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CNRS, 17 avenue des Martyrs, 38054 Cedex 9, Grenoble, France

‡Theory Group, Institut Laue-Langevin, 71 avenue des Martyrs CS 20156, 38042 Cedex 9,

Grenoble, France

E-mail: martin.field@cea.fr,field@ill.fr

1



Abstract

Density fitting is a standard technique in quantum chemistry as it helps to accel-

erate certain parts of a calculation, such as the computation of the electron repulsion

energy, without significant loss of accuracy. This paper explores the effectiveness of

this technique when it is extended to treat interactions with external electrostatic

potentials, in particular those that arise from the environment in hybrid quantum

chemical/molecular mechanical calculations. It is found that fitted densities are able

to well reproduce the energies, forces and properties obtained using un-fitted densi-

ties, as long as a suitable operator is employed for the fitting. It is expected that this

precision would be improved by the development of basis sets specifically designed to

treat these types of interactions, and that the use of this approximation could lead to

substantial speed-ups in large hybrid potential simulations.

Introduction

Density fitting is a standard tool in quantum chemistry. Some of the first references to it are

in the works of Baerends, Ellis and Ros,1 who used it to speed up the calculation of the elec-

tron repulsion energy in Hartree-Fock-Slater calculations, and of Whitten and Jafri,2,3 who

were interested in approximating Coulombic potential energy integrals. Other significant

early works include that of Sambe and Felton4,5 who extended the fitting idea to approxi-

mating the exchange potential in Slater’s SCF-Xα equations, and of Dunlap, Connolly and

Sabin6 who introduced robust variational Coulomb fitting. Since these early studies, devel-

opments of the method have mostly concentrated on the area in which it provides the most

benefit, namely acceleration of the two-electron contributions to the electronic energy for

a range of QC approaches, although there have been exceptions (see, for example, Köster

et al. 7).

In this article the use of density fitting approximations is examined within the context

of hybrid potential quantum chemical/molecular mechanical (QC/MM) potentials8 for the
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calculation of the electrostatic interactions between the QC and MM atoms. The rationale

for doing this is two-fold. First, it could potentially lead to significant speed-ups in QC/MM

calculations with large numbers of MM atoms if relatively small fit basis sets of sufficient

precision could be developed and, second, it would bridge the obvious, and needless, dis-

crepancy that exists between the sophistications of the electrostatic representations of the

QC and MM regions, especially when QC methods with large basis sets are being employed.

In spirit the approach taken in this paper can be seen to be most akin to existing schemes

that also approximate the QC electron density “on-the-fly” using, for example, multipolar

representations.9,10

Methods

This section starts with a brief overview of the density fitting method, before going on to

describe its use in the calculation of the electrostatic interactions between QC and MM

atoms in hybrid potential calculations.

Density Fitting

In standard QC methods, the electron density, ρ, is expressed in terms of orbital basis

functions, χµ, as follows:

ρ(r) =
∑
µν

Pµνχµ(r)χν(r) (1)

where Pµν are elements of the density matrix.

The idea of density fitting is to approximate the full density by a linear expansion in

terms of a set of auxiliary functions, ηf :

ρ̃(r) =
∑
f

afηf (r) (2)
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and then to determine the expansion coefficients, af , by minimizing the function:

F = 〈ρ(r1)− ρ̃(r1)|Ô12|ρ(r2)− ρ̃(r2)〉 (3)

where the angled brackets indicate integration over the two-electron operator Ô12. The most

commonly used operators are the Coulomb operator, 1/r12,
2,3,6 and the overlap operator,

δ(r1−r2),
1 although others, such as the anti-Coulomb operator, −r12, of Gill et al.11 and the

attenuated Coulomb operator, erfc (ωr12) /r12, of Jung et al.,12 have also been proposed. The

Coulomb, overlap and anti-Coulomb operators minimize the energy, overlap and potential of

the charge distribution, respectively, whereas the attenuated Coulomb operator was designed

to mimic the Coulomb operator at short ranges and the overlap operator at longer range.

The minimization of F is often performed subject to a series of constraint conditions on

the density which, to be tractable, should be linear functions of the expansion coefficients

of the auxiliary functions, af . The most common constraint is on the density’s charge, Q,

which can be expressed as:

ΛQ =

∫
ρ(r)dr −

∫
ρ̃(r)dr = Q− Q̃ = 0 (4)

Fitting is typically done with respect to full electron densities whose charges are constant.

