
HAL Id: hal-03775468
https://hal.science/hal-03775468

Submitted on 12 Sep 2022

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

A bi-objective home health care routing and scheduling
by multidirectional local search
Jiao Zhao, Tao Wang, Monteiro Thibaud

To cite this version:
Jiao Zhao, Tao Wang, Monteiro Thibaud. A bi-objective home health care routing and schedul-
ing by multidirectional local search. Conférence Francophone en Gestion et Ingénierie des Systèmes
Hospitaliers, Jul 2022, Saint-Etienne, France. �hal-03775468�

https://hal.science/hal-03775468
https://hal.archives-ouvertes.fr


A bi-objective home health care routing and scheduling by multi-
directional local search 
 
 
ZHAO Jiao 1, WANG Tao 2, MONTEIRO Thibaud 1 
1 Univ Lyon, INSA-Lyon, DISP, EA4570, 69621 Villeurbanne cedex, France,  

jiao.zhao@insa-lyon.fr, thibaud.monteiro@insa-lyon.fr 
2 Université Jean Monnet de Saint Etienne, DISP, EA4570, 42300 Roanne, France,  

tao.wang@univ-st-etienne.fr 
 
 
Résumé. This paper models the routing and scheduling problem in home health care as bi-objective problem by 
minimizing two conflicting objectives: traveling cost and satisfaction of patients. It extends the classical constraints 
of the vehicle routing problem by considering the qualification and workload of caregivers. A mixed-integer 
programming model is developed for the problem. Motivated by the challenge of computational time, multi-
directional local search framework embedded with adaptive large neighborhood search and metaheuristic is 
proposed to solve the problem. Our data set for computational experiment is based on Solomon data set. Three 
kinds of metrics for evaluating the Pareto optimal sets reveal this approach can fit different types of instances. 
 
Mots clés: routing and scheduling problem, multi-objective problem, multi-directional local search. 
 
 
Introduction 
 
Demand for Home Health Care (HHC) has been increasing in recent years as the preference of the elderly for 
aging in place has grown. Depending on the individual patient's situation, provided care can range from nursing 
care to specialized medical services. It helps decreasing hospital admissions and duration while patients can 
accept treatment in familiar surroundings.  The integration and coordination of health service delivery network is 
a complex task and managers have to face many logistics decisions. Network design, transportation management, 
staff management, inventory management are described as different logistic function in HHC. The planning 
horizon can be classified by three levels depending on the time horizon from the long-term to the short-term, 
namely strategic, tactical and operational [Gutiérrez et Vidal, 2013]. The short-term daily activities in HHC services 
are shown in Fig. 1. Once patients have their medical treatment prescription and when service time, staff 
qualifications, frequencies and hours for each medical procedure are defined, decision-makers assign qualified 
caregivers to patients according to the requested services. Then they decide to schedule a route for each 
caregiver satisfying the available time of patients. Finally, each caregiver performs their medical service, starting 
from the home health care facility, visiting patients in a planned sequence before returning to the origin. 
 

 
Figure 1: Typical activities in daily home health care services. 



These activities in home health care can be planned in tactical and operational level and belongs to transportation 
management. The transportation service accounts for a large part of company’s cost and poses the challenge to 
the efficiency. Caregivers should arrive and leave within the available time of patients. But HHC companies may 
not be capable to provide service for all patients in their available time.  All of patients can be covered by schedule 
if some of them can start and end service outside the available time. But too much delay for patients decreases 
the service quality and patients’ satisfaction while too much waiting time for caregivers leads to increasing working 
hours. 
 
In this study, the routing and scheduling problem in HHC is modeled as a vehicle routing problem with time 
windows (VRPTW) which aims to determine the most cost-efficient routes considering time windows. Each 
caregiver is assigned to a set of patients in one route. The available time of patients respects a fixed time interval 
for receiving care service, called time windows. The patients must be visited within hard time windows. Caregivers 
are not permitted to perform service if they arrive or leave beyond time window. Soft time windows can be violated 
at the cost of a penalty. 
 
