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Abstract. Among the difficulties encountered in building datasets to
evaluate intrusion detection tools, a tricky part is the process of labelling
the events into malicious and benign classes. The labelling correctness is
paramount for the quality of the evaluation of intrusion detection systems
but is often considered as the ground truth by practitioners and is rarely
verified. Another difficulty lies in the correct capture of the network
packets. If it is not the case, the characteristics of the network flows
generated from the capture could be modified and lead to false results.
In this paper, we present several flaws we identified in the labelling of the
CICIDS2017 dataset and in the traffic capture, such as packet misorder,
packet duplication and attack that were performed but not correctly
labelled. Finally, we assess the impact of these different corrections on
the evaluation of supervised intrusion detection approaches.

Keywords: intrusion detection · dataset labelling · machine learning

1 Introduction

Information technologies revolutionized our communication, collaboration, pro-
duction, and consumption. Since they are now so profoundly connected with
critical systems and crucial data, they are regularly targeted by malicious users
that seek to break information confidentiality, integrity or availability. Many se-
curity mechanisms have been proposed against such attacks, notably Network
Intrusion Detection Systems (NIDS) that aim at identifying attacks by monitor-
ing network traffic in the target system. This detection involves the analysis of
network traffic, generally by looking for traces of known attacks. Unfortunately,
NIDS are prone to false positives and false negatives that can significantly im-
pact cost and performance. For this reason, their performance must be carefully
? This work has been partly realised thanks to a doctoral grant from the cyber excel-
lence pole (PEC : DGA, Brittany Region).
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evaluated. This evaluation relies extensively on the use of benchmark datasets of
network traffic. These datasets consist of two parts: the network data (either raw
network packets or a more high-level network flow description) and the labels,
i.e., the class (benign or attack) in which each packet or flow belongs.

Due to privacy and confidentiality reasons, there are only a few public datasets
of real traffic for evaluating NIDS [12]. To circumvent those constraints, other
datasets are generally obtained by generating network traffic in a testbed. One
of these datasets is CICIDS2017 [14]. Though currently considered to be of good
quality and widely used, it has nevertheless been criticized. Engelen et al. [4]
notably pointed out some flaws in CICFlowMeter, the tool used to create flow
descriptions from raw traffic capture, as well as issues with labels of some network
flows that should not be labelled as attacks (network flows without a payload).

We discovered several new problems in CICIDS2017: most notably, several
port scan attacks were not properly labelled, and a non-negligible part of the
traffic capture was duplicated, leading to feature extraction and labelling issues.
In addition to providing corrected traffic captures and labels, we took advan-
tage of this opportunity to investigate why some references of the literature [11]
exhibited high recall and precision values even though the dataset has serious
labelling issues. We thus present in this paper three contributions:

– we first release a fixed version of the CICIDS2017 dataset for both labels
and network captures,

– we propose a patch for CICFlowMeter that avoids processing malformed
input data,

– we evaluate the consequences of the different dataset corrections on the eval-
uation of several popular intrusion detection models.

The rest is organized as follows. Section 2 presents some related works on
network datasets and intrusion detection models. Section 3 highlights the iden-
tified errors of labelling and how to fix them. Finally, we measured the impact
of the corrections on the evaluation of supervised approaches in Section 4.

2 Related works

2.1 Datasets

Several datasets have been proposed to evaluate the performances of intrusion de-
tection tools. DARPA98 [8] was one of the first datasets provided to the academic
community. Several datasets like KDD99 or NSLKDD [15] were then derived
from this first dataset. Even though they are still widely used by the research
community, these datasets have been heavily criticized [16,5] and are generally
considered obsolete. In 2015, the UNSW-NB15 dataset [10] was proposed to offer
modern traffic to evaluate NIDSes. This dataset is not well fitted for anomaly-
based intrusion detection as the experiment duration is only about 30 hours,
and there is no period of time free of attacks. In 2018, the Canadian Institue for
Cybersecurity (CIC) provided the CICIDS2017 dataset [14] and, together with
the Communications Security Establishment, the CSE-CIC-IDS2018 [3].
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CICIDS2017 uses a network architecture with machines using several com-
mon Operating Systems (OS), namely GNU/Linux, macOS and Windows, along
with a firewall, switches and routers. The traffic is emulated through a testbed
architecture. This architecture is divided into a victim network with four ma-
chines and an attacker network with fifteen machines. The traffic was collected
on work hours during five days, from Monday to Friday. Only the first day of
the week is free from attack. During the four remaining days, a large variety of
attacks was conducted. The attacks in the datasets are brute force attacks (FTP
and SSH), Web attacks like XSS and SQL injection, Deny of Service (DoS) at-
tacks and its distributed version (DDoS), port scan, botnet communications and
infiltration. The CSE-CIC-IDS2018 includes the same attacks, but the network
architecture is much larger and more complex. The network traffic is captured
for ten days instead of only five in CICIDS2017.

