MC)2MKP – O(T 2n) MarIn – Θ(T logn) MarDecUn – Θ(n) MarDecUn – Θ(n)
With upper limits (MC)2MKP – O(T 2n) MarIn – Θ(T logn) MarCo – Θ(n logn) MarDec – O(Tn2)

costs, we are also enforcing situations where all cost func-
tions are monotonically increasing.

Mi(j) =

{
0 if j = Li,

Ci(j)− Ci(j − 1) otherwise
(6)

Marginal costs are useful to synthesize and differenti-
ate cost behaviors into three classes of interest: increasing
(convex), constant, and decreasing (concave). These prob-
lems are characterized in Definition 3. In other words, they
represent situations where — due to the specific hardware,
software, and machine learning methods employed — the
energy consumption of each resource grows in a superlinear,
linear, or sublinear fashion with the increase in the number
of tasks used for training.

Definition 3 (Increasing, Constant, and Decreasing Marginal
Costs Problems). Given a problem instance (R,U ,L, C), it is
said to have increasing, constant, or decreasing marginal costs if
and only if it follows (7a), (7b), or (7c), respectively.

increasing: Mi(j) ≤Mi(j + 1), ∀i ∈ R, j ∈ ]Li, Ui[ (7a)
constant: Mi(j) = Mi(j + 1), ∀i ∈ R, j ∈ ]Li, Ui[ (7b)

decreasing: Mi(j) ≥Mi(j + 1), ∀i ∈ R, j ∈ ]Li, Ui[ (7c)

Finally, we represent the partial schedule of t < T tasks
as Xt = {xt1, . . . , xtn}. In this situation, xti represents the
number of tasks specifically assigned to resource i, and ΣCt

represents the total cost of this schedule.

5.2 Simplification by Lower Limit Removal
Independently of the specific scheduling scenario being
treated, any valid solution is required to give each re-
source a number of tasks that respects its lower limit,
as given by (1b). In this sense, we can transform any
problem instance (R, T,U ,L, C) into an equivalent in-
stance (R, T ′, {U ′1, . . . , U ′n}, {0}n, {C ′1, . . . , C ′n}) that sim-
plifies the problem by shifting all lower limits to zero
and adapting all other related values. These operations are
resumed in (8), (9), and (10). The resulting schedule for the
equivalent instance, X ′ = {x′1, . . . , x′n} can be transformed
back to the original instance following (11). This simple
set of rules represents a number of operations in O(n) for
any optimal solution, as the cost functions in (10) can be
computed only when necessary.

T ′ := T −
∑
i∈R

Li (8)

U ′i := Ui − Li, ∀i ∈ R (9)

C ′i(j) := Ci(j + Li)− Ci(Li), ∀i ∈ R, j ∈ [0, U ′i ] (10)

xi := x′i + Li (11)

This simplification ensures that all scheduling algo-
rithms start with an initial schedule X l for l =

∑
i∈R Li.

This schedule is trivially shown to be optimal in Lemma 3
and used for other optimality proofs later in this section.

Lemma 3. The partial schedule X l is optimal.

Proof. X l is the only valid schedule that respects the lower
limits of all resources, therefore it is optimal.

5.3 Increasing Marginal Costs (MarIn)
Our first scenario of interest considers the situation where
the marginal costs in all resources are monotonically increas-
ing. In this scenario, we can minimize the total cost ΣC
by adapting a solution previously employed to minimize
the maximum resource cost (in its context, the makespan).
The solution, called MarIn and adapted from OLAR [27],
is described in Algorithm 2. Its main idea is to assign the
next task t+ 1 to a resource i that has the minimal marginal
cost Mi(x

t
i + 1) (instead of the minimal cost, as originally

done by OLAR) and that has not yet reached its upper limit
(lines 5–6).

Algorithm 2 MarIn — adapted from OLAR [27].
Input: Set of resources R, number of tasks to schedule T ,

set of upper limits U , set of cost functions C.
Output: Optimal schedule X .

1: for all i ∈ R do
2: xi ← 0 . All resources start without any tasks.
3: end for
4: for t = 1, . . . , T do
5: k ← arg mini∈R, xi<Ui

Mi(xi + 1)
6: xk ← xk + 1
7: end for
8: return X

Algorithm 2 has a space bound in O(n) and it is com-
puted using Θ(n + T log n) operations. This complexity is
achieved by employing a minimum binomial heap for stor-
ing the next task assignments (line 5). This heap’s insertion
and removal of the minimal item operations are in Θ(1) and
Θ(log n), respectively.

5.3.1 Proof of Optimality
MarIn’s optimality can be proved by induction by combin-
ing Lemmas 3 and 4 in Theorem 2.

Lemma 4. If Xt is optimal, then Xt+1 computed by MarIn is
optimal.