This paper aims to get cost-efficient routes while improving the service quality and satisfaction of patients and 
caregivers. Fewer times that arrival and departure times are beyond the time windows indicate better satisfaction 
of patients and caregivers. The first contribution is the modelling of the routing and the scheduling problem. It is 
modelled as a bi-objective problem considering operational constraints by mixed integer liner programming 
formulation. The second contribution is related to the solution approach. An Adaptive Large Neighborhood Search 
(ALNS) based multi-directional local search (MDLS) are proposed to solve the problem. Six types of destroy and 
repair operators are embedded in ALNS. Experiments with different types of instances have been done. 
 
The rest of this paper is organized as follows. Section 2 overviews the literature related to the vehicle routing and 
scheduling problem in home health care activities. Section 3 addresses the model with two objective functions. A 
multi-objective solution methodology is proposed in Section 4. The parameters setting, computational 
experiments and result analysis are presented in Section 5. Finally, conclusion of this paper and perspective of 
future studies are summarized in the last section. 
 
1 Related works 
 
We focus on home health care routing and scheduling problems (HHCRSP) on a daily planning horizon in this 
paper. This problem is an extension of VRPTW which is proved to be NP-hard problem. Its tasks consist of the 
partitioning of the customer set and the routing of each vehicle respecting time window. Vehicle starts from the 
depot, moves once to each customer, finally return to the depot. The HHCRSP consists on designing optimal 
delivery routes from a center location to a set of geographically distributed patients with various constraints, 
resulting optimization problems are complex and, hence, of high interest to stakeholders.  It has features [Fikar 
et al., 2017]: (1) temporal dependency and disjunctive services; (2) continuity, patients are assigned to a restricted 
set of care workers; (3) care workers’ skills and patients’ requests. In HHCRSP, more attention is drawn on the 
patients and caregiver’s requirement and availability compared with VRPTW. Various constraints and objectives 
which are used in different articles due to the authors’ country’s home care management. Exact, heuristic and 
metaheuristic methods are mainly used to solve this problem. 
 
[Shahnejat-Bushehri et al., 2019] took into account precedence and synchronization constraints. Two kinds of 
caregivers provided primary tasks and synchronized services that can be defined as simultaneous or precedence 
tasks. Two meta-heuristics applied in two phrases. A variable neighborhood search-based heuristic is used to get 
a feasible solution that has to observe assignment constraints, working time restrictions, time windows, and 
mandatory break times [Trautsamwieser et al., 2011]. The constraints in existing research also include the 



matching the skills of caregivers and patients [Bertels and Fahle, 2006], balance of the workload [Manerba and 
Mansini, 2016], visit incompatibility [Nikzad et al., 2021], multiple modes of transportation [Hiermann et al., 2015] 
and the time-dependent travel time [Rest and Hirsch, 2016]. 
 
In many situations, decision-makers want to consider other aspects while reducing costs. Many objectives have 
to be optimized at the same time. Weighted sum, bounded objective function and lexicographic method of the 
objective functions are the intuitive methods for single objective optimization. In game theoretic approach, 
objective functions are assumed as the players who are ultimately controlled by decision-maker and can be 
expected to reach an agreement, meaning the game is co-operative [Rao, 1987]. Single solution method can be 
used if the decision-maker's preference is known. It's better for them to make decision from a set of solutions 
when they can't express their preference explicitly. Pareto points can be gotten by normal-boundary intersection 
[Das and Dennis, 1998] and genetic algorithms. 
 
The recent advance in the HHC research has moved to explore the multi-objective optimization method to obtain 
a Pareto frontier instead of a weighted objective function. Two kinds of objectives including distance and penalties 
applied to care and the synchronization visit were combined to be a single objective function by [Decerle et al., 
2018]. Genetic algorithms and local search provided good results while being flexible to the instance type. 
[Grenouilleau et al., 2019] minimized the weighted sum of travel time, a score of continuity of care, overtime, idle 
time and penalty for unscheduled patients, etc. A set partitioning heuristic method solved a linear relaxation of a 
set partitioning model using the columns generated by the large neighborhood search. Three objective functions 
are minimized considering travel cost, inconsistency a workload balance. An artificial bee colony metaheuristic 
was proposed to get non-dominated solutions to provide effective alternative solutions for managers in HHC 
companies [Yang et al., 2021].  
 