In CICIDS2017 and CSE-CIC-IDS2018, the authors provided the raw net-
work captures as pcap files and the network flow descriptions as CSV files. These
network flow descriptions contain high-level descriptions of a network flow be-
tween a source (that initiated the communication) and a destination. The de-
scriptions include various network statistics, notably source IP, destination IP,
source port, destination port, protocol, packet number and flow duration. These
flows are bidirectional, meaning that each one contains information on both
sides of the communication, from source to destination and from destination to
source (in contrast, for example, to the NetFlow format proposed by Cisco). The
translation from network traffic to network flow descriptions is performed by the
CICFlowMeter tool5.

2.2 Machine learning use on CICDS2017

Most papers that use these datasets rely on machine learning models to learn
and detect attacks. In that case, the datasets are generally split in two: one part
is used for learning the model (called the "train set"), and the other part is
used for evaluation (called the "test set"). The popular models [7], [11], [9] for
these datasets include decision trees, k nearest neighbors, naive Bayes classifier,
Random Forest [1], SVM [2], and multilayer perceptron [6]. These methods are
used in a supervised learning setting, where the train set is labelled and contains
both benign and malicious traffic. For example, Maseet et al. [9] obtain very
high performances on CICIDS2017: out of the seven experimented supervised
methods, five of them have an F1-Score, a recall and a precision higher than
0.99. In almost all these works, researchers based the learning and the evaluation
on the network flow descriptions and not the raw network captures.

2.3 Previous criticism on CICIDS2017

In 2021, Engelen et al. [4] revealed several issues they found in the CICIDS2017
intrusion detection dataset. They found several flaws in the CICFlowMeter tool
and that some attacks in the dataset were not well executed and thus ineffective.
5 https://github.com/ahlashkari/CICFlowMeter
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About the first issue, CICFlowMeter wrongly splits TCP connections be-
cause of a wrong implementation of the TCP connection termination. This phe-
nomenon has two consequences. The first one is to create a lot of erroneous
network flows since it splits a unique network connection into multiple ones.
The second consequence is that the direction of the network flow description
can be inverted. In that case, all the forward and backward data are swapped,
including the IP addresses, which is damageable when it comes to labelling the
dataset since the network flows are labelled based on their source and destination
IP addresses. Engelen et al. released a fixed version of CICFlowMeter that avoids
many labelling issues. In the rest of the article, we will only use this updated
tool, not the original one.

The authors also found that some attacks were conducted without sending
malicious payload. This is an issue because the attacks become ineffective, so the
maliciousness of these packets is debatable. To overcome this issue, they decided
to create another class of labels to account for these attack attempts.

In 2022, Rosay et al. [13] presented other issues related to CICFlowMeter,
such as feature duplication, miscalculations and wrong protocol detection, as well
as labels issues for several attacks. However, their handling of TCP termination
is not perfect and misses some packets leading to distorted statistics. For this
reason, we work with Engelen et al. flow descriptions.

3 Errors in the CICIDS2017 dataset and the
CICFlowMeter tool, and their fixes

Pursuing the work of Engelen et al., we found four different issues in the CI-
CIDS2017 dataset: a case where CICFlowMeter failed to properly create correct
flow descriptions, incoherent timestamps, some duplication in the network cap-
tures, and an attack that is omitted from the labels.

The first two issues have consequences on the network flow descriptions and
lead to an inversion of the source and the destination of the network flow de-
scriptions that may impact labels. The third issue has only an impact on the
network flow descriptions. The last one has an impact on the labels directly.