Proof. By definition, MarIn assigns task t + 1 to a resource
with minimum marginal cost Mi(x

t
i + 1) for xti ∈ Xt and
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xti < Ui. As all marginal cost functions are monotonically
increasing (7a), all previous assignments in Xt had equal
or smaller marginal costs. This means that Xt+1 schedules
t+ 1 tasks to the resources with the smallest marginal costs.
This makes its ΣCt+1 minimal and, therefore, optimal.

Theorem 2. The schedule X computed by MarIn is optimal.

Proof. Lemmas 3 and 4 prove the optimality of the base case
and the induction step, thus the solution provided by MarIn
is optimal.

5.4 Constant Marginal Costs (MarCo)
As constant marginal costs are also monotonically increas-
ing, this scenario could be optimally solved by MarIn.
Nonetheless, having constant costs facilitates the scheduling
decisions, as we can decide to assign more than one task
at each step. This optimization is present in MarCo and
illustrated in Algorithm 3.

Algorithm 3 MarCo.
Input: Set of resources R, number of tasks to schedule T ,

set of upper limits U , set of cost functions C.
Output: Optimal schedule X .

1: for all i ∈ R do
2: xi ← 0 . All resources start without any tasks.
3: end for
4: t← 0
5: while t < T do
6: k ← arg mini∈R, xi 6=Ui

Mi(1)
7: xk ← min(Uk, T − t) . Assigns the most tasks possible.
8: t← t+ xk
9: end while

10: return X

Algorithm 3’s main loop (lines 5–9) uses the knowledge
of constant marginal costs to find, on each of its iterations,
an available resource with minimal marginal costs (line 6).
This resource is assigned the maximum number of remain-
ing tasks possible (line 7) (i.e., its upper limit or all the
remaining tasks), making this resource unavailable further
on. An iteration finishes with an update to the number of
assigned tasks (line 8), and the loop finishes when no tasks
remain to be scheduled.

MarCo displays the same space bound of MarIn but
it only requires Θ(n log n) operations. This complexity is
achieved by organizing the marginal costs of all resources
(used on line 6) in a sorted list, so any searches in the main
loop require only a constant number of operations.

5.4.1 Proof of optimality
MarCo’s optimality can be proved similarly to MarIn before
it. Lemma 5 proves that each step of the algorithm is
optimal, and Theorem 3 uses this information to convey that
the algorithm is optimal.

Lemma 5. If Xt is optimal, then Xt+a computed by MarCo is
optimal.

Proof. By definition, MarCo assigns the next a tasks to a
resource with minimum marginal cost Mi(1) for i ∈ R and
xti 6= Ui. By (7b), the marginal costs are constant, so any

new assignments to other available resources would have
equal or greater marginal costs. Additionally, all previous
assignments in Xt had smaller or equal marginal costs. This
means that Xt+a schedules t+ a tasks to the resources with
the smallest marginal costs. This makes its ΣCt+a minimal
and, therefore, optimal.

Theorem 3. The schedule X computed by MarCo is optimal.

Proof. Lemmas 3 and 5 prove the optimality of the base
case and the induction step, thus the solution provided by
MarCo is optimal.

5.5 Decreasing Marginal Costs without Upper Limits
(MarDecUn)
The presence of decreasing marginal costs requires an ap-
proach that is different from previous scenarios. While
previous scenarios made it possible to incrementally assign
the tasks with the smallest marginal costs, here the smallest
marginal costs come from the last tasks assigned to a re-
source. In this sense, optimal assignments can include tasks
with high marginal costs if enough tasks are assigned to the
same resource, reducing the average cost per task.

Algorithm 4, named MarDecUn, focuses on the situation
where the upper limits of all resources are equal or superior
to the actual number of tasks to schedule. In this situation,
the optimal solution is found by simply scheduling all tasks
to a resource with minimal average cost per task or, in other
words, a resource with minimum cost for T tasks (lines 4–5).

Algorithm 4 MarDecUn.
Input: Set of resources R, number of tasks to schedule T ,

set of upper limits U , set of cost functions C.
Output: Optimal schedule X .

1: for all i ∈ R do
2: xi ← 0 . All resources start without any tasks.
3: end for
4: k ← arg mini∈R Ci(T )
5: xk ← T . Assigns all tasks to the same resource.
6: return X

Due to its simplicity, MarDecUn requires only Θ(n)
operations to find a resource with minimal cost. Its space
bound is still the same O(n) of previous algorithms because
its solution includes a schedule for all resources. If its output
were to be changed to inform only the resource receiving all
tasks, this bound could be reduced to a constant.

5.5.1 Proof of optimality
MarDecUn’s optimality can be proved based on two ideas.
The first idea is that MarDecUn assigns all possible tasks to
a resource with minimal cost. The second idea is related to
the behavior of decreasing functions, which is presented in
Lemma 6. These ideas are combined in Theorem 4.