In most of these papers, arriving time exceeding the time window means worse satisfaction of patients. It is more 
reasonable that the time window means the available time of patients. There will also be a penalty if caregivers 
perform service and then leave from patients' home after the time window. Therefore, we define patients' 
satisfaction as minimizing the number of times that arrival and leaving time is beyond time window. Although 
improving service quality and patients' satisfaction is as important as reducing the cost, there is still inadequate 
related research, which motivates us to introduce a bi-objective model to reconcile the interest of different 
stakeholders in HHC. Different levels of caregivers are needed according to the severity of the patients' health 
condition. We assume a fixed number of caregivers to be assigned in daily working. A certain number of patients 
to be served by one caregiver is limited for balancing. We first consider these properties together. Although there 
are many metaheuristics existing in the literature, the study using ANLS based MDLS is still inadequate. Decision-
makers can select their preferred solution from Pareto optimal set according to different operation situation. This 
approach has fewer hyper parameters compared to genetic algorithms. 
 
2 Problem statement 
 
In this section, a mathematical model and its components representing the extension of VRPTW in HHC will be 
formulated. From the perspective of graph theory: let 𝐺 = (𝑉, 𝐴),	 where 𝑉 = {0} 	∪ 	𝑁 = {1,2… , 𝑛} is the 
vertex set, and represents the depot and the patients to serve. 𝐴 = {(𝑖, 𝑗) ∈ 	𝑉, 𝑖 ≠ 𝑗} is the set of arcs. The 
arrival and departure time instant of caregivers, the travel time 𝑡!"  for each arc (𝑖, 𝑗) ∈ 𝐴 and service time 𝛿! for 
each patient 𝑖are given. Travel time is equal to the cost 𝑐!" . It is assumed that all caregivers leave the depot at 
time instant 0. Time window of each patient [𝑒! , 𝑙!] is defined as the earliest time and the latest time of starting 
service that can be tolerant by patient. The decision-makers aim to find a minimum-cost tour that serves the 
vertices once and satisfy the side constraints of arc 𝑅 ⊆ 𝐴. 



 
Caregiver 𝑘 ∈ 𝐾 starts from the facility, moves once to each patient, finally return to the depot. Each caregiver 
has qualification 𝑄#. Three levels of qualifications 𝑄 = {1,2,3}	are defined in this paper. Each patient 𝑖 ∈ 𝑁 
distributes in a different location. Each patient has demand for different levels of caregivers 𝐷! according to their 
health condition. If the caregiver arrives before 𝑒!, the service will be started until reaching 𝑒!; if the caregiver 
arrives after 𝑒!, the service will be started immediately. The caregiver will leave after serving for 𝛿!. The departure 
time can be calculated as 𝑑𝑡!# = 	max	(𝑎𝑡!# , 𝑒!) + 𝛿!. The service capacity of HHC companies may not be 
sufficient to provide services for all patients in some cases. Therefore, some patients can't be served in any 
feasible solutions if caregivers must visit all patients within time windows (hard time window). That caregivers 
arrive too early or leave too late will increase the workload and decline the patients' satisfaction. Penalty cost is 
included in objective functions when the caregiver arrives or leaves beyond the time window. The decision 
variables of this model are summarized in Table 1. 
 

Notation Definition 
𝑥!"# Binary decision variable, 1 if caregiver 𝑘 moves from 𝑖 and 𝑗 , 0 otherwise 
𝑎𝑡!# Continuous decision variable, arrival time of caregiver 𝑘 at patient 𝑖’s location 
𝑑𝑡!# Continuous decision variable, departure time of caregiver 𝑘 at patient 𝑖’s location 
𝑃!# 1 if the caregiver arrives earlier than the earliest time of time window or end service later 