However, it is also possible to fit partial densities whose charges may vary (see, for example,

Reine et al. 13), although these cases are not considered further here.

It is convenient to recast equations 3 and 4 in matrix-vector form as follows:

F = 〈ρ|Ô12|ρ〉+ ATTA− 2ATB (5)

B = UP (6)

Q = P TS (7)

Q̃ = ATF (8)

4



In these equations, A is the vector of auxiliary function expansion coefficients, P is the

vector of density matrix elements, F is the vector of auxiliary function self-overlaps, S is the

orbital function overlap vector, T is the matrix of auxiliary function fitting integrals, and U

is the matrix of auxiliary function-orbital function fitting integrals. The expressions for the

integrals are:

Ff =

∫
ηf (r)dr (9)

Sµν =

∫
χµ(r)χν(r)dr (10)

Tfg = 〈ηf (r)|Ô12|ηg(r)〉 (11)

Uf,µν = 〈ηf (r)|Ô12|χµ(r)χν(r)〉 (12)

Using the method of Lagrange multipliers, minimization of F from equation 5 with

respect to A, but subject to the charge constraint condition, ΛQ, leads to a set of linear

equations of the form:  T F

FT 0


A

−λ
2

 =

B
Q

 (13)

where λ is the constraint’s Lagrange multiplier. The explicit solutions for the variables A

and λ are:

λ

2
=

(
Q− F TT−1B

)
F TT−1F

(14)

A = T−1
(
B +

λ

2
F

)
(15)

In what follows, it is convenient to rewrite equation 13 more compactly as:

MAλ = Bλ (16)

where the extents of the A and B vectors have been extended to accommodate the appro-
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priate number of constraint condition quantities.

Coulomb Density Fitting

Dunlap et al.6 introduced what is now the commonest type of density fitting which approx-

imates the full density using the Coulomb operator for the density fit. This scheme has a

number of formal and practical advantages, including stability, accuracy and efficiency as the

integrals required for the fitting can also be employed for determining the electron repulsion

energy.

In this scheme the electron repulsion energy is approximated as:

EC =
1

2
〈ρ| 1

r12
|ρ〉

∼ 〈ρ| 1

r12
|ρ̃〉 − 1

2
〈ρ̃| 1

r12
|ρ̃〉 (17)

In matrix form this becomes:

EC = ATB − 1

2
ATTA (18)

=
1

2

(
ATB − λ

2
Q

)
(19)

=
1

2
AT
λBλ (20)

In calculations with density fitting, the derivatives of the energy with respect to both

P and the atomic coordinates, R, are normally required. In the first case, this is EC’s

contribution to the Fock matrix, which can be derived by differentiating equation 20 and

then determining the derivatives of A with respect to P by differentiating equation 16,

remembering that M is independent of P . This gives:

dEC

dP
= AT

λ

(
∂Bλ

∂P

)
(21)
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In this equation, the derivatives of the vector B are elements of the matrix U (equation 6),

whereas the derivative of Q will be zero if the charge is constant, but equal to the orbital

function overlap, S, otherwise (equation 7).

In a similar fashion, the coordinate derivatives are:

dEC

dR
=
∂EC

∂R
+

(
∂P

∂R

)T
∂EC

∂P
+

(
∂Aλ

∂R

)T
∂EC

∂Aλ

(22)

In this equation, the second term on the right-hand side is EC’s contribution to the

standard Pulay gradient term, which integrates seamlessly with the Pulay terms of the other

contributions to the total energy and so is handled automatically, whereas the third term can

be determined in exactly the same way as the derivatives of A with respect to P . Gathering

all terms other than the Pulay contribution gives:

dEC

dR
= AT

λ

(
∂Bλ

∂R

)
− 1

2
AT
λ

(
∂M

∂R

)
Aλ (23)

Similar to before, the derivatives of the vector B involve products of P and derivatives of

U (equation 6), whereas the derivative of Q will be zero if the charge is constant, but equal

to products of P and derivatives of S otherwise (equation 7).

