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In low-Earth-orbit satellite tracking applications, the apparent wind component due to relative motion between the telescope and the different atmospheric turbulence layers leads to faster turbulence temporal dynamics, and thus increases the servo-lag error of adaptive optics systems. Nevertheless, this apparent wind component can be known a priori, since it only depends on the satellite's orbit. We propose a model-based predictive controller that incorporates a priori wind layer velocity information. The controller uses an autoregressive model computed from layer wind speeds and a C 2 n (z) profile. This approach derives from the spatio-angular linear quadratic Gaussian controller, and benefits from an analytical formulation. We present performance simulation results for two applications: optical communications and satellite observation; we analyse the impact of prediction in terms of relevant performance criteria for each application.

INTRODUCTION

Adaptive Optics (AO) enables the correction of phase disturbances on optical beams due to atmospheric turbulence. A Wavefront Sensor (WFS) measures the incoming wavefront phase, and a Deformable Mirror (DM) commanded by a Real-Time Computer (RTC) applies close-loop phase corrections. AO brings improvements to image quality, fibre coupling or beam focusing in different applications.

The servo-lag between WFS measurements and DM corrections causes AO temporal error, which can be a significant contributor to the AO system error budget. This is the case of Low-Earth-Orbit (LEO) satellite tracking applications, such as LEO-to-ground optical communications or ground-based observation of LEO satellites. During tracking, the relative motion between the telescope line of sight and the different atmospheric layers is equivalent to an apparent wind velocity component. Apparent wind is faster than natural wind, and causes a faster temporal evolution of turbulence that increases the AO temporal error.

Predictive control allows reducing the temporal error by accounting for the temporal dynamics of the turbulence. A model of the turbulence evolution is used to predict the future phase based on the available measurements, which compensates for the delay between measurement and correction. This reduction of temporal error can be used to improve the performance of the system or to reduce its sampling frequency. A decrease in system sampling frequency leads to a reduction of the cost and technological complexity of the system's components (e.g. DM, RTC, etc.) and increases the integration time available for the WFS. LEO satellite tracking does not only suffer from high temporal error, but also provides a good prior for building a predictive model of the turbulence evolution, since the apparent wind component can be computed from the orbit of the satellite. Different works [START_REF] Juvénal | LQG adaptive optics control with wind-dependent turbulent models[END_REF][START_REF] Cranney | An integrated identification and predictive control strategy for high wind velocity adaptive optics applications[END_REF][START_REF] Prengére | Adaptive optics control with predictive controllers based on frozen-flow models for Low-Earth Orbit satellite tracking[END_REF] have already proposed predictive controllers that take into account wind for LEO satellite tracking.

In this contribution, we revisit a predictive model-based controller, the Spatio-Angular (SA) Linear Quadratic Gaussian (LQG) controller. [START_REF] Correia | Static and predictive tomographic reconstruction for wide-field multi-object adaptive optics systems[END_REF][START_REF] Jackson | Linear prediction of atmospheric wave-fronts for tomographic adaptive optics systems: Modelling and robustness assessment[END_REF][START_REF] Correia | Spatio-angular minimum-variance tomographic controller for multi-object adaptive-optics systems[END_REF] This controller is based on an LQG controller, that uses a predictive model of the turbulence evolution within the Kalman filter. The predictive model is a vector autoregressive model of the evolution of turbulence projected in a Zernike polynomial basis. The model is computed from the theoretical angular-covariances between Zernike polynomials, [START_REF] Chassat | Propagation Optique a Travers La Turbulence Atmospherique : Etude Modale de l'anisoplanetisme et Application a l'optique Adaptative[END_REF] which requires the knowledge of wind layer speed and direction, and the strength of each layer. When compared to other methods in the literature, the SA-LQG models only the evolution of phase in the pupil, not requiring the prediction of different turbulence layers.

We start this paper by a description of the control method used. We follow with two application cases: a LEO-to-ground optical communication downlink, and a LEO satellite imaging system. We first provide a discussion on the error budget to assess the validity of the end-to-end simulations and the relevance of temporal error among other budget contributors. We provide performance results in terms of residual variances based on AO end-to-end simulations with frozen-flow turbulence. Finally, we discuss the impact of reduction of temporal error in terms of metrics that are more relevant to the applications considered in order to asses the gain brought by prediction.

Notation. The mathematical notation in this paper follows the following conventions, where: a represents a scalar quantity, a a vector, and A a matrix.