than the latest time of time window, 0 otherwise 
Table 1: Decision variables 

 
The objective functions and constraints are formulated as follows: 
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The first objective function (1) is to minimize the travel cost. (2)-(6) represent the penalty cost. If the arrival time 
and departure time are beyond the time window, the penalty is accumulated by 1. If the penalty is small, it means 
most of caregivers don’t need to wait and most of patients can receive service on time and finish their service 
before latest time of time window. Caregivers and patients will be satisfied with such schedule. Constraint (7) 
ensures that caregiver is assigned to exactly one route. Constraint (8) means each caregiver visits the patient 
and then leaves the patient. Constraint (9) indicates caregivers start from the depot and return to the depot after 
finishing services. Constraints (10) – (14) guarantees the schedule feasibility and makes subtours impossible. 
Note that, for a given 𝑘 , 𝑎𝑡!#  and  𝑑𝑡!# is meaningless whenever patient 𝑖  is not visited by caregiver 𝑘 . 
Caregivers can only perform the service if the qualification level is satisfied by constraint (15). Constraint (16) 
indicates each caregiver must serve a limited number of patients regarding to the working load balance. 
Constraints (17)-(18) set the domains of decision variables. 
 
3 Solution methodology 
 
In this section, multi-directional local search embedded with ALNS is detailed in order to solve the large-scale 
multi-objective vehicle routing problem.  
 
3.1 Multi-directional local search algorithm 
 
MDLS is first proposed by [Tricoire, 2012]. Each local search is used to single objective (direction) iteratively to 
improve the non-dominated front. Each local search works separately without considering the importance of the 
objectives. This strategy has less parameters and can get a well-spread set of solutions (shown in Fig.2).  F 
denotes the set that contains the non-dominated solutions. The initial solution are constructed by saving algorithm 
which is a kind of constructive heuristic by merging the nodes with largest saving. In each iteration, a solution is 
randomly selected from F. ALNS is used to improve the solution of each objective. Record to record travel 
algorithm [Dueck, 1993] is used as an acceptance criterion. New solutions are added to F. Only non-dominated 
solutions are kept in F after one iteration by Deb non-dominated sorting method. The algorithm will stop after 
satisfying the stopping condition. 

 
 

Figure 2: Structure of MDLS 
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Three destroy operators and three repair operators are embedded in ALNS (based on [Ropke and Pisinger, 2006]). 
We ensure the solutions after repairing are feasible by adding the constraints. To satisfy constraints (15) and (16), 
we choose a route that includes patients more than 𝑎 to destroy. A removal list of patients is obtained after using 
destroy operators. When we insert the node in removal list into the route, we choose the route that qualification 
level of the caregiver satisfies the request of patient and include patients less than 𝑏 to repair.  
A certain number of nodes are randomly removed and inserted in routes in random destroy and random repair 
operators. These operators can be easily implemented and run faster than other operators. Worst destroy 
operator chooses the nodes with largest saving that appear to be placed in the wrong position in the solution, 
while relatedness destroy operator tends to select the nodes that are similar and can be easily exchanged. The 
relatedness of the first objective (1) can be calculated by 1 (𝑐!" 𝑐$%& + 𝑣)⁄⁄ , while the second objective (2) by 
1 [O𝑑𝑒!" + 𝑑𝑙!"P 𝑡$%&⁄ + 𝑣]⁄ , where 𝑐!"  means the cost between node 𝑖 and 𝑗, 𝑐$%& means the largest cost 
of all pairs of 𝑖 and 𝑗,  𝑑𝑒!"  and 𝑑𝑙!"  denote the different of time window between	𝑖 and 𝑗, if 𝑖 and 𝑗 are in the 
same route,  𝑣  is equal to 0, 1 otherwise. We iteratively find the node with minimum cost position in the greedy 
repair operator. But for the nodes that are expensive to insert to the last iteration, there are not many chances for 
inserting the nodes because many of the routes are "full". The regret operator chooses the nodes from removal 
set by calculating 𝑖 = argmax!∈( [∑ (∆𝑓!

" − ∆𝑓!))#
"*+ ], where 𝑢 is removal set, ∆𝑓!

"  denotes the insertion 
value of node 𝑖 in 𝑗,- cheapest insertion position. This method selects the insertion that will regret most if it isn't 
inserted now. 
 
Only one destroy operator and one repair operator are chosen by probability 𝑤" ∑ 𝑤!.