Non-Coulomb Density Fitting

If operators other than the Coulomb operator are employed for fitting the density, then the

electron repulsion energy can be approximated as:

EC ∼ 1

2
〈ρ̃| 1

r12
|ρ̃〉 (24)

=
1

2
ATTCA (25)

=
1

2
AT
λMCAλ (26)
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where TC is the matrix of Coulomb integrals over the auxiliary functions, which is different

from the T matrix used for the fitting, and MC is a “convenience” M matrix that is identical

to TC but expanded with an appropriate number of zero rows and columns.

The derivatives of the energy can be evaluated in the same way as for Coulomb fitting,

giving the following expressions for the P derivatives and the R derivatives without the

Pulay contribution, respectively:

dEC

dP
= AT

λMCM−1
(
∂Bλ

∂P

)
(27)

dEC

dR
=

1

2
AT
λ

(
∂MC

∂R

)
Aλ + AT

λMCM−1
[(

∂Bλ

∂R

)
−
(
∂M

∂R

)
Aλ

]
(28)

Interactions with an External Potential

The interaction of the electron density with an external potential, V (r), can also be approx-

imated using a fitted density as follows:

EV =

∫
ρ(r)V (r)dr

∼
∫
ρ̃(r)V (r)dr

=
∑
f

af

∫
ηf (r)V (r)dr

= AT
λV λ (29)

where V λ is the vector of auxiliary fitting function integrals with the potential extended

with the necessary number of zeros corresponding to the number of constraint variables.

The derivatives of the energy can be evaluated in the same way as in the previous sections,

giving the following expressions for the P derivatives and the R derivatives without the Pulay
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contribution, respectively:

dEV

dP
= W T

(
∂Bλ

∂P

)
(30)

dEV

dR
= AT

λ

∂V λ

∂R
+ W T

[(
∂Bλ

∂R

)
−
(
∂M

∂R

)
Aλ

]
(31)

where the vector W is equal to M−1V λ. Note that the expression for the P derivatives is

independent of P and so need only be evaluated once at the start of a QC calculation.

The derivations in this section are independent of whether the Coulomb energy, EC, is

fitted and, if so, that it is fitted with the Coulomb operator and the same auxiliary basis

set. Supposing that it is, though, then the coordinate derivatives for both energies can be

conveniently combined as follows:

dEC+V

dR
= AT

λ

∂V λ

∂R
+(A + W )T

(
∂Bλ

∂R

)
+

1

2
W T ∂M

∂R
W− 1

2
(A + W )T

∂M

∂R
(A + W ) (32)

Hybrid Potential QC/MM Calculations

In the most common type of QC/MM calculation, a system is divided into two subsystems

comprising a QC region that is embedded in a surrounding MM region. The atoms in

each region interact, typically via a combination of non-bonded electrostatic and Lennard-

Jones terms, and of covalent terms if there are bonds between the QC and MM atoms.

The covalent and Lennard-Jones interactions are often standard MM terms, whereas the

electrostatic interactions are most commonly evaluated using a point charge representation

for the MM atoms:

EElectrostatic
QC/MM =

∑
m

qm

(∑
α

Zα
|rm − rα|

−
∫
dr

ρ(r)

|rm − r|

)
(33)

In this equation, the MM atoms, m, have point charges, qm, and positions, rm, whereas the

QC atoms, α, have nuclear (core) charges, Zα, positions, rα, and electron density, ρ(r).
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Following equation 29, the external potential interacting with the electron density due to

the MM charges, together with its energy and derivative with respect to the electron density,

can be written as:

V (r) = −
∑
m

qm
|rm − r|

(34)

EV = Tr {PV} (35)

dEV

dP
= V (36)

where the integrals in the matrix V are:

Vµν =

∫
χµ(r)V (r)χν(r)dr (37)

Note that the term in equation 36 is added to the QC one-electron matrix so that the electron

density of the QC region fully adapts to the MM environment each time a QC/MM energy

calculation is performed.

Normally the energy in equation 33 is calculated using the full expression for the electron

density of equation 1. This has the advantage that it is “exact” for the QC and MM methods

that are being employed but also disadvantages. First, it involves a double sum over QC

atom centers that can become the rate-limiting step in QC/MM calculations when there

are large numbers of MM atoms (see, for example, Renison et al. 14). Second, it is a very

unbalanced expression when QC methods with large basis sets are being used as the QC and

MM charge distributions are treated using representations of very different sophistications.