Lemma 6 (Sum of contiguous intervals of decreasing func-
tions). If f, g: N → R are monotonically decreasing functions
and f(sf + 1) ≤ g(sg + 1), then (12) is true for any intervals
[if , sf + sg − ig + 1] and [ig, sg + sf − if + 1].

sf∑
i=if

f(i) +

sg∑
i=ig

g(i) ≥
sf+sg−ig+1∑

i=if

f(i) (12)
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Proof. By definition, the decreasing functions f and g follow
the behavior illustrated in (13).

f(if ) ≥ · · · ≥ f(sf + 1) ≥ · · · ≥ f(sf + sg − ig + 1)

g(ig) ≥ · · · ≥ g(sg + 1) ≥ · · · ≥ g(sg + sf − if + 1)
(13)

If g(sg + 1) ≥ f(sf + 1), then this should also hold for
all values larger than sf + 1 and smaller than sg + 1 (14).

g(ig) ≥ · · · ≥ g(sg+1) ≥ f(sf+1) ≥ · · · ≥ f(sf+sg−ig+1)
(14)

As g(sg) ≥ f(sf+1), changing the intervals to [if , sf+1]
and [ig, sg−1] should lead to a smaller or equal sum without
changing the number of elements considered. This idea can
be applied iteratively, leading to (15) and proving (12).

sf∑
i=if

f(i) +

sg∑
i=ig

g(i) ≥
sf+1∑
i=if

f(i) +

sg−1∑
i=ig

g(i)

≥ · · · ≥
sf+sg−ig∑
i=if

f(i) +

ig∑
i=ig

g(i)

≥
sf+sg−ig+1∑

i=if

f(i)

(15)

Theorem 4. The scheduleX computed by MarDecUn is optimal.

Proof. MarDecUn assigns all T tasks to a resource with
minimal cost, so no other assignment to a single resource
could improve the solution. By the definition of marginal
costs in (6), we can rewrite the cost of a schedule for one
resource as a sum of marginal costs, as shown in (16).

Ci(T ) = Ci(0) +
T∑
t=1

Mi(t), ∀i ∈ R (16)

Given that all marginal cost functions are decreasing,
Lemma 6 tells us that no solution splitting the T tasks
among multiple resources can provide a smaller total cost,
therefore the schedule computed by MarDecUn is minimal
and optimal.

5.6 Decreasing Marginal Costs with Upper Limits
(MarDec)
Although the previous solution for the scenario of decreas-
ing marginal costs and no upper limits cannot be applied
in the presence of upper limits, it provides us with an
important insight. Namely, Lemma 6 tells us that it is always
more beneficial to put all tasks in the same resource, so an
optimal solution can be found in one of two scenarios: (I)
all tasks are assigned to a resource without upper limits;
or (II) all tasks are assigned only to resources at maximum
capacity and at most one resource at intermediary capacity.
Both scenarios are covered by MarDec in Algorithm 5.

MarDec starts by splitting the resources into two subsets:
one for the resources that have upper limits (Rlim) and one
for those who do not (Runl) (lines 1–2).

In order to compute possible solutions for scenario (II),
MarDec employs a dynamic programming solution for
the Minimum-Cost Maximal Knapsack Packing (MCMKP)
problem [42], as it helps us find which resources have to

be at maximum capacity. As MCMKP is a specialization of
(MC)2MKP, Algorithm 5 uses a variation of Algorithm 1 that
we call (MC)2MKP-matrices. It outputs the support matrices
K and I to enable the reuse of its partial solutions. As
previously described in Section 4.2, K stores the minimal
costs that were progressively computed, while I stores the
items that are part of the partial solutions. MarDec also
employs Algorithm 6 to convert its variables for use in a
knapsack problem, and Algorithm 7 to translate a partial
MCMKP solution to a schedule.

MarDec covers scenario (II) in two steps. At first, it
computes all possible minimal solutions where a resource
without upper limits is set at intermediary capacity (lines 6–
15). For each possible intermediary capacity (line 8), it finds
the resource with minimal cost to receive the remaining
tasks. It is important to emphasize here that, if no solution is
found for a specific knapsack capacity, (MC)2MKP provides
an infinite cost, so no invalid solutions are ever considered.
Additionally, when t = T , the solution for scenario (I) is
computed (i.e., the whole workload goes to a single resource
as in MarDecUn). At its second step, MarDec verifies all
possible minimal solutions where one of the resources with
upper limits ends up at intermediary capacity (lines 17–
28). In this case, MarDec removes the resource of interest
from the input of (MC)2MKP (line 18) and then computes
all possible optimal schedules. Throughout all these steps,
the schedule X that provides the minimal cost ΣC is kept
and provided at the end of the algorithm.