SPATIO-ANGULAR LQG CONTROLLER

We present here the predictive controller proposed: the spatio-angular LQG controller, [START_REF] Correia | Static and predictive tomographic reconstruction for wide-field multi-object adaptive optics systems[END_REF][START_REF] Jackson | Linear prediction of atmospheric wave-fronts for tomographic adaptive optics systems: Modelling and robustness assessment[END_REF][START_REF] Correia | Spatio-angular minimum-variance tomographic controller for multi-object adaptive-optics systems[END_REF] which belongs to a family of predictive control methods that use autoregressive models of the turbulent phase states as model. [START_REF] Le Roux | Optimal control law for classical and multiconjugate adaptive optics[END_REF] In these models, the turbulent phase is represented in a given basis, typically zonal or modal. Different methods for introducing wind speed and direction information have been proposed. Some use an explicit modelling the associated shift, 1, 9, 10 which requires modelling every turbulence layer independently. Other methods model shifting as a general AR process, and identify this model using either data-driven approaches, [START_REF] Hinnen | Exploiting the spatiotemporal correlation in adaptive optics using data-driven H 2 -optimal control[END_REF][START_REF] Cerqueira | Sparse data-driven wavefront prediction for large-scale adaptive optics[END_REF] their temporal statistics [START_REF] Piatrou | Performance study of Kalman filter controller for multiconjugate adaptive optics[END_REF] or replace temporal statistics by spatial statistics [START_REF] Correia | Static and predictive tomographic reconstruction for wide-field multi-object adaptive optics systems[END_REF][START_REF] Jackson | Linear prediction of atmospheric wave-fronts for tomographic adaptive optics systems: Modelling and robustness assessment[END_REF][START_REF] Prengère | Zonal-based high-performance control in adaptive optics systems with application to astronomy and satellite tracking[END_REF] thanks to the shifting assumption.

Linear Quadratic Gaussian (LQG) Regulator

First, we define ϕ tur k , the representation of the open-loop phase at time k over the telescope pupil. This vector corresponds to a projection of phase onto a given basis: be it a zonal base [START_REF] Mcguire | Linear zonal atmospheric prediction for adaptive optics[END_REF] (phase sampled at different pixels), the Zernike polynomial basis, [START_REF] Dessenne | Sky implementation of modal predictive control in adaptive optics[END_REF] or other polynomial basis. [START_REF] Poyneer | Fourier transform wavefront control with adaptive prediction of the atmosphere[END_REF] We also define:

ϕ res k = ϕ tur k + ϕ cor k (1)
where the residual phase corresponds to the open-loop phase plus the correction phase applied by the DM.

The classical LQG regulator provides optimal regulation in terms of residual phase variance σ 2 ϕ res , which can be formulated as a discrete time control problem 17 as:

σ 2 ϕ res = lim n→∞ 1 n n-1 k=0 ∥ϕ res k ∥ 2 = lim n→∞ 1 n n-1 k=0 ∥ϕ tur k + ϕ cor k ∥ 2 (2) 
Given the command vector u k to be applied, the influence matrix N , and perfect infinitely fast DM dynamics 18 the correction at a time k is given by:

ϕ cor k = N u k (3) 
The LQG minimizes σ 2 ϕ res using the state feedback, where the state is estimated with minimum error variance by a Kalman filter. The command is defined as the projection of the phase estimate onto the command space using:

u k+1 = (N T N ) -1 N T φtur k+1|k (4)
We can describe a state-space model as:

x k+1 = Ax k + Bu k + ν k (5) 
y k = Cx k + Du k + ω k (6)
where x k is the state vector of the system, y k its measurement vector, and A, B, C, and D the matrices describing the system. In the case of AO: A corresponds to a model of the evolution of phase in a given state vector representation; B is the matrix that relates the applied DM command to the produced phase in the same representation; C is a matrix whose columns are the measurement of the WFS for each vector of the basis in which x k is represented; and D is equal to M int , the interaction matrix between the DM space and the WFS space.

For this formulation, the LQG provides optimal correction based on the optimal estimation of the states from the available measurements using a Kalman-Filter. The Kalman filter estimates recursively the state-space model states, this estimation can be divided in two steps:

xk|k = H y k -C xk|k-1 -Du k-1 (7) xk+1|k = A xk|k (8) 
Equation 7 corresponds to an update of the estimation using the last measurement available, while Equation 8 corresponds to a prediction of the future state based on the system model state evolution model described by A. H, the Kalman gain matrix, can be computed as an asymptotic solution of the discrete algebraic Riccati equation, see. [START_REF] Simon | Optimal State Estimation: Kalman, H [Infinity] and Nonlinear Approaches[END_REF] The Kalman gain depends on the state-space matrices plus Σ ν , the covariance matrix of the process noise, and Σ ω , the covariance matrix of the measurement noise. The Kalman filter assumes that ν and ω are white Gaussian noises with covariance matrices Σ ν = ⟨νν T ⟩ and Σ ω = ⟨ωω T ⟩, while Σ ν,ω = ⟨νω T ⟩ = 0. Σ ω can be obtained from the characterisation of the WFS. Σ ν is obtained as part of the computation of the state model A, see below.