This begs the question of whether it is worth using the “exact”, expensive expression

when the charge distribution on the MM atoms is so rudimentary. Instead why not use

a fitted electron density of the form of equation 2 to calculate the QC/MM energy? This

fitted density need not be of the same accuracy as the one used to calculate the electron

repulsion energy, for example, but only sufficient to provide a reasonable representation of

the QC charge distribution for calculation of the QC/MM electrostatic interactions. The
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use of the fitted density has the advantage that it involves a single sum over the QC atom

centers and so is cheaper to calculate than its “exact” counterpart. In addition, it would

lend itself more easily to treatment by fast multipole and particle mesh Ewald methods for

the computation of electrostatic interactions in extended systems. It is worth underlining

here that this work is only interested in density fitting approaches that re-fit the full density

every time it is recalculated (as in standard QC density fitting), and it does not consider

alternative approximations such as those, for example, that might employ a fixed or constant

reference density that is fit only once at the start of a QC/MM simulation.

Calculations on the s101x7 Database

To test the use of a fitted density in hybrid potential calculations, the s101x7 database

developed by Wang and co-workers15 was selected. This consists of 37 common organic

monomers that are combined into 101 homo- and hetero-dimers. For each dimer, Wang et al

determined seven interaction energies, namely those corresponding to 0.70, 0.80, 0.90, 0.95,

1.00, 1.05, and 1.10 times the equilibrium inter-monomer distance. For all dimer calculations

the monomer geometries were held fixed and only the inter-monomer degrees of freedom were

optimized.

In this article, all calculations that were peformed employed standard QC methods and

basis sets taken from the basis set exchange,16 and publicly-available MM parameters taken

from the LigParGen OPLS/CM1A Parameter Generator for Organic Ligands website of

Dodda et al. 17 . Undoubtedly the precision of the results that were obtained could be im-

proved by optimizing some of these, especially the density fitting basis sets with the non-

Coulomb operators and the inter-monomer MM parameters, but such work is left to the

future.

Three QC methods were defined for the calculations. Their definitions, together with the

acronyms that are employed for convenience later, are:

BLYP A density functional theory (DFT) method with the BLYP functional, the def2-
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sv(p) orbital basis, the def2-sv(p)-rifit density fitting basis, and the Coulomb fitting

operator.

B3LYP A DFT method with the B3LYP functional and the def2-sv(p) basis.

HF A Hartree-Fock (HF) method with the def2-sv(p) basis.

In addition, ten different representations of the electron density in a QC calculation were

defined, independent of the above QC methods. These were:

Full This is the normal, default method in which the full, un-fitted electron density of

equation 1 is employed.

Small/A The electron density is fit using the dgauss-a1-dftjfit (Small) basis set and the

anti-Coulomb (A) operator.

Small/C The electron density is fit using the dgauss-a1-dftjfit basis set and the Coulomb

(C) operator.

Small/O The electron density is fit using the dgauss-a1-dftjfit basis set and the overlap (O)

operator.

Medium/A The electron density is fit using the def2-sv(p)-rifit (Medium) basis set and

the anti-Coulomb operator.

Medium/C The electron density is fit using the def2-sv(p)-rifit basis set and the Coulomb

operator.

Medium/O The electron density is fit using the def2-sv(p)-rifit basis set and the overlap

operator.

Large/A The electron density is fit using the def2-tzvp-rifit (Large) basis set and the anti-

Coulomb operator.
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Large/C The electron density is fit using the def2-tzvp-rifit basis set and the Coulomb

operator.

Large/O The electron density is fit using the def2-tzvp-rifit basis set and the overlap op-

erator.

Three sets of calculations were performed with the database, one on the monomers and

two on the dimers. For the monomer calculations, the geometries of the 37 monomers in the

database were first optimized at the HF/6-31g∗ level of theory. Using these geometries, a

series of 30 property calculations was then carried out for each monomer employing all pos-

sible combinations of the three different QC methods and the ten different electron density

representations described above. The properties comprised the atomic charges obtained by

partitioning the electron density, the atomic charges obtained by fitting to the density’s elec-

trostatic potential (ESP), and the molecular dipole and quadrupole moments. With the Full

density representation, charges were determined using the Mulliken method and the other

properties in the usual way. For the other, fitted representations, the calculations employed

the simpler, one-center expansion of equation 2. Note that in these cases, partitioning of

the density into atomic charges is unambiguous and involves no approximation, Mulliken or

otherwise, as each density basis function is already localized on a single center. Finally, it

should be remarked that although the monomer calculations were not strictly relevant for

the purposes of investigating QC/MM interactions, they were done to evaluate the behavior

of the different density fitting methods.