To explain why the first two issues may impact the labels, we must explain
the labelling process we used. It must be noted that we do not have insights into
how the authors of CICIDS2017 labelled those network flow descriptions after
they generated the network flow descriptions from the network capture with the
CICFlowMeter tool. However, Engelen et al. provide an automated script to
label the network flows as attacks using their source IP address, destination IP
address and timestamp. Indeed, the documentation of the CICIDS2017 dataset
provides the time periods and the IP addresses concerned by the attacks. We
used the same process to label the network flows. As this process takes into
account the source and destination, an inversion of those IP addresses may lead
to errors in the labels of the network flows.

Those four issues are presented in the next subsections. The fixed version is
available on the repository https://gitlab.inria.fr/mlanvin/crisis2022.

https://gitlab.inria.fr/mlanvin/crisis2022
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16:01:11.009724 IP 192.168.10.50.http > 172.16.0.1.20823: Flags [S.]
16:01:11.009723 IP 172.16.0.1.20823 > 192.168.10.50.http: Flags [S]
16:01:11.023740 IP 172.16.0.1.20823 > 192.168.10.50.http: Flags [.]
16:01:11.023744 IP 172.16.0.1.20823 > 192.168.10.50.http: Flags [P.]

Listing 1: Misordered packets from CICIDS2017. The timestamp is the leftmost
column, and the flags are the rightmost column. Flags [S] mean SYN, [.] mean
ACK and [S.] means SYN-ACK.

3.1 CICFlowMeter issue with misordered packets

CICFlowMeter is a tool that extracts network flow descriptions from pcap files
that contain network captures. The network flow descriptions generated by CI-
CFlowMeter are bidirectional and distinguish a source (the machine that ini-
tiates the communication) and a destination. As a reminder, the initial TCP
handshake consists in exchanging three messages (SYN from source to destina-
tion, SYN-ACK from destination to source, and ACK from source to destination)
to establish a connection. We identified a remaining flaw in CICFlowMeter that
occurs when pcap files are not sorted by timestamps, as it happens in the origi-
nal dataset of CICIDS2017. In that case, the tool reads the network packets in
the order of the network capture files, but the SYN-ACK packet can sometimes
be stored before the SYN packet in the pcap file, even though, according to the
timestamp, the SYN packet did occur before the SYN-ACK one.

Src IP Src Port Dst IP Dst Port Protocol Timestamp

192.168.10.50 80 172.16.0.1 20823 6 07/07/2017 16:01:11
Table 1. Flow description of Listing 1. CICFlowMeter inverted source and destination.

As an example, the Listing 1 illustrates this phenomenon with an extract of
one network connection of the pcap files of CICIDS2017. We can observe that the
first packet in the network capture is a SYN-ACK even if its timestamp is not
the earliest. CICFlowMeter uses the first received packet to infer the source and
destination. Therefore, the source and destination are exchanged in the resulting
network flow description provided in the CSV files, cf. Table 3.1. Table 2 shows
the number of misordered frames in the network capture per day (the number of
frames can be considered as very close to the number of packets in our case). The
figures show that Wednesday and Friday are the two days with the maximum
number of misordered packets, with about twice as many misordered packets as
the other days. We know Dos/DDoS attacks are performed on these two days,
so our hypothesis is that the packet misordering seems to be related to the kind
of attack that is performed. Since a high number of packets characterizes these
attacks, there might be a race condition during the packet capture and store.
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14:48:12.894976 IP 192.168.10.3.88 > 192.168.10.8.49173: Flags [S.]
14:48:12.895030 IP 192.168.10.8.49173 > 192.168.10.3.88: Flags [S]
14:48:12.895032 IP 192.168.10.8.49173 > 192.168.10.3.88: Flags [.]
14:48:12.895095 IP 192.168.10.3.88 > 192.168.10.8.49173: Flags [.]

Listing 2: Excerpt of a network connection from CICIDS2017 with ordered pack-
ets in the pcap file but with a disordered logic. The timestamp is the leftmost
column, and the flags are the rightmost column. Flags [S] mean SYN, [.] mean
ACK and [S.] means SYN-ACK

A solution to this misbehaviour is sorting the pcap files before processing
them with CICFlowMeter. The tool reordercap6 can perform such an operation.
The version of CICFlowMeter7 proposed by Engelen et al. now includes our
patch that verifies the packets’ order in the network capture to avoid this issue.