From the predicted state vector, it is possible to obtain the estimation of the turbulence at the telescope pupil:

φtur k+1|k = K xk+1|k ( 9 
)
where K is a cookie-cutter matrix that selects the states of interest from the entire state space vector.

The next section details the formulation of the predictive state transition matrix A.

Autoregressive Predictive Models

We model the evolution of the turbulence as a stochastic process in the form of a Vector Autoregressive (VAR) model. The evolution of the process depends on a linear combination of a set of n previous states. We discuss in the following a second-order model, but this formalism can be extended to any arbitrary order:

ϕ tur k+1 = A 1 ϕ tur k + A 2 ϕ tur k-1 + ν k ( 10 
)
where A p are full matrices that produce the linear combination of the different vector elements, and ν k is an additive white Gaussian noise component that ensures the conservation of energy in the process.

We re-write the model in state-space form by first defining the state vector of the system as:

x k = ϕ k ϕ k-1 T (11)
While the state-space equation would be:

x k+1 = ϕ k+1 ϕ k = Ax k + Γν k = A 1 A 2 I 0 ϕ k ϕ k-1 + I 0 ν k (12) 
The coefficients of the VAR model can be solved from theoretical covariances using the Yule-Walker equations. From Equation 10we can right multiply by x T k and compute the expectation:

⟨ϕ tur k+1 x T k ⟩ = A⟨x k x T k ⟩ + ⟨Γν k x T k ⟩ (13) 
Note that ν k is not correlated to x k by definition, so: ⟨Γν k x T k ⟩ = 0 and ⟨ϕ tur k+1 x T k ⟩ = A⟨x k x T k ⟩. We can solve for the model coefficients as a function of the resulting covariance matrices:

A = Σ ϕ k+1 ,x (Σ xx ) -1 (14) 
The matrices correspond to the cross-covariances between different basis components at different temporal gaps. As a result, the VAR model of the process can be computed using its temporal covariances, this is known as the Yule-Walker estimator.

In order to compute the process noise covariance matrix Σ νν = ⟨Γν(Γν) T ⟩ knowing the model matrix A and the covariance matrices between states it suffices with:

Σ νν = Σ (ϕ k+1 ,x) -AΣ xx A T (15) 
Different approaches are possible when it comes to the representation of multilayer turbulence. One can use a different VAR model for every layer and estimate the phase at each. Alternatively, it can be assume that the turbulence at the telescope pupil is the result of the sum of a VAR process for every layer. The result is a VAR model for which the covariance matrices in Equation 14are the result of the sum of the covariance matrices for every layer. This avoids the need of predicting every layer independently.

Spatio-Angular Turbulence Model

To compute the temporal covariance matrices of the model, there are several options. One can directly explicitly compute temporal covariances of the turbulence evolution, [START_REF] Piatrou | Performance study of Kalman filter controller for multiconjugate adaptive optics[END_REF] compute them from data, [START_REF] Hinnen | A Data-Driven $\cal H 2$ -Optimal Control Approach for Adaptive Optics[END_REF][START_REF] Vidal | Tomography approach for multi-object adaptive optics[END_REF][START_REF] Piscaer | Predictive wavefront sensorless adaptive optics for time-varying aberrations[END_REF][START_REF] Sinquin | On-sky results for adaptive optics control with data-driven models on low-order modes[END_REF] or compute them analytically under some assumption on the way turbulence evolves. When assuming Taylor frozen flow it is possible to replace temporal covariances by spatial covariances. We highlight two different approaches of implementing frozen flow, which are in essence based on the same frozen flow assumption: one zonal and the other modal.