Algorithm 5 has a space bound in O(Tn) due to its use
of support matrices K and I . It requires O(Tn2) operations.
This number comes from the utilization of (MC)2MKP in
line 19. As defined in Section 4.2, (MC)2MKP requires
O(T

∑n
i=1 |Ni|) operations. In our case, each set of items N

contains only two items (i.e., scheduling zero or Ui tasks
to resource i), so its complexity is in O(Tn). Given that
(MC)2MKP is computed at most n+ 1 times, the aforemen-
tioned complexity is achieved.

5.6.1 Proof of optimality
MarDec’s optimality is demonstrated directly in Theorem 5
based on the previous proofs for MarDecUn and (MC)2MKP.

Theorem 5. The schedule X computed by MarDec is optimal.

Proof. In the presence of decreasing marginal costs,
Lemma 6 defines that an optimal schedule can be found in
one of two scenarios: all remaining tasks are assigned to the
same resource with minimum cost, or all tasks are assigned
only to resources at maximum capacity and at most one
resource at intermediary capacity (i.e., having two or more
resources at intermediary capacity contradicts Lemma 6).

MarDec computes a solution to the first scenario ex-
actly as MarDecUn does (proved optimal in Theorem 4).
For the second scenario, MarDec employs (MC)2MKP to
compute all possible minimum-cost partial schedules using
resources at maximum capacity. These partial solutions are
proved optimal in Theorem 1. All possible partial schedules
are combined to all possible assignments of the remaining
tasks to other resources with minimum cost. By exhaustion,
MarDec keeps the minimum-cost solution among every
single possible solution that could provide a minimum cost
in our two scenarios, therefore its schedule is optimal.
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Algorithm 5 MarDec.
Input: Set of resources R, number of tasks to schedule T ,

set of upper limits U , set of cost functions C.
Output: Optimal schedule X .

1: Rlim ← {i}, ∀i ∈ R, Ui < T . Resources w/ upper limits
2: Runl ← R \Rlim . Resources without upper limits
3: nlim ← |Rlim|
4: ΣC ←∞ . No valid solution so far.
. Resource from Runl at intermediary capacity.

5: if Runl 6= ∅ then
6: (N , c, w, γ)← Prepare(Rlim,U , C) . Algorithm 6.
7: (K, I)← (MC)2MKP-matrices(N , c, w, T )
8: for t = 0, . . . , T do . Evaluates all partial solutions.
9: k ← arg mini∈Runl Ci(t)

10: if Ck(t) +K[nlim][T − t] < ΣC then
11: ΣC ← Ck(t) +K[nlim][T − t] . New minimal.
12: X ← Translate(γ,R,N , w, I, t) . Algorithm 7.
13: xk ← t
14: end if
15: end for
16: end if

. Resource from Rlim at intermediary capacity.
17: for i = 1, . . . , nlim do
18: N ′ ← (N \Ni) ∪ {Ni = {0}}
19: (K, I)← (MC)2MKP-matrices(N ′, c, w, T )
20: k ← γ(i) . Translates i to k.
21: for t = 0, . . . , Uk − 1 do . Checks all solutions with k.
22: if Ck(t) +K[nlim][T − t] < ΣC then
23: ΣC ← Ck(t) +K[nlim][T − t]
24: X ← Translate(γ,R,N , w, I, t)
25: xk ← t
26: end if
27: end for
28: end for
29: return X

Algorithm 6 Preparation for (MC)2MKP.

Input: Set of resources with upper limits Rlim of size nlim,
set of upper limits U , set of cost functions C.

Output: Set of disjoint classes of items N =
{N1, . . . , Nnlim} with costs cij and weights wij ,
i = 1, . . . , nlim, j ∈ Ni. Translation from disjoint classes
to resources γ.

1: i← 1
2: for all r ∈ Rlim do
3: γ(i)← r
4: Ni ← {0, Ur} . Classes with 0 or Ur tasks.
5: ci0 ← 0 ; ciUr

← Cr(Ur)
6: wi0 ← 0 ; wiUr

← Ur
7: i← i+ 1
8: end for
9: return (N , c, w, γ)

6 EXPERIMENTAL EVALUATION OVERVIEW

This section provides a brief overview of the experimental
evaluation detailed in the appendices in the Supplemen-
tal Material. The evaluation takes into consideration the
five optimal algorithms proposed in Sections 4 and 5 and
FedAvg [1], resources with four different kinds of cost

Algorithm 7 Translation from (MC)2MKP to a schedule.
Input: Translation from disjoint classes to resources γ. Set

of resources R. Set of disjoint classes of items N =
{N1, . . . , Nnlim} with weights wij , i = 1, . . . , nlim,
j ∈ Ni. Support matrix I of dimensions nlim × T .
Knapsack capacity of interest T ′.

Output: Partial schedule X .
1: xi ← 0, ∀i ∈ R
2: t← T ′

3: for i = nlim, . . . , 1 do . Finds X .
4: j ← I[i][t] ; t← t− wij
5: xγ(i) ← j
6: end for
7: return X

functions, variations in numbers of tasks and resources, and
an evaluation of the total costs achieved by the algorithms
and their own execution times. All code, scripts, and data
of our experiments are available online [45], enabling the
reproduction of the experiments and their analysis.