The first set of dimer calculations consisted of 43 different interaction curves that were

computed at different levels of theory for each dimer. Only single point energy calculations

were carried out as the dimer geometries (seven for each dimer) were taken directly from

the database. Two of the curves were computed with pure QC methods, namely the HF

and BLYP approximations described above, whereas a third curve was computed using a

MM force field. The remaining 40 curves were calculated with a QC/MM method, 20 of

these in which the first monomer in the dimer was treated as QC and the second MM (de-
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noted QC/MM), and 20 in which the second monomer was QC and the first MM (denoted

MM/QC). Of each set of 20 curves, 10 were computed with the BLYP QC method, and 10

with the HF QC method. Similarly each set of 10 curves for a given QC method was deter-

mined using the same ten representations of the QC monomer electron density as described

above.

The second set of dimer calculations were geometry optimizations on a selected subset

of 33 dimers in the database that contained at least one water monomer. The optimizations

were unconstrained so both intra- and inter-monomer degrees of freedom were allowed to

change. Sixteen optimizations were carried out for each dimer that differed in the energy

model that was employed. These were: MM; pure QC with the HF method; MM/QC

and QC/MM with the HF QC method and interactions treated with the Full un-fitted

density representation; and MM/QC and QC/MM with the HF QC method and interactions

treated using densities fitted with the Small, Medium and Large basis sets, and both the

anti-Coulomb and Coulomb operators. All optimizations were started from the same, 1.00

times the equilibrium inter-monomer distance dimer structures in the database so as to limit

possible bias in the final results.

To finish this section, it is worth re-emphasizing that the ways in which the electron

density was represented for the calculation of the QC Coulomb energy and for the QC/MM

electrostatic interactions were independent, and that, where appropriate, the QC/MM den-

sity fitting method was incorporated directly into the QC method’s self-consistent field (SCF)

procedure. Thus, for the monomer QC property calculations, where there are no QC/MM

interactions, the densities were fit post-SCF and the properties determined from the fitted

density. By contrast, for QC/MM calculations with a fitted density representation, the full

density was fit using the appropriate basis set (Small, Medium or Large) and operator (A, C

or O), the QC/MM Fock matrix contribution of equation 30 was added into the full QC Fock

matrix, and the QC/MM energy in equation 29 was calculated at each SCF iteration. The

only QC method that employed a fitting basis set for the QC Coulomb energy was the BLYP
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method which used the def2-sv(p)-rifit (Medium) basis set and the Coulomb fit operator,

and so the only overlap between the two different density representations occurred when the

BLYP QC method and the Medium/C QC/MM density representation were being used. In

these instances, the electron density only needed to be fit once per SCF cycle, as opposed

to twice in the general case, and the simplification given in equation 32 for the coordinate

derivatives was applicable.

Implementation Details

All calculations in this paper were performed with the pDynamo3 QC/MM molecular mod-

eling package. This is an updated version of the pDynamo program18 that has been ported

to the Python3 programming language. The principal developments required for the work

reported here concerned the introduction of a module for determining the QC/MM inter-

actions with a fitted QC density, and the evaluation of the extra Gaussian integrals needed

for property calculations with a one-center density expansion and for the fitting procedures

with anti-Coulomb and overlap operators. The latter consisted of the two-, three- and four-

center integrals of equations 11,12 and 5, respectively, together with the derivatives of the

two- and three-center integrals that are necessary for geometry optimizations. Although the

four-center integrals are not needed in the fitting, they are required to determine the value

of the fitting function, F , in equation 3, which is useful for providing some measure of the

precision of the fitting procedure.