In a zonal basis, [START_REF] Jackson | Linear prediction of atmospheric wave-fronts for tomographic adaptive optics systems: Modelling and robustness assessment[END_REF][START_REF] Prengère | Zonal-based high-performance control in adaptive optics systems with application to astronomy and satellite tracking[END_REF] it is possible to compute the temporal covariances between pixels, C 1,2 (τ ), by using the covariance function between two phase points depending on their distance ρ 1,2 , 24 C 1,2 (ρ 1,2 ), so that:

C 1,2 (τ ) = C 1,2 (ρ 1,2 = V • τ ).
The spatio-angular approach 4 uses a Zernike modal basis representation where ϕ j (α, t) is a Zernike polynomial, centred at an angle α with respect to the line-of-sight and at time t. In this case, and always under the assumption of Taylor frozen flow, it is possible to compute the temporal covariances between Zernike polynomials by means of their angular covariances. We note the covariance between two Zernike polynomials, ϕ i and ϕ j , separated by a given angular distance α for a time shift τ as: C i,j (α, τ ) = ⟨ϕ i (0, t)ϕ j (α, t + τ )⟩. For a given layer of speed V at a distance z, the temporal covariance between two polynomials is,

C i,j (τ ) = ⟨ϕ i (0, 0)ϕ j (0, τ )⟩, while the angular covariance is C i,j (α = V • τ /z) = ⟨ϕ i (0, 0)ϕ j (α, 0)⟩. so that: C i,j (τ ) = C i,j (α = V • τ /z).
In the case of angular covariances between von Karman turbulence decomposed in Zernike polynomials there there exist analytical expressions. [START_REF] Chassat | Propagation Optique a Travers La Turbulence Atmospherique : Etude Modale de l'anisoplanetisme et Application a l'optique Adaptative[END_REF] Using the frozen flow assumption ϕ(θ, t

+ τ ) = ϕ(θ + V • τ /z, t) we obtain: C i,j (τ ) = C i,j (α = V • τ /z).
In other words, the pure translation of the phase screen during τ is explicitly converted into a angular correlation of the modal decomposition of the turbulence.

The simulations presented in the remainder of this paper use a second order autoregressive controller using a modal approach. We have observed that using a higher order than first order brings important gains in the performance of the controller, something that was shown in the literature for the zonal models, 10 but not for the zonal. [START_REF] Correia | Static and predictive tomographic reconstruction for wide-field multi-object adaptive optics systems[END_REF][START_REF] Correia | Spatio-angular minimum-variance tomographic controller for multi-object adaptive-optics systems[END_REF] This gain is usually not bigger for higher orders than it is for second or third orders. A comparison of the modal approach to the zonal approach will be the goal of a future work.

APPLICATION CASES

To evaluate the proposed approach we consider here two different AO systems for two different applications: LEO-to-ground optical communications downlink and a ground-based satellite imaging system. Both cases are based on systems that have already been operated on-sky by ONERA: the LISA AO bench [START_REF] Phung | Optical bench development for laser communication OSIRIS mission at Grasse (France) station[END_REF][START_REF] Giggenbach | Downlink communication experiments with OSIRISv1 laser terminal onboard Flying Laptop satellite[END_REF] and the ODISSEE AO system 27 respectively.

The motivation to use these systems for the study is that their performance is well understood after experimental validation of numerical simulations. Additionally, they are available for future on-sky tests of the control strategies proposed here.

LEO-to-Ground Optical Telecommunications Downlink

In LEO-to-ground links the satellite is tracked across its orbit to establish a communication link with the ground station. Operation at low elevation is required to increase the link duration, since in a typical orbit the satellite will spend half of the time between 5°and 20°elevation. High photon flux is available since the emitter in the satellite is used as beacon for wavefront sensing. The link is conducted in both night and day-time conditions. Day-time operation implies stronger turbulence in the layers close to the ground due to higher heat convection from sun radiation. [START_REF] Townson | Characterising daytime atmospheric conditions on La Palma[END_REF] Table 1 provides a summary of the parameters of the system considered, the LISA AO bench by ONERA. [START_REF] Phung | Optical bench development for laser communication OSIRIS mission at Grasse (France) station[END_REF][START_REF] Giggenbach | Downlink communication experiments with OSIRISv1 laser terminal onboard Flying Laptop satellite[END_REF] 

Ground-Based Satellite Observation

Optical high-resolution imaging can be used for surveillance and reconnaissance of satellites in LEO. Adaptive optics is used here to correct the effect of atmospheric turbulence on the quality of the acquired images. The photon flux available is smaller, since the sunlight reflected by the satellite is used as source for wavefront sensing (i.e. in absence of laser guide star). Observations are normally conducted during night-time, so we consider a weaker ground layer turbulence. The observations typically start at an elevation around 30°, at lower elevations the photon flux is too low and the distance to the satellite is too big to obtain high-resolution images.

Table 2 provides a summary of the parameters of the system considered. The diameter used needs to be higher to increase the photon flux. The loop bandwidth is limited by the integration time of the wavefront sensing to achieve a high enough SNR. 