Fig. 3 illustrates the total costs achieved by all scheduling
algorithms for 100 resources, from 200 up to 2, 000 tasks,
and two kinds of cost functions: random and monotoni-
cally increasing with constant marginal costs. The results
in Fig. 3a illustrate how (MC)2MKP is unique in its capacity
to find optimal schedules with minimal total costs in all
situations. Meanwhile, the results in Fig. 3b show that
all algorithms besides FedAvg can find optimal solutions
when marginal costs are constant. This happens because
constant marginal costs are also monotonically increasing
and decreasing, so MarIn, MarCo, and MarDec are able to
optimize the solution.
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(a) Random cost function.
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(b) Increasing costs with constant
marginal costs.

Fig. 3. Total costs achieved by the different scheduling algorithms for
varying number of tasks and 100 resources.

Fig. 4 shows the average execution times for the dif-
ferent algorithms for varying numbers of resources and
tasks. Points are computed based on twenty samples of
five repetitions each. They illustrate the importance of using
the optimized algorithms proposed in Section 5 whenever
possible, as execution times may differ by up to six orders
of magnitude in our experiments. These differences come
naturally from the time complexity of our algorithms, as
previously illustrated in Table 2.
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Fig. 4. Average scheduling algorithm times in microseconds (logarithmic
scale).

7 CONCLUDING REMARKS

In this paper, we considered the problem of minimizing
the energy consumption of Federated Learning training
on heterogeneous devices by controlling their workload
distribution (i.e., the number of mini-batches used for train-
ing on each device). This problem is of growing interest,
given the environmental costs of machine learning [11],
[12] and FL systems [13]. We have modeled this as the
Minimal Cost FL Schedule problem, a total cost minimiza-
tion problem with identical, independent, and atomic tasks
that have to be assigned to heterogeneous resources with
arbitrary cost functions. In this process, we have defined a
previously unexplored knapsack problem named Multiple-
Choice Minimum-Cost Maximal Knapsack Packing Problem
that generalizes our scheduling problem. We have proposed
an optimal solution for this knapsack problem based on dy-
namic programming and proved its optimality, thus solving
the Minimal Cost FL Schedule problem too.

We have also explored scenarios with monotonically
increasing cost functions with specific behaviors, and situa-
tions with and without upper limits. In all scenarios, but es-
pecially in scenarios with constant and decreasing marginal
costs, the solution that minimizes the energy consumption
may require that few resources to do most of the training.
In order to prevent over-representation from more energy-
efficient devices [3], we recommend paying attention to the
upper and lower limits set for all resources.

We would also like to emphasize that these algorithms
are not only useful for energy conservation in FL systems, as
they can also be used to minimize other kinds of costs (e.g.,
emissions of carbon dioxide or equivalents, financial costs),
requiring only the cost estimates for different workload
assignments. For instance, if the geographical location of
devices or their energy sources are known, their energy
consumption can be converted to carbon emissions [13]. Ad-
ditionally, these algorithms can be applied to other problems
that work with one-dimensional data partitions [28], [29].

For the foreseeable future, we envision studies related
to the application and adaptation of our algorithms. First,
we would like to conduct experiments in FL platforms to
evaluate the impact of our algorithms compared to other
solutions. This impact should be measured in energy con-
sumption, execution time, and accuracy of the model (or
convergence speed). Second, in terms of adaptation, new
solutions may be required to handle dynamic changes in the

system (e.g., changes in the cost behavior or loss of a device),
to optimize the energy consumption of asynchronous FL
systems, and to optimize FL systems that can offload parts
of their computations to other Edge devices.
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[44] K. Dudziński and S. Walukiewicz, “Exact methods for
the knapsack problem and its generalizations,” European
Journal of Operational Research, vol. 28, no. 1, pp. 3–
21, 1987. [Online]. Available: https://www.sciencedirect.com/
science/article/pii/0377221787901652

[45] L. L. Pilla, “llpilla/energy-optimal-federated-learning: Full set of
algorithms: (MC)²MKP, MarIn, MarCo, MarDec, and MarDecUn,”
Nov. 2022. [Online]. Available: https://doi.org/10.5281/zenodo.
7377419
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with Minimal Energy Consumption”
Laércio Lima Pilla

F

This document details the experimental evaluation cam-
paign carried out in the context of the article “Scheduling
Algorithms for Federated Learning with Minimal Energy
Consumption”. Appendix A describes the experimental
environment of the campaign. Appendix B provides the
total cost achieved by different scheduling algorithms for
different numbers of tasks and resources, and different cost
function behaviors. Appendix C presents the execution time
required by the different scheduling algorithms to compute
their solutions. All code, analysis scripts, and data generated
during the experiments are freely available online [1].