!*+⁄  in one iteration, where 
𝑤"  is the weight of 𝑗,- operator to be chosen, 𝑖 ∈ {1,2, … , 𝑜}. The entire search is divided into a number of 
segments. A segment is a number of iterations of the ALNS. 𝑤"  is automatically updated after a segment and is 
calculated by formula (19): 

.                                                              (19) 
𝜃! means the number of times we have attempted to use heuristic 𝑖 during the last segment. The reaction factor 
𝑟 controls how quickly the weight adjustment algorithm reacts to changes in the effectiveness of the heuristics. 
The scores are 𝑟+ , 𝑟/ , 𝑟0  under three kinds of acceptance criterion and evaluate how well the heuristic has 
performed recently. A high score corresponds to a better performance. More specifically, in record to record 
method, if the neighborhood solution generated by the destroy and repair operators is better than the current 
solution, the best solution and the sum of best solution and deviation, it is always accepted. 
 
4 Computational study 
 
For all the experiments, we have used an Intel(R) Core (TM) i5-10310U CPU (@ 2.21 GHz) CPU with 16GB of 
RAM memory. In this section, we first present our instances and then the results and analysis of numerical 
experiments. No benchmark results exist in the literature for our problem. Hence, we generate six different types 
(C1, C2, R1, R2, RC1, RC2) instances based on the Solomon data (Solomon ,1987) and compare metrics of 
them to test whether the algorithm fits for different types. Each type contains 25-nodes, 50-nodes and 100-nodes 
problems. Distance is Euclidean, and the value of travel time is equal to the value of distance between two nodes. 
The geographical data are randomly generated in problem sets R1 and R2, clustered in problem sets C1 and C2, 
and a mix of random and clustered structures in problem sets by RC1 and RC2. Problem sets R1, C1 and RC1 
have a short scheduling horizon while the sets R2, C2 and RC2 have a long scheduling horizon. Patients' 
requirement for different levels of caregivers and service time are added randomly by manual. The longest service 
time accounts for fifty percent of the time window. We assume 3 caregivers are assigned to 25 patients, 5 
caregivers to 50 patients, 10 caregivers to 100 patients. 
 

(1 )* *( )j i i iw r w r p q= - +



In this paper, the metrics we use to compare different instances and evaluate the parameters setting include the 
number of Pareto optimal points (NUM), hypervolume indicator (HV) and spread metric (S). The solutions are 
scaled between 0 and 1 before calculating these metrics. Hypervolume indicator gives the volume 𝑥 enclosed by 
a reference point and the solutions and is shown in following formula (20): 

.                                                                  (20) 
The reference point 𝑅  is set to point (1,1) for two objective functions commonly. This metric measures the 
convergence and diversity. The larger hypervolume means the better quality of the solutions. Spread metric 
evaluates the diversity of solutions and is given by 

,                                    (21) 
where 𝑑1  and 𝑑2  are the Euclidian distances between the extreme solutions in true Pareto front and non-
dominated solutions (NDS). 𝑑̅ is the average of all distance 𝑑!, 𝑑! is the Euclidean distance between one solution 
and the next nearest solution, 𝑖 ∈ [1, |𝑁𝐷𝑆| − 1]. We assume the extreme value of true Pareto front is (0,1) 
and (1,0). Smaller value indicates better distribution. 

 
Figure2: Average results of C1 with 25 patients. 

 
 s0(IA100, IM1000) s1(IA100, IM100) s2(IA200, IM50) 
 time(s) NUM HV S time(s) NUM HV S time (s) NUM HV S 

25 1220.61 8.03 0.45 0.05 65.48 6.37 0.34 0.07 63.43 5.23 0.30 0.11 
50 1816.29 11.70 0.37 0.04 125.14 8.80 0.29 0.08 123.67 5.90 0.21 0.14 

100 2493.35 17.73 0.34 0.03 378.53 12.10 0.28 0.04 373.46 6.60 0.18 0.10 
Table 2: Result 

 
The algorithm will stop after 100 thousand iterations in s0 while 10 thousand in s1 and s2. In s1, the number of 
iterations of ANLS (IA) is smaller while the number of iterations of MDLS (IM) is larger, and s1 otherwise.  Fig. 2 
shows the Pareto solutions of one type of instance. Solutions of s0 and s1 dominate s2. Although some solutions 
of s1 dominate some solutions of s0, there are more solutions in s0, and the solutions in s0 are more evenly 
distributed. Table 2 shows the time of two settings are similar, and all of N, HV and S of s1 have better performance 
than s2. Smaller number of iterations of ALNS is better. If larger number of iterations of ANLS is set, the algorithm 
tends to reach the “extreme” value of each objective function. But if it is smaller, the balance between two 
objectives is obtained so that the algorithm is able to find more possible values of two objectives gradually. The 
number of iterations of MDLS of s0 is ten times as many times as s1. For s0, the three metrics are improved with 
the compared with s1. The values of three metrics are all in reasonable ranges which means solutions are well-
spread and have good convergence and diversity. The proposed method fits every kind of instances.  
 