METHODS

Atmospheric Turbulence Profiles

We use for our simulations an average profiles from a hybrid profile database developed at ONERA. [START_REF] Acosta | Analysis of satellite-to-ground quantum key distribution with adaptive optics[END_REF] For the optical communications case we use a day-time profile, while satellite observation uses a night-time one.

For the displacement of the different turbulent layers following the Taylor frozen flow hypothesis we only consider the apparent wind component due to the satellite motion. The effect of natural wind is neglected in this study. Natural wind impact is limited since its magnitude is one order of magnitude lower when compared to apparent wind, especially at high elevations. The impact of ground-layer natural wind shall be considered in the future, either by estimation of the wind direction and inclusion in the model or even using hybrid models with boiling turbulence. [START_REF] Juvenal | Performance assessment for the linear control of adaptive optics systems: Noise propagation and temporal errors[END_REF] 

Error Budget

We start the analysis with an AO error budget of the considered systems. This is a first identification of the potential gain of predictive control, which reduces the temporal error. The impact of prediction will therefore depend on the relative importance of temporal error with respect to the other terms of the budget. The error budget also serves validation to the end-to-end simulations.

We use SAOST, an in-house tool [START_REF] Lim | Single-Mode Fiber Coupling with Adaptive Optics for Free-Space Optical Communication under Strong Scintillation[END_REF][START_REF] Conan | Adaptive Optics for GEO-Feeder Links: From Performance Analysis via Reciprocity Based Models to Experimental Demonstration[END_REF] that provides the pseudo-analytical computation of fitting, aliasing, temporal, and measurement noise error, using the classical formulas from the literature. [START_REF] Rigaut | Analytical model for Shack-Hartmann-based adaptive optics systems[END_REF][START_REF] Roddier | Adaptive Optics in Astronomy[END_REF] In order to model the 8 × 8 Shack-Hartmann wavefront sensor AO systems in terms of Zernike modes, we use the first nine radial orders of the Zernike polynomials, i.e. n = 9. The temporal error is computed for an optimized modal gain integrator. We do not include any WFS measurement noise in this error budget, since the first tests are performed at high SNR values. The computation is conducted at different elevations so we illustrate the change in relative importance of the different budget terms as a function of satellite elevation.

End-to-End Simulations

We then use end-to-end simulations to compare the proposed controller to a classical controller: the Optimal Modal Gain Integrator (OMGI). [START_REF] Gendron | Astronomical adaptive optics. 1: Modal control optimization[END_REF] The residual phase variance of each controller is used to evaluate the ability of the predictive controller to reduce temporal error. We cross-check the obtained performance with the SAOST error budget.

The simulations presented here were conducted using an in house adaptive optics simulator. We use frozen flow phase screens for each layer to simulate turbulence. We use turbulence profiles of around 40 layers, which allows a more realistic representation of the turbulence dynamics.

The propagation between layers is geometrical and does not account for any diffractive effect in either phase or scintillation. The absence of diffractive effects limits the validity of the optical communications at low elevation, where the turbulence strength makes these significant. The extension of the current control approach to low elevation is under investigation, but it is out of the scope of this article.

The simulations conducted use a simplified AO model as first proof of concept. The AO system is modeled as a perfect WFS that is able to measure up to j max Zernike coefficients from the close-loop phase. The DM is also perfect, and can fit the same subset of Zernike polynomials. As a result of the perfect measurement and correction of the corrected modes, our simulations do not contain aliasing effects or poorly seen modes. The integration of a realistic WFS and DM is work in progress, this includes the study of the effects of aliasing in the controller.

Relevant Performance Metrics

The average residual phase variance is not enough to study the impact of predictive control in the different applications. Other performance metrics closer to the applications considered need to be used.

Fibre-Coupled Flux Fadings

For the optical communication link, we consider the flux coupled into the optical fibre. We define the instantaneous fibre coupling coefficient as the modulus of the overlap integral of the complex field of the incoming beam on the pupil, Ψ, and the fibre mode on the pupil, M :

ρ(t) = |C(t)| 2 = Ψ(r, t)M * (r) dr |Ψ(r, t)| 2 dr |M (r)| 2 dr 2 (16)
where * operator denotes the complex conjugate.

As a result of the expression above, the flux coupled into the optical fibre will depend on both the residual phase and the scintillation on the pupil. For the present simulations, the geometrical propagation used neglects any scintillation effect. Not only the average coupling efficiency, but also its variation is important to evaluate the telecommunications performance. The average loss due to geometrical losses and atmospheric absorption are greater than any average coupling gain that an AO system optimisation may bring. On the contrary, reducing big fadings will avoid signal outages due to a coupled flux lower than the dynamic range of the photodetector used. Since fadings are produced by fast variations of the phase, we could expect that predictive control could reduce both the fadings occurrences and duration of coupled flux by reducing temporal error.