Practically, the additional overlap integrals are straightforward to determine, whereas the

anti-Coulomb operator integrals can be evaluated efficiently using an extension of the Rys

polynomial algorithm19–21 that pDynamo employs for determining Gaussian basis functions

over the Coulomb operator. As a basic and brief description of this extension consider the
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following two-electron Coulomb primitive integral:

ICnm =

∫
dr1

∫
dr2 (x1 − xi)nx(y1 − yi)ny(z1 − zi)nz exp

(
−p(r1 − rP )2

) 1

r12

(x2 − xk)mx(y2 − yk)my(z2 − zk)mz exp
(
−q(r2 − rQ)2

) (38)

In this equation, the integral is between a charge distribution of a product of basis functions

centered at positions ri and rj, and another with positions at rk and rl. By the Gaussian

Product Theorem, the centers and exponents of each product are rP and p, and rQ and q,

respectively.

The core of the Rys polynomial algorithm is to take the Gaussian transform of the

Coulomb operator:

1

r12
=

1√
π

∫ ∞
−∞

du exp
(
−u2r212

)
(39)

and to substitute it into equation 38. This gives:

ICnm =
1√
π

∫ ∞
−∞

du Gnxmx(u) Gnymy(u) Gnzmz(u) (40)

where Gnxmx takes the form:

Gnxmx(u) =

∫
dx1

∫
dx2 (x1−xi)nx(x2−xk)mx exp

(
−p(x1 − xP )2 − q(x2 − xQ)2 − u2(x1 − x2)2

)
(41)

and similarly for Gnymy and Gnzmz .

Dupuis, King and Rys showed that the integral over u in equation 40 could be evaluated

efficiently via numerical quadrature using Rys polynomials19–21 and derived a series of recur-

rence relations for determining the Gnm functions starting with the function G00.
21 Likewise,

they derived so-called transfer relations that linked integrals of the form of equation 38 that

only involve polynomial factors of ri and rk to those involving factors of rj and rl as well.21

For the anti-Coulomb integral, IAnm, the appropriate modification of the above procedure

is to note that the Gaussian transform of the anti-Coulomb operator is simply −r212 times
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the values in equation 39. Following the same steps as before gives:

IAnm = − 1√
π

∫ ∞
−∞

du [Hnxmx(u) Gnymy(u) Gnzmz(u)+

Gnxmx(u) Hnymy(u) Gnzmz(u)+

Gnxmx(u) Gnymy(u) Hnzmz(u) ]

(42)

where Hnxmx takes the form:

Hnxmx(u) =

∫
dx1

∫
dx2 (x1−x2)2(x1−xi)nx(x2−xk)mx exp

(
−p(x1 − xP )2 − q(x2 − xQ)2 − u2(x1 − x2)2

)
(43)

The Hnm can be evaluated by noting that (x1 − x2) = (x1 − xi)− (x2 − xk) + (xi − xk).

Substituting in equation 43 gives an equation for the Hnm in terms of the Gnm functions:

Hn,m = Gn,mx
2
ik + 2 (Gn+1,m −Gn,m+1)xik +Gn+2,m +Gn,m+2 − 2Gn+1,m+1 (44)

where xik = xi − xk.

This immediately suggests the following algorithm for evaluating the anti-Coulomb inte-

grals. For each Rys root (related to the u parameter) required for the numerical quadrature:

� Determine the Gnm functions for the integral using the standard recurrence relations

but noting that Hnm requires n and m values two higher than those for Coulomb

integrals.

� Determine the Hnm functions using equation 44.

� Apply the transfer relations21 to both Gnm and Hnm to generate the full set of inte-

grals of polynomial powers over the centers i, j, k and l. Note that this step can be

omitted or simplified when integrals involving only two or three basis functions are

being calculated.

� Assemble the integrands in equation 42 using the Gnm and Hnm values and add them
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into the final integrals for the centers i, j, k and l with the appropriate quadrature

weight factors.

This algorithm was implemented in pDynamo3 for evaluating the two-, three- and four-

function anti-Coulomb integrals and the two- and three-function integral derivatives. The in-

tegral implementation was checked by hand against the analytic values for s- and p-functions

and by comparing with the previously published derivations of Preiskorn and Żurawski 22 .

Results and Discussion

The complete set of results from the monomer and dimer calculations is very extensive, but

the main conclusions to be drawn from it are clear and so only a selection of pertinent results

will be presented here. Complementary results to the ones presented below may be found in

the Supporting Information.