Pcap files #Misordered frames #Frames Proportion(%)

Monday-WorkingHours.pcap 3234 11709971 0.028
Tuesday-WorkingHours.pcap 3721 11551954 0.032

Wednesday-WorkingHours.pcap 12654 13788878 0.092
Thursday-WorkingHours.pcap 3655 9322025 0.039
Friday-WorkingHours.pcap 7094 9997874 0.071

Table 2. Numbers of misordered frames in the different pcap files

3.2 Incoherent timestamps

Another issue we found in the CICIDS2017 network captures is that the times-
tamps can be incoherent with the protocol. For example, in Listing 2, the packet
SYN-ACK has a lower timestamp than the packet SYN, even though, according
to the TCP protocol, such configuration should not happen. This produces the
inverted flow description of the Table 3 for the same reason as in the previous
subsection.

Src IP Src Port Dst IP Dst Port Protocol Timestamp

192.168.10.3 88 192.168.10.8 49173 6 06/07/2017 14:48:12
Table 3. Extracted flow description from the misordered packets presented on List-
ing 2. CICFlowMeter inverted source and destination.

6 https://www.wireshark.org/docs/man-pages/reordercap.html
7 https://github.com/GintsEngelen/CICFlowMeter
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We have no hypothesis on what produced this issue, and it is difficult to
fix automatically. For this reason, we did not fix it. However, such incoherent
timestamps can cause CICFlowMeter to invert source and destination because,
in this case, it considers the sender of the SYN-ACK packet to be the source.

3.3 Dealing with data duplication

Observing the network captures, we found many duplicated packets in the data.
Listing 3 contains an example of such duplicated packets. We can see the rep-
etition of the SYN and RST packets: the time interval between two identical
packets is only a few microseconds. Besides, their content is the same.

We cannot be sure of the cause of that phenomenon as we do not have enough
detailed information on the network capture. As the time interval between two
identical packets is very small and as UDP and ICMP packets are duplicated,
we can rule out the hypothesis that this behaviour is normal due to the TCP
retransmission mechanism. For now, our main hypothesis is that the port mirror-
ing on the main switch of the CICIDS2017 testbed was not configured correctly.
We did not analyze the network capture entirely, but we only saw duplicated
packets between the testbed’s internal hosts. That could be explained by the
fact that all the ports of the switch connected to internal hosts are configured
to mirror incoming and outcoming packets to the mirror port. That hypothesis
is reinforced by the fact that broadcast packets to the internal subnetwork are
duplicated 13 times.

We corrected this issue with the tool editcap8 that can find and remove
duplicated packets within a given time window. Using this tool with a time
window of 500µs, we measured how many packets were duplicated during the
whole week of the CICIDS2017 dataset. The Table 5 reports the number of
duplicated packets per day. On average, more than 497000 packets are duplicated
per day, representing 4.5% of the packets per day. The duplication modifies
the network flow description that is extracted by the tool CICFlowMeter. For
example, the traffic shown in Listing 3 is transformed by CICFlowMeter into
the flow description shown in Table 3.3. Its numbers of forward and backward
packets are two because of the duplication, even though only one forward and one
backward packets were actually exchanged in the network. As our experiment
will show in Section 4, this duplication has serious impacts on the performances
of the classifiers.

Src IP Src Port Dst IP Dst Port Total Fwd Pkts Total Bwd Pkts

192.168.10.8 3632 192.168.10.9 28316 2 2
Table 4. Excerpt of the flow description of Listing 3

8 https://www.wireshark.org/docs/man-pages/editcap.html
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15:45:30.347074 IP 192.168.10.8.distcc > 192.168.10.9.28316: Flags [S],
seq 2582752148, win 8192, options [mss 1460,nop,nop,sackOK], length 0
15:45:30.347078 IP 192.168.10.8.distcc > 192.168.10.9.28316: Flags [S],
seq 2582752148, win 8192, options [mss 1460,nop,nop,sackOK], length 0
15:45:30.347258 IP 192.168.10.9.28316 > 192.168.10.8.distcc: Flags [R.],
seq 0, ack 2582752149, win 0, length 0
15:45:30.347261 IP 192.168.10.9.28316 > 192.168.10.8.distcc: Flags [R.],
seq 0, ack 2582752149, win 0, length 0

Listing 3: Example of duplicated network packets CICIDS2017

Number of Total number Proportion of
Day duplicated packets of packets duplicated packets

Monday 514,241 11,709,971 4.39%
Tuesday 482,553 11,551,954 4.18%

Wednesday 480,209 13,788,878 3.48%
Thursday 556,013 9,322,025 5.96%
Friday 466,448 9,997,874 4.67%
Table 5. Number and proportion of duplicated packets per day.