We also provide the Cumulative Distribution Function (CDF) of the coupled flux as quantitative description of the fading depths. A study of fading duration will be included in a future version of this work.

Instantaneous Strehl Ratio

In astronomical applications, average residual phase variance and Strehl Ratio (SR) are sufficient metrics for describing long exposure imaging performance. For satellite imaging applications, shorter exposures may be preferred, since they allow the registration of the different images to remove the effect of residual angle of arrival before averaging them to increase SNR. In this case, Point Spread Function (PSF) stability between the different images is desirable, since deconvolution is performed on the average image. Deconvolution can also benefit of the stability of the PSF for using previous estimations of PSF as priors for the current PSF estimation. Finally, considering that the object observed is usually evolving, either due to its own kinematic of due to change in angle of observation, stability of the PSF allows a proper deconvolution and object estimation along the image sequence, ensuring a continuous monitoring of the object characteristics during its observation.

We propose here an evaluation of the instantaneous Strehl ratio for short exposure images 36 as a first evaluation of the impact of predictive control in the short exposure image quality. A more thorough analysis out of the scope of this paper should consider the overall process of deconvolution and object estimation.

To compute the instantaneous Strehl ratio from the end-to-end simulations, we first compute the PSF associated to every residual phase at the simulation frequency (same as loop frequency). The PSFs are averaged within a window corresponding to the detector integration time for the short exposure images. The Strehl ratio of one frame is computed from the averaged PSF over this frame.

SIMULATION RESULTS

LEO-to-Ground Optical Communications Downlink

Figure 2 shows the AO budget for the laser communications downlink system. For the considered number of corrected radial orders, the temporal error contribution is smaller than fitting. In this case the system is not driven by temporal error, and the gains brought by predictive control can be expected to be more modest. A system with more corrected radial orders may be more illustrative of the possible performance gains, since fitting error would be reduced at the expense of more temporal error. Such a system should be considered in the future based on the ONERA optical ground station FEELINGS. [START_REF] Petit | FEELINGS : The ONERA's optical ground station for Geo Feeder links demonstration[END_REF] We also observe that the contribution of temporal error remains almost constant across the different elevations, while fitting relative importance becomes greater for lower elevations. We will therefore focus the discussion on the 30°and the 10°operating points. Similar results can be expected at other elevations.

Table 3 shows the end-to-end simulation performance results in terms of average residual phase variance. We also provide this result projected on the DM space and its orthogonal space. The latter corresponding to the fitting error. The residual phase variance in the DM space corresponds in our simulations to the temporal error, since no aliasing (perfect measurement of Zernike modes by the WFS) and no noise (high SNR) are present.

Fitting error agrees with the expected value from the error budget presented in Figure 2. OMGI temporal error is also consistent with the budget. The predictive controller achieves a reduction of the temporal error by a factor of 5 in residual phase variance with respect to the OMGI, leaving virtually no temporal error. However, the overall residual phase remains high since the fitting error contribution is greater. 

Ground-Based Satellite Observation

Figure 3 shows the AO budget for the satellite observation case. Here, temporal and fitting errors are on par, and thus the system is expected to experience a bigger reduction of residual phase variance. Table 4 confirms the results of the AO budget. Both fitting and the temporal error for the OMGI fit the expected variances. The predictive controller achieves a reduction of a factor 13 in the temporal error, almost eliminating temporal error, while the overall residual phase variance is halved. 

Discussion

When comparing the temporal error of both controllers, the predictive controller reduces it by a factor of 5 and 13 respectively. These results prove how predictive control is able to reduce the temporal error. Nevertheless, the reduction of the overall residual phase variance depends on the importance of temporal error reduction with respect to other error budget terms. On the other hand, considering either the reduction of temporal error or the total residual phase variance does not speak of the final impact on system performance. For this, it is necessary to consider more relevant performance metrics, see Section 6. 

IMPACT OF PREDICTION

Fibre-Coupled Flux Fadings

We consider now the coupling of a beam into a single-mode fibre after AO correction. We first consider the same 30°of elevation. Figure 4a shows a segment of the coupling coefficient time series for different controllers. The OMGI at 2 kHz is the baseline system for comparison. In this case, several fadings appear along the time series. The SA-LQG is able to reduce all these fadings at only 2 kHz. The reduction of fadings, even in the presence of a fitting error that is higher than the temporal error reduced by the predictive controller, is explained by the fact that the biggest contribution to fadings comes from tip and tilt modes, which are not present in the fitting, but contain high energy in the temporal error without prediction.