There were 111 monomer property calculations in total consisting of 37 different monomers

with three different QC methods. All three QC methods gave very similar results for a given

molecule and so only those for the B3LYP method are discussed here. Concerning the

monomers themselves, the data can be divided into two broad groups, denoted I and II, the

first of which comprises monomers made up solely of atoms from the first and second rows

of the periodic table, and the second which has atoms from the third and higher rows of

the table as well. Two sets of results which are representative of these groups are given in

tables 1 and 2 for the methanol and dibromomethane monomers, respectively. Tables of the

B3LYP results for all monomers are given in the Supporting Information.

First consider the percentage errors in the density fits, which are estimated using the

expression 100 ×
√
F/〈ρ|Ô12|ρ〉. For all basis sets these errors are smallest for the anti-

Coulomb fit operator and largest for the overlap operator with values, in general, of at

most a few percent. The exceptions are for the Coulomb and overlap operators with the

Medium and Large basis sets for group II monomers whose values can reach as high as 70%!
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Comparison of these basis sets with the Small basis set shows that the latter has s-type

functions with large exponents for third and higher row elements, whereas they are absent in

the Medium and Large sets. That this is indeed the cause of the difference can be proved by

repeating the property calculations with artificial Medium and Large basis sets augmented

with the appropriate high-exponent s-functions from the Small basis set and showing that the

fit errors decrease equivalently. Overall this behavior of the fit operators can be understood

by noting that the anti-Coulomb operator emphasizes longer range interactions compared to

the shorter range overlap operator with the Coulomb operator somewhere between the two.

Turning now to the property values, it is clear that the atomic charges calculated by

partitioning the fitted densities are not reliable and bear little resemblance to the Mulliken

charges obtained from the full density or even to those that might be expected from chemical

intuition. By contrast, the remaining properties, namely the ESP charges and the dipole

and quadrupole moments, which depend globally on the density rather than its partition,

might be expected to be better reproduced by the fitting process. Inspection of the tables

shows that this is indeed the case. The trends are similar to those reported above for the

fit errors as the anti-Coulomb fit operator generally gives the most precise results, followed

closely by the Coulomb operator and then the overlap operator which often gives poor

results, especially when using the Medium and Large basis sets for group II monomers. If

the overlap operator is excluded, then these results appear quite promising for the use of

fitted densities in determining the QC/MM electrostatic interactions, particularly as there

is good agreement for the ESP charges which is a popular approach for deriving charges in

MM force fields.

The first set of dimer tests consisted of forty three interaction curves which were calcu-

lated for each of the 101 dimers. Four representative sets of curves are given in figures 1 to 4

for the water-water, water-methanol, fluoromethane-water and acetate anion-water dimers,

respectively. Equivalent plots for all the dimers in the database are given in the Supporting

Information. In these plots, and in light of the monomer results discussed above, the curves
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determined using the overlap fit operator are omitted as they can deviate considerably from

the others, except in a few cases, such as for those dimers dominated by non-polar inter-

actions. Likewise, only curves obtained with the HF QC method are shown as the BLYP

method behaves very similarly, although its interaction energies are typically more attractive

than the HF ones. A few other general remarks about the curves can be made, namely: (i)

the reference curves from the database are often much less repulsive at short range than the

calculated ones; (ii) the MM Lennard-Jones terms typically dominate the MM, MM/QC and

QC/MM interaction energies, especially at short-range due to the overly repulsive r12 term;

(iii) the dimer interaction energies are more sensitive to how the dimers are partitioned, ei-

ther MM/QC or QC/MM, than to which interaction method is used; (iv) there is relatively

little difference between the energies with the different basis sets, although the Medium basis

set often deviates the most from the Small and Large basis set results; and (v) the curves

calculated with the anti-Coulomb operator agree more closely with those determined using

the Full interaction method than do those obtained with the Coulomb operator.

The second set of dimer tests were the unconstrained geometry optimizations of the 33

dimers from the database which contained at least one water monomer with 16 optimizations

being carried out for each dimer. All but twelve of the 528 optimizations converged. Those

that failed were the seven optimizations of the hydrogen phosphate-water dimer (s101x7

database number 73) with the MM/QC partitioning and