3.4 Attack omission: labelling issues and correction

While using CICIDS2017 to evaluate machine learning models, we noticed an
excessive number of false positives when processing Thursday’s traffic. According
to CICIDS2017 documentation, there is an infiltration step where the victim is
meant first to download a malicious file or use an infected USB flash memory
from 2:19 PM to 3:45 PM and then the infected machine is meant to perform a
port scan afterwards. In the original CSV files, only 36 network flows are labelled
as part of the infiltration. However, by analyzing the network flows corresponding
to our false positives, we found some common network characteristics that led
us to find a port scan that was not correctly labelled. We estimate that several
tens of thousands of network flows are related to this port scan.

This preliminary experiment was done manually. However, manually labelling
tens of thousands of network flows related to these attacks would have been too
expensive and prone to error, so we decided to use an automated method. We
could have used a rough method and labelled all the traffic between the infected
machine and the other machines during the period of the infiltration attack. This
is for example the method used by Engelen et al. [4] to label attacks. However,
such a method would have introduced labelling errors as there is also benign
traffic between the infected machine and the other machines. We estimate that
this rough method would label about 7, 000 benign flows as attacks out of the
80, 000 total flows between the infected machine and the others, so close to
10% of wrong labels.We thus decided to deduce from the port scan attack what
network characteristics we could use to label the network flows correctly.
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With duplication Without duplication

Fwd Packet Bwd packets Count Fwd Packet Bwd packets Count

2 0 31436 1 1 38228
2 2 30042 1 0 31138
1 1 13840 5 4 315
1 2 1099 1 6 191

Table 6. Number of emitted and received packets and associated number of network
flows for the traffic between 192.168.10.8 and all the machines belonging to the subdo-
main 192.168.10.0/24 from 2:15 PM to 3:50 PM on Thursday.

We know that the attacks take place on Thursday between 2:15 PM and
3:50 PM and that the infected machine’s IP address is 192.168.10.8. Due to
some source/destination inversion that is difficult to fix (see Subsection 3.2),
we will look into every network flow with this IP address either as the source or
destination IP address. Our labelling method is refined by taking into account the
number of forward (from source to destination) and backward (from destination
to source) packets characteristics.

There are multiple ways of performing a port scan, but the general idea is
that the attacker will probe a port with a packet and deduce from the behaviour
of the scanned machine whether the port is open or not. There are two typical
situations: the scanned machine either replies by emitting one packet or does
not reply, depending on the port’s status, the kind of scan and the network
configuration. With certain port scan techniques like SYN scan, the attacker
expects an answer from the scanned machine to infer the port’s status, and with
others like Null, FIN, or Xmas scans, an opened port will be revealed by the
absence of response9. An absence of response from the scanned machine can also
be observed if the dedicated firewall or the host-based firewall filters the packet.
With these considerations in mind, we can propose patterns to filter the network
flows based on the number of forward or backward packets: we expect attacks
to have one emitted packet and either one or zero received packets.

The Table 6 presents the top four patterns that gather the maximum number
of network flows from and to the victim, either with or without the duplicated
packets. On the right part of the table, when there is no duplication, the patterns
"1 forward - 1 backward" and "1 forward - 0 backward" are indeed the most
frequent patterns, and other patterns are negligible (the patterns "5 forward - 4
backward" and "1 forward - 6 backward" are mostly not related to the port scan
according to the manually inspected examples). There are also about a hundred
occurrences of the patterns "2 forward - 2 backward" and "2 forward - 0 back-
ward" that we believe are also part of the port scan. There are port scans that
use protocol quirks and whose flow is not properly reconstructed by CICFlowMe-
ter. These incorrectly reconstructed flows include ICMP reconnaissance by Nmap,
ACK scans and UDP scans. So, for the dataset without duplication, we use the

9 https://nmap.org/book/man-port-scanning-techniques.html
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patterns "1 forward - 1 backward", "1 forward - 0 backward" and "2 forward -
2 backward" and "2 forward - 0 backward".