We also include for comparison the same controllers but with sampling frequency of 4 kHz. This comparison should serve as comparison of predictive control to another alternative: increasing the loop bandwidth. While this is usually not an option for imaging applications due to the low flux coming from the object, optical communications have a less limited photon flux, making it possible to use faster controller, although always at the expense of increasing the system cost and complexity. The OMGI at this frequency partly reduces the depth of fadings, but performance is still worst than for the predictive controller, even at 2 kHz, while the predictive controller at 4 kHz does not bring significant gains. The CDF of the entire 1 min time series shown in Figure 4b. The reduction of fadings is of almost 3 dB at a 1 × 10 -3 probability.

The same results are presented in Figure 5 for 10°elevation. At this elevation the fadings for the OMGI at 2 kHz are deeper. Both the predictive controller at the same loop frequency and the increased bandwidth OMGI are able to reduce most of the fadings. At low elevations, the use of predictive control is very promising, with a reduction of fadings of 20 dB at a 1 × 10 -3 probability. Nevertheless, at this elevation the effects of scintillation on WFS will degrade the performance of the SA-LQG, so a specific study is planned to assess this impact and its mitigation.

Instantaneous Strehl Ratio

We use for this evaluation the satellite observation simulation at 30°elevation. Figure 6 provides the time series of Strehl ratio computed at the loop frequency for both the predictive controller and the OMGI. The two subfigures overplot in the time series the Strehl ratio for the averaged PSF during an integration time of 10 ms and 100 ms. SA-LQG @ 2 kHz OMGI @ 2 kHz SA-LQG @ 4 kHz OMGI @ 4 kHz (a) Fibre coupled flux time series. The use of a predictive controller brings significant gains on SR with respect to the OMGI. Predictive control also brings a reduction of fluctuations of SR, in particular for shorter exposure time. This provides a more stable PSF quality avoiding poor imaging of the object along observation, which would impair the deconvolution process.

Behavior with Noise

We extend here our analysis to lower SNR levels with the aim of studying the propagation of measurement noise in the predictive controller. As mentioned earlier, telecommunication links usually exhibit good SNR, while satellite observation is usually conducted in low SNR conditions. Therefore, we need to study the behavior of the predictive controller in these conditions. We define SNR using the following expression:

σ 2 ∆ϕ,phot = π 2 2 1 SNR 2 (17) 
where σ 2 ∆ϕ,phot is the variance of phase over the subpupil. The propagation to variance over the telescope pupil decomposed in Zernike modes is computed using the formulas by. [START_REF] Rigaut | Laser guide star in adaptive optics: The tilt determination problem[END_REF] This formula is a simplification of the classical formula, [START_REF] Roddier | Adaptive Optics in Astronomy[END_REF] it assumes that the spot on the detector is close to the diffraction limit, the noise is photon limited and neglects detector noise.

Figure 7 shows the result of the end-to-end simulation at different noise levels for the satellite observation case at an elevation of 30°. The result is given in terms of average residual phase variance projected in the DM space (i.e. fitting error removed). As a result, the contributions to the plotted variance are a combination of temporal error and measurement noise. For comparison, we also plotted the measurement noise variance plus variance with high SNR for both the OMGI (black dashed line) and the SA-LQG (back dot-dash line). These lines serve as reference baseline where the final performance would be the result of sum of the measurement noise error and the temporal error with no noise. This is not the case since both controller adjust their gains to the expected noise levels, decreasing the transmission of measurement noise across the controller.

We see that although there is a loss in performance at low SNR levels, this is due to the contribution of measurement noise to the overall error budget, and not to a loss of prediction performance. That means, the system is noise limited at low SNR levels and the predictive controller is robust to measurement noise. Since for satellite observation the system may be noise limited, the gains in performance with predictive control can be used to reduce the AO sampling frequency and increase the available integration time. 

CONCLUSION

We introduced a modal based using a second order autoregressive model for phase evolution. We highlighted the interest of such a method for LEO satellite tracking applications, where apparent wind due to satellite motion is a strong contributor to temporal error. Additionally, the apparent wind component in LEO satellite tracking can be computed from the known orbit, so only the estimation of the turbulence profile is needed to identify the model. The result of the simulation presented is that the predictive controller is able to reduce the temporal error in terms of residual phase variance in an order of magnitude, depending on the application and conditions. We also studied the impact of this reduction in temporal error in the relevant performance metrics for the two applications considered.