APPENDIX A
EXPERIMENTAL ENVIRONMENT

In order to visualize the differences in solution quality
and execution time of the proposed scheduling algorithms,
we have organized an experimental evaluation based on
simulation. Prototypes of the different algorithms were im-
plemented using Python 3 to profit from the language’s ease
of implementation and execution (to help reproduce our
results).

Our experiments include six scheduling algorithms (five
of which are proposed in the main article), four kinds of cost
functions for the resources, and scheduling scenarios with
different numbers of resources and tasks. The algorithms are
compared based on the quality of their schedules (achieved
total costs) and their execution times. In the next sections,
we provide details of the scheduling algorithms, cost func-
tions, lower and upper limits, hardware, and software used
in the experiments.

A.1 Scheduling Algorithms
Our experiments include the six algorithms listed below.

1) (MC)2MKP, described in Section 4.2, proved opti-
mal for all kinds of cost functions;

2) MarIn, described in Section 5.3, proved optimal
for monotonically increasing cost functions with
increasing marginal costs;

• L. Lima Pilla is with Univ. Bordeaux, CNRS, Bordeaux INP, Inria, LaBRI,
UMR 5800, F-33400 Talence, France.
E-mail: laercio.lima-pilla@labri.fr

3) MarCo, described in Section 5.4, proved optimal
for monotonically increasing cost functions with
constant marginal costs;

4) MarDecUn, described in Section 5.5, proved op-
timal for monotonically increasing cost functions
with decreasing marginal costs and no upper limits;

5) MarDec, described in Section 5.6, proved optimal
for monotonically increasing cost functions with
decreasing marginal costs; and

6) FedAvg, proposed by McMahan et al. [2], which sets
an equal number of tasks to all resources.

A.2 Cost Functions
We simulate resources whose cost functions follow four
possible behaviors. For the functions using parameters α
and β, their values were randomly chosen from a uniform
distribution in the interval [1, 10).

• Random follows a function f(x) = γ, where γ is
randomly chosen from a uniform distribution in the
interval [0, 5001). Although not realistic, this kind of
cost function stresses the capability of our scheduling
algorithms to find good or optimal solutions.

• Nlogn follows a function f(x) = α + βx log x with
increasing marginal costs.

• Linear follows a function f(x) = α + βx with
constant marginal costs.

• Logn follows a function f(x) = α + β log x with
decreasing marginal costs.

In each experiment, all simulated resources are repre-
sented by cost functions with the same behavior generated
with different random number generator (RNG) seeds. The
exact RNG seeds used in each experiment are presented in
Tables 1 and 2.

A.3 Lower and Upper Limits
In our model, each resource i may have a lower limit Li and
an upper limit Ui on the number of tasks it may receive.

In the case of the total cost minimization experiments
in Appendix B, all resources have a lower limit equal to
5. The first half of the resources has no upper limit, while
the second half cannot receive more than 2T

n tasks, for T
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TABLE 1
Random number generator seeds used in the experiments of

Appendix B.

Cost function RNG Seeds

Random [400,499]
Nlogn (increasing marginal costs) [200,299]
Linear (constant marginal costs) [100,199]
Logn (decreasing marginal costs) [300,399]
Linear without upper limits [500,599]

TABLE 2
Random number generator seeds used in the experiments of

Appendix C.

Experiment RNG Seeds

Fixed resources: Linear Costs [100,199]
Fixed tasks: Linear Costs [0,79]

tasks being scheduled and n resources. As this upper limit
represents twice the average number of tasks per resource
possible, FedAvg is guaranteed to provide valid schedules.
Additionally, in the specific case of the experiments without
upper limits, no resource has an upper limit.

In the case of the scheduling time experiments in Ap-
pendix C, all resources have a lower limit equal to 1 and
the same upper limit behavior described for Appendix B.
The presence of upper limits can lead to invalid schedules
computed by MarDecUn, but this is not an issue in this
situation, as we only care for execution times.

A.4 Hardware and Software
Hardware: experiments were executed on a Dell Latitude
7420 notebook with an 11th Gen Intel(R) Core(TM) i7-
1185G7 processor, 32GB of LPDDR4X RAM (2133MHz), and
a Western Digital PC SN530 NVMe WDC 512GB SSD. The
computer was plugged to a power source at all times.

Software: the computer runs Ubuntu 20.04.5 LTS
(kernel version 5.14.0-1054-oem). We used Python 3.8.10
with numpy version 1.22.2 for the experiments. Modules
matplotlib (3.5.1), pandas (1.4.3), seaborn (0.11.2), and
scipy (1.7.1) were used for the visualization and statistical
analysis of results. During scheduling time experiments, no
other applications were open besides a terminal.