When taking duplicated packets into account (left part of the table), the
expected pattern "1 forward - 1 backward" was only the third most frequent
pattern. Indeed, the first two patterns, "2 forward - 0 backward" and "2 forward
- 2 backward" are the duplicated equivalent of the expected pattern ("1 forward
- 1 backward" and "1 forward - 0 backward") but seen twice, i.e., with two
emitted and/or received packets instead of just one. This is the consequence of
the duplication problem described in Subsection 3.3.

In addition to the duplication phenomenon, sometimes timestamps are shifted
between the two observations of the same network flow. When these two effects
combine, it can produce some unexpected behaviours where a simple SYN and
RST connection is duplicated into SYN - RST - SYN - RST packets, and then
transformed into SYN - RST - RST - SYN packets due to timestamp errors. In
this case, there are one emitted packet (a SYN packet) and two received packets
(two RST packets), so a "1 forward - 2 backward" pattern. The last SYN packet
triggers the creation of a new flow having the pattern "1 forward - 0 backward".
So, for the dataset with duplication, we use the same patterns as for the dataset
with duplication (that are still valid because not all packets are duplicated), and
we add the "2 forward - 2 backward", "2 forward - 0 backward", "1 forward - 2
backward" patterns.

Besides, we manually exclude the network flows associated with legitimate
protocols (DNS, LDAP, NTP, and NETBIOS-NS) that are present in the network
traffic. Our heuristic could have mislabeled them.

To summarize, we labelled every network flow as a port scan attack if the flow
happened on Thursday between 2:15 PM and 3:50 PM, if it comes from or to IP
192.168.10.8, if its protocol is neither DNS, LDAP, NTP or NETBIOS-NS, and
if its numbers of forward and backward packets respect the patterns mentioned
earlier.

We applied this filter and counted the numbers of network flows related to
port scan per IP address. We counted about 4, 060 port scans for all six Ubuntu
machines, about 5, 300 for the Windows 7 machine, about 6, 900 for the Mac
machine, about 8, 000 for the two Windows 10 machines and about 12, 000 for
the Window 8.1 machine.The number of ports that are scanned by a default
Nmap scan is about one thousand. Since the number of identified flows for half
of the machines is around four thousand, our hypothesis is that they are four
scan attacks of the network.

4 Assessment of the consequences on intrusion detection
models performances

Finding and fixing these issues in CICIDS2017 is a great opportunity to examine
the current experimental evaluation performed on this dataset and assess its
consequences on the performances. More specifically, we would like to answer
the following research questions:
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– Q1: How does the pcap ordering fix affect the performances of these models?
– Q2: How does the correct labelling of the port scan affect the performances

of these models?
– Q3: How does the flow deduplication affect the performances of these mod-

els?
– Q4: How could previous articles obtain very high performances with machine

learning algorithms in the presence of these issues?

In this section, we first describe our experimental evaluation protocol, evalu-
ate several supervised classification models, namely decision trees, random forest,
naive Bayes and support-vector machine classifiers, and finally answer the four
research questions we defined.

4.1 Experimental evaluation protocol

To answer the research questions raised previously, we build several train sets
and test sets based on the network captures files with different corrections to
assess their effect. The corrections include the reordering of the pcap file before
applying CICFlowMeter (denoted as R for the rest of the article). If the pcap file
isn’t reordered, then the labels provided by [4] are used. Our second correction
is the addition of the new port scan labels denoted as P. We will also assess
the impact of the duplicated network packets, and we denote the presence of
duplicated packets by D.

As we described in section 3.1, the labelling script proposed by [4] sets three
kinds of labels: "benign", "malicious" and "attempted". To simplify the exper-
iments and the analysis of their results, we decided to label these attempts as
benign. We also ran our experiments by labelling them as attacks: the differences
were slight and did not impact our conclusions. The train and test set config-
urations are detailed in Table 7. We distinguish three sets of experiments. The
goal of the first set (RD and RPD) is to observe the effect of the reordering
of the pcap file by comparing with D and PD and answer Q1. The second set
(RD and RPD) is built to assess the impact of the port scan addition on the
labels provided by Engelen et al. and answer Q2. The last set of experiments
(R and RP) consists in assessing the removal of the duplicated packets in the
network capture and answering question Q3. It must be noted that we think
the correct version of the dataset is the one noted RP, i.e. with the port scan
correctly labelled, the reordering of the packets and without duplication.