For LEO-to-ground optical communication downlinks, the use of the predictive controller allows to reduce fadings with similar effectiveness as increasing the integrator controller sampling frequency by a factor of 2. As a result, the additional development complexity of a predictive controller could be justified by the potential reduction in system components cost associated with a higher control bandwidth. We highlight the fact that the reduction of the predictive controller is able to reduce single mode fibre coupling fadings even under the presence of fitting error, since the main contribution to the fadings are the tip and tilt modes. A more thorough study of the effect of the controller on fadings, especially fading duration and frequency, will be conducted in the future.

Similarly, for the ground-based satellite observation case, we studied the impact of prediction on the stability of Strehl ratio for short exposure images to improve the results of deconvolution. For satellite observation, where the flux available is more limited, a predictive controller is particularly attractive, since increasing the system sampling frequency may not be possible due to a lack of flux for wavefront sensing.

The follow up of the work presented will consider a realistic Shack-Hartmann WFS and a realistic influence functions DM. We will study the impact of aliasing on the predictive controller, and whether we can also obtain gains by reducing the aliasing error thanks to the estimation of the measurements using the turbulence statistical model within the proposed Kalman filter. We also plan to compare the presented method to its zonal equivalent. [START_REF] Prengère | Zonal-based high-performance control in adaptive optics systems with application to astronomy and satellite tracking[END_REF] The systems discussed are used to illustrate the results of the controllers studied, in particular the reduction of temporal error by predictive controllers. Nevertheless, the importance of temporal error on the error budget and the final performance gains of due to prediction will depend on the system considered.

Finally, a first laboratory demonstration of the method will be implemented using the LISA AO bench coupled to the PICOLO [START_REF] Velluet | PICOLO: Turbulence simulator for adaptive optics systems assessment in the context of ground-satellite optical links[END_REF] turbulence emulator for LEO-to-ground low elevation links at ONERA in the prospect of on-sky validations at ONERA's future optical ground station. [START_REF] Petit | FEELINGS : The ONERA's optical ground station for Geo Feeder links demonstration[END_REF] 
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 2 Figure 2: Adaptive optics error budget as function of elevation for the optical communications case.
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 3 Figure 3: Adaptive optics error budget as function of elevation for the satellite observation case.
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 4 Figure 4: Fibre coupling results for telecommunications cases at 30°elevation.
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 5 Figure 5: Fibre coupling results for telecommunications cases at 10°elevation.
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 6 Figure 6: Instantaneous Strehl ratio evaluation.
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 7 Figure 7: Performance of the controllers at different SNR levels. Satellite observation system system.

Table 1 :

 1 System parameters for the optical communications case.

	Parameter	Value
	Orbit	
	Orbit height	750 km
	Orbit culmination	90°A
	daptive Optics	
	Telescope pupil diametre	0.4 m
	Shack-Hartmann subpupils Deformable mirror actuators 9 × 9 8 × 8 Loop sampling frequency 2 kHz
	Loop delay	2 frames
	WFS wavelength	1.550 µm
	Communication wavelength	1.550 µm
	Profile (@ 30°elevation)	
	D/r 0	11.38
	L 0 Slew rate	10 m 3.6 mrad s -1

Table 2 :

 2 System parameters for the satellite observation case.

	Parameter	Value
	Orbit	
	Orbit height	750 km
	Orbit culmination	90°A
	daptive Optics	
	Telescope pupil diametre	1.5 m
	Shack-Hartmann subpupils Deformable mirror actuators 9 × 9 8 × 8 Loop sampling frequency 1.5 kHz
	Loop delay	2 frames
	WFS wavelength	0.650 µm (centre)
	Imaging wavelength	0.850 µm (centre)
	Profile (@ 30°elevation)	
	D/r 0	12.50
	L 0 Slew rate	10 m 3.6 mrad s -1

Figure 1: Atmospheric turbulence C 2 n profiles used for both application cases at 30°elevation.

Table 3 :

 3 End-to-end simulation average residual phase variance for optical communications case at 30°e levation. All results given as variances in rad 2 .

	Controller	Residual phase variance Fitting error variance Temporal error variance
	SA-LQG (Zernike)	0.505	0.472	0.033
	OMGI	0.644	0.472	0.171

Table 4 :

 4 Average residual phase variance results for the satellite observation case at 30°elevation. All results given as variances in rad 2 .

	Controller	Residual phase variance Fitting error variance Temporal error variance
	SA-LQG (Zernike)	0.696	0.650	0.049
	OMGI	1.296	0.650	0.646
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