Conclusion 
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We study a routing and scheduling problem in HHC optimizing travel cost and caregivers’ and patients' satisfaction, 
considering the matching of patients' requests and qualification levels of caregivers, the workload constraints. 
This problem is modeled as a multi-objective problem. The computational tests demonstrate the suitability and 
the efficiency of the proposed ALNS based MDLS method. In real-life service, the service time is related to the 
physical condition of patient, the patients may need different types of service at one work day, so more piratical 
constraints and the uncertain service time are needed to be considered in the future work. 
 
References 
 
Gutiérrez, E. V. and C. J. Vidal (2013).  Home health care logistics management: Framework and research 
perspectives. Int. J. Ind. Eng. Manag., 4(3), 173-182. 
Fikar, C., and P. Hirsch (2017).  Home health care routing and scheduling: A review. Comput. Oper. Res., 77, 86-
95. 
Shahnejat-Bushehri, S., R. Tavakkoli-Moghaddam, S. Momen et al. (2019). Home health care routing and 
scheduling problem considering temporal dependencies and perishability with simultaneous pickup and delivery. 
IFAC-PapersOnLine,  52(13), 118-123. 
Trautsamwieser, A., M. Gronalt and P. Hirsch (2011). Securing home health care in times of natural disasters. OR 
spectrum, 33(3), 787-813. 
Bertels, S., and T. Fahle (2006). A hybrid setup for a hybrid scenario: combining heuristics for the home health 
care problem. Comput. Oper. Res., 33(10), 2866-2890. 
Manerba, D. and R. Mansini (2016). The nurse routing problem with workload constraints and incompatible 
services. IFAC-PapersOnLine, 49(12), 1192-1197. 
Nikzad, E., M. Bashiri and B. Abbasi (2021). A matheuristic algorithm for stochastic home health care planning. 
Eur. J. Oper. Res., 288(3), 753-774. 
Hiermann, G., M. Prandtstetter, A. Rendl, J. Puchinger and G. R. Raidl (2015). Metaheuristics for solving a 
multimodal home-healthcare scheduling problem. Cent. Eur. J. Oper. Res., 23(1), 89-113. 
Rest, K. D. and P. Hirsch (2016). Daily scheduling of home health care services using time-dependent public 
transport. Flex. Serv. Manuf. J., 28(3), 495-525. 
Rao, S. S. (1987). Game theory approach for multiobjective structural optimization. Comput. Struct., 25(1), 119-
127. 
Das, I. and J. E. Dennis (1998). Normal-boundary intersection: A new method for generating the Pareto surface 
in nonlinear multicriteria optimization problems. SIAM J. Optim., 8(3), 631-657. 
Decerle, J., O. Grunder, A. H. El Hassani, and O. Barakat (2018). A memetic algorithm for a home health care 
routing and scheduling problem. Oper. Res. Health Care, 16, 59-71. 
Grenouilleau, F., A., Legrain, N. Lahrichi and L. M. Rousseau (2019). A set partitioning heuristic for the home 
health care routing and scheduling problem. Eur. J. Oper. Res., 275(1), 295-303. 
Yang, M., Y. Ni and L. Yang (2021). A multi-objective consistent home healthcare routing and scheduling problem 
in an uncertain environment. Comput. Ind. Eng., 160, 107560. 
Tricoire, F. (2012). Multi-directional local search. Comput. Oper. Res., 39(12), 3089-3101. 
Ropke, S., and D.  Pisinger (2006). An adaptive large neighborhood search heuristic for the pickup and delivery 
problem with time windows. Transp. Sci., 40(4), 455-472. 
 
 
 