We evaluated four supervised models: a naive Bayes classifier, a support-
vector machine (SVM), a decision tree and a random forest. We chose these
supervised models since they obtained the best performances for intrusion detec-
tion given the survey [11]. A benchmark on CICIDS2017 [9] also highlighted the
good performances of the decision tree and naive Bayes models on the dataset.
We used the scikit-learn library implementation for all these models. We used
standard configuration for the different models except for tree-based models, for
which we limited their maximum depth to 15 to prevent overfitting.

We adopted a particular strategy for splitting the dataset into train and test
sets to conduct a fair study. Indeed, we did not want to put mislabelled flows in
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Sets name Reordered (R) Scan Port added (P) Has Duplicates (D)

D X
PD X X
RD X X
RPD X X X
R X
RP X X

Table 7. Experimental configurations depending on capture and labelling corrections

the train set. Otherwise, if the train set were mislabelled, the supervised methods
would certainly have poor performances on the test set.

To train the models on consistent data, the train set only includes correctly
labelled flows but not any flow that Engelen et al. classified as "attempts". More
precisely, we first collected about 65% of each attack, except for the newly dis-
covered port scan attack. This means that the attack types (except the new port
scan attack) are present in the training data with about the same proportion
as in the dataset. Then, we added as many benign flows as to have a balanced
dataset with as many benign examples as malicious examples. This dataset de-
pends on the applied correction, so there are several train sets. However, each
one of the three sets of experiments shares a common train set.

From the raw features provided by CICFlowMeter we drop features with
constant values: Fwd URG Flags, Bwd URG Flags, URG Flag Count. We also
drop Flow ID that is unique to each flow. Besides, we drop Src IP, Dst IP,
Timestamp since they could make the models learn shortcuts such as identify-
ing malicious IP addresses or attack campaign periods. The Src Port feature
is removed since it is random and could lead to overfitting. Flow descriptions
containing NaN values are dropped. Finally, we normalize the data by centring
and scaling each feature as it is necessary for SVM.

To assess the impact of the labelling corrections, we rely on classic metrics
used in intrusion detection: the numbers of True Positives (attacks correctly
detected), True Negatives (benign traffic correctly identified), False Positives
(alarms caused by benign traffic) and False Negative (attacks not detected).
More specifically, we use the True Positive Rate (TPR, or recall), which is the
proportion of attacks that are correctly detected, and the False Positive Rate
(FPR), which is the proportion of benign traffic that generates false alarms. We
could not use the classic area under the ROC (Receiver Operating Characteristic)
curve as it is not easily obtainable on ordinal models such as decision trees.

4.2 Experiments results

The Figures 1 and 2 show respectively the TPR and the FPR obtained by the
models for the different labelling corrections.

Q1: How does the pcap ordering fix affect the performances of these models?
This experiment relies on train and test sets D and RD, as well as PD and
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Fig. 1. TPR of the different supervised models given the different experimental con-
figurations.

RPD. The reordering affects the creation or deletion of only about four thousand
network flows, which is less than 0.2% of the total count for the whole week. We
also measured a bit more than four thousand network flows with the source and
destination that are swapped after reordering. This also represents about 0.2%,
which is only a small percentage of the total number of network flows. Reordering
the pcap files fixes the source/destination inversion issue and produces more
accurate labelling. With the reordering, all the metrics are slightly better, but
the differences are so slight (the mean change on all metrics is less than 0.1%)
that we decided not to include them on the charts for the sake of brevity.

Q2: How does the correct labelling of the port scan affect the performances
of these models? This experiment relies on train and test sets RD (no port scan
label) and RPD (with port scan label). We can consider two cases, depending
on the labels of the considered dataset used as the ground truth for computing
the metrics. With RD labels, the port scan attack flows that are detected are
counted as false positives because the port scan is not labelled (even if the port
scan is really present in the network data). With RPD labels, the port scan
attack flows that are detected are counted as true positives because the port
scan is labelled. Once the port scan attack is correctly labelled, we observe in
the Figure 1 that the tested supervised models lose, on average, about 20% of
recall. It means that these models do not correctly detect a vast proportion of
the newly labelled attack. Since the FPR from all models is reduced by about
3% for all models after correctly labelling this attack, we can understand that
these models detected at least some part of the port scan.