APPENDIX B
TOTAL COST MINIMIZATION RESULTS

In this experiment, the algorithms have to schedule from
1, 000 to 5, 000 tasks (in increments of 100) over 10 or
100 resources. The heterogeneous resources are organized
in five groups with the same cost function behavior. The
first four groups contain random, nlogn, linear, and logn
cost functions with lower and upper limits. The last group
is composed of resources with linear cost functions and no
upper limits in order to enable experiments with MarDe-
cUn.

Figs. 1 to 5 summarize the total costs achieved by
all scheduling algorithms in these scenarios. Each figure
represents the results for one group and a given number
of resources. Figures in the same pair contain results for
resources in the same group of cost functions for different

numbers of resources. The horizontal axis represents the
number of tasks scheduled, and the vertical axis represents
the total cost ΣC achieved by the algorithms (the lower, the
better). Each scheduler is represented by a line connecting
the total costs achieved for consecutive numbers of tasks.
Each figure has its own scale for the vertical axis due to the
particular costs of its group of resources.
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Fig. 1. Total Costs achieved by the different scheduling algorithms for
random costs.
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Fig. 2. Total Costs achieved by the different scheduling algorithms for
nlogn costs (increasing marginal costs).
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Fig. 3. Total Costs achieved by the different scheduling algorithms for
linear costs (constant marginal costs).

At first glance, we may notice three main aspects of these
results. First, FedAvg never finds optimal solutions. This is
to be expected, as it does not take into consideration the cost
functions of our resources. Second, only (MC)2MKP is able
to find optimal solutions for random cost functions in Fig. 1.
Third, in many situations we are unable to see the total costs
found by some schedulers in the figures. This happens be-
cause multiple schedulers are able to find optimal solutions



15

1000 2000 3000 4000 5000
Number of tasks (T)

0

100

200

300

400

500

To
ta

l c
os

t (
a.

u.
)

(MC)2MKP
MarIn

MarCo
MarDec

FedAvg

(a) n = 10.

1000 2000 3000 4000 5000
Number of tasks (T)

0

500

1000

1500

2000

2500

3000

To
ta

l c
os

t (
a.

u.
)

(MC)2MKP
MarIn

MarCo
MarDec

FedAvg

(b) n = 100.

Fig. 4. Total Costs achieved by the different scheduling algorithms for
logn costs (decreasing marginal costs).
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Fig. 5. Total Costs achieved by the different scheduling algorithms for
linear costs without upper limits.

in some scenarios, leading to lines that completely cover
each other. Here are the cases where multiple algorithms
find optimal solutions:

• Increasing marginal costs in Fig. 2: both (MC)2MKP
and MarIn find optimal (minimal) solutions.

• Constant marginal costs in Fig. 3: all algorithms
besides FedAvg find optimal solutions. This happens
because constant marginal costs are also monoton-
ically increasing and monotonically decreasing, so
MarIn, MarCo, and MarDec are able to optimize the
schedule. The same is seen in Fig. 5 using MarDecUn
when no upper limits are present.

• Decreasing marginal costs in Fig. 4: both (MC)2MKP
and MarDec find optimal solutions for both numbers
of resources, while MarIn and MarCo are able to
find optimal solutions for the scenario with n = 10.
Nonetheless, we can see that MarIn and MarCo do
not find optimal solutions when we take a closer look
at the results of Fig. 4b, as illustrated in Fig. 6.

These results reinforce the importance of taking into con-
sideration the cost behavior of all resources when assigning
them tasks, as cost-oblivious algorithms can easily lead to
much higher total costs (and, therefore, a higher energy
consumption). Finally, whenever the costs are monotoni-
cally increasing and their marginal costs follow the same
kind of behavior, we can choose to employ other optimal
schedulers with lower complexity without fear of missing
the best solutions.
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Fig. 6. Zoomed view of the total costs achieved with logn costs and n =
100. The upper line contains the results for MarIn and MarCo, while the
lower line contains the optimal results found by (MC)2MKP and MarDec.

APPENDIX C
SCHEDULING TIME RESULTS

The experiments in this scenario measure the impact in exe-
cution time seen for our scheduling algorithms when differ-
ent numbers of tasks and resources are involved. Our intent
here is to illustrate how the different time complexities lead
to execution times at different scales. We may expect to see
shorter execution times when implementing the algorithms
using more optimized programming languages instead of
Python.

Our experiments here are split into two. We first fix the
number of resources at 100, and vary the tasks from 200 to
2, 000 in increments of 200, showing us how the number of
tasks influences the execution time. Then, we fix the number
of tasks at 2, 000, and vary the number of resources from
20 to 80 in increments of 20. All resources follow linear
cost functions, as we assume that their costs should not
have a major impact on the performance of the schedulers.
For each triple 〈scheduler, tasks, resources〉, we gather 20
samples. Each sample is composed of 5 runs of a scheduler
measured using Python’s timeit module. The order that
the samples are collected is randomized to reduce issues
with interference and system jitter. The RNG seeds were set
to 0 and 1, 000 when fixing the number of resources and
tasks, respectively.
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(a) n = 100.
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Fig. 7. Average scheduling algorithm times in microseconds (logarithmic
scale).