The drop of the recall is very surprising because there is already a correctly
labelled port scan attack in the train set, so the models should be able to detect
this new attack correctly. This question is discussed along with Q3.
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Fig. 2. FPR of the different supervised models given the different experimental con-
figurations.

Q3: How do the duplicated packets affect the performances of these models?
This experiment relies on train and test sets RD and R, as well as PRD and
RP. The Figure 1 shows that without duplication, the models are able to detect
the new relabelled port scan attack correctly: we can see that the recall goes from
about 80% on RPD to close to 100% on RP. In other words, the duplication
issue prevented the models from identifying this attack correctly. The duplication
has little effect on other attack detection: the recall is about the same between
RD and R. The TPR change a little (upward or downward depending on the
model) between RD and R, but it seems difficult to draw any conclusion.

To explain that effect on the recall, we analysed the explanation of the deci-
sion tree prediction for the two port scan attacks with and without duplication.
The decision paths are similar, with some differences on the decision related
to the following features: Flow IAT Min, Flow IAT Mean, Bwd Packets/s and
Flow Packets/s. The duplication directly impacts these features because, as we
saw in Subsection 3.3, the duplication causes two packets in both ways instead
of having one emitted packet and one received packet. Therefore the backward
number of packets per second is doubled as well as the number of packets per
second. For the two other features, the Inter-Arrival Time (IAT) is modified
since the duplication makes duplicated packets very close in time. This reduces
a lot the minimum and the mean IAT values. So, the duplication of the packets
disturbs significantly the flows extracted by CICFlowMeter.

So, with duplication, the models do not detect the port scan attack correctly
because it mostly consists of flows with duplicated packets that do not match the
behaviours learned on the other correctly labelled port scan, which do not have
duplicated packets. Without duplication, the newly labelled scan port matches
the learned attack behaviour.
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Q4: How could previous articles obtain very high performances with machine
learning algorithms in presence of these issues?

Previous experiments use the same scenario as our dataset RD. As we can
see, we can achieve very high recalls with classic models without fine-tuning.
Besides, except for the Naive Bayes model, all of them have a relatively small
FPR. As we can see on Figure 2, part of these false positives are related to the
newly labelled scan attack. For this reason, results such as those obtained by [9]
look like overfitting. Overfitting is also one of the conclusions of the survey [7]
on intrusion detection models used on CSE-CIC-IDS2018. For the recall, we
observe that the results on the correct dataset RP are as good as on the original
dataset RD, while the recall drops when we label correctly the missing port
scan (dataset RPD). We also observe that the FPR raises for the dataset R
compared to RD. It seems that two issues we found (the missing port scan and
the duplication of packets) offset each other and allow the ML models to obtain
good results on the original dataset RD.

5 Conclusion

CICIDS2017 is often used to evaluate the performances of NIDS. However, it
has several flaws in both its traffic captures and its labelling. First, the tool
CICFlowMeter misbehaves when packets are misordered in the traffic capture,
which leads to source/destination inversion and wrong feature values in the net-
work flows. Second, the traffic capture contains incoherent timestamps. Third,
about 5% of the packets are duplicated, modifying the network characteristics
of the flows used for detection. Finally, the infiltration step contains a port scan
attack that was not labelled as such either in the original authors’ CSV files
or in the revision of the labels provided by [4]. Once the dataset was fixed and
relabelled according to these modifications, we measured the intrusion detection
performances of several supervised models that are often used. The newly la-
belled port scan attack is not entirely detected by the models, leading to a loss
of recall of about 20%. However, we get back to good performances on the new
port scan attack by removing duplicated packets. We allow us to conclude that
previous work could not obtain a precision close to 100% without overfitting.
Finally, the security community could benefit from merging our corrections with
the features calculations and protocol handling of [13].

Through this article, we highlighted the importance of the quality of the
network intrusion detection datasets to evaluate the NIDS accurately. A good
quality comes from a clean labelling process, and an accurate network captures
management to prevent packet duplication, for instance. Without these prereq-
uisites, the evaluation is distorted, and the models learnt on the dataset may be
unfit for realistic network characteristics.

We would advise dataset authors to provide as many details as possible on
their labelling strategy, how they perform attacks, their network infrastructure
and post-processing steps on the provided data. For future work, we want to
improve detection explainability to understand false positives better and help
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analyse the corresponding alarms. This would allow to detect such data and
labelling mistakes more easily.
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