The average execution times for each triple are presented
in Fig. 7. The vertical axis represents the execution time
for each scheduler (µs, in logarithmic scale), while the
horizontal axis represents the number of tasks and the
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TABLE 3
Average execution times and standard deviations with n = 100. Values are truncated.

(MC)2MKP - O(T 2n) MarIn - Θ(T logn) MarCo - Θ(n logn) MarDecUn - Θ(n) MarDec - O(Tn2) FedAvg - O(n)

200 tasks (4.62 ± 1.50) × 105µs (3.08 ± 1.00) × 102µs (7.11 ± 2.45) × 101µs (6.49 ± 2.02) × 101µs (1.54 ± 0.51) × 105µs (2.68 ± 0.85) × 100µs
(only averages) 462 ms 308 µs 71.1 µs 64.9 µs 154 ms 2.68 µs

2, 000 tasks (5.42 ± 0.07) × 107µs (4.51 ± 1.34) × 103µs (1.07 ± 1.14) × 102µs (7.42 ± 2.27) × 101µs (3.17 ± 0.15) × 106µs (3.01 ± 0.93) × 100µs
(only averages) 54.2 s 4.51 ms 107 µs 74.2 µs 3.17 s 3.01 µs

TABLE 4
Average execution times and standard deviations with T = 2, 000. Values are truncated.

(MC)2MKP - O(T 2n) MarIn - Θ(T logn) MarCo - Θ(n logn) MarDecUn - Θ(n) MarDec - O(Tn2) FedAvg - O(n)

20 resources (1.26 ± 0.02) × 107µs (4.62 ± 1.19) × 103µs (3.22 ± 0.87) × 101µs (2.61 ± 0.73) × 101µs (1.34 ± 0.36) × 105µs (3.26 ± 0.82) × 100µs
(only averages) 12.6 s 4.62 ms 32.2 µs 26.1 µs 134 ms 3.26 µs

80 resources (4.41 ± 0.02) × 107µs (5.31 ± 1.20) × 103µs (7.99 ± 1.69) × 101µs (7.44 ± 1.79) × 101µs (1.98 ± 0.04) × 106µs (3.53 ± 0.84) × 100µs
(only averages) 44.1 s 5.31 ms 79.9 µs 74.4 µs 1.98 s 3.53 µs

number of resources in Figs. 7a and 7b, respectively. Each
scheduler is represented by a line connecting their execution
times achieved for consecutive cases. The average times for
each scheduler for the smallest and largest cases are also
presented in Tables 3 and 4, together with their standard
deviations. For a complete view of the times, please check
the dataset available online [1].

As it can be noticed in Fig. 7 and Tables 3 and 4, the
algorithms’ execution times vary by over seven orders of
magnitude for the tested numbers of tasks and resources.
This is to be expected given the huge differences in their
time complexities. Additionally, all execution times follow
the expected behaviors given the algorithms’ complexities.

(MC)2MKP (O(T 2n)) is visibly the slowest algorithm,
with execution times varying between the hundreds of
milliseconds and the tens of seconds. When we compare it
to MarDec (O(Tn2)), we can see that their times are similar
when the number of tasks and resources are similar too (first
row of Table 3). However, when we increase the number
of tasks by a factor of ten (third row in the same table),
(MC)2MKP’s time increases by a factor of a hundred, while
MarDec’s time only increases by a factor of ten.

MarDecUn and FedAvg show a difference of about one
order of magnitude in their execution times, even though
they are both linear in the number of resources. This hap-
pens because they require very different operations. MarDe-
cUn requires looping over the resources to assign the lower
limits to all resources and to find the one with the smallest
marginal cost. Meanwhile, FedAvg can directly assign the
same number of tasks to all resources using an optimized
numpy operation, leading to a faster execution.

We may also notice that the execution times achieved
by MarDecUn and MarCo are visually very similar. Owing
to their similarity, we have chosen to employ statistical
methods to verify if there are performance differences be-
tween the two algorithms. Using the Mann-Whitney U test
with 5% confidence, we have concluded that their execution
times are different (i.e., all comparisons reject H0 with p-
values < 0.05, meaning that they come from different distri-
butions). This non-parametric test was chosen because most
of the sampled results did not come from normal distribu-
tions (Kolmogorov-Smirnov tests with p-values < 0.05).

These results, in addition to the results from Appendix B,
really emphasize the benefits of choosing the more opti-

mized algorithms from Section 5 whenever possible. Not
only do they provide optimal solutions when the cost func-
tions behave according to their assumptions, they are also
capable of doing so from one to six orders of magnitude
faster than our general optimal algorithm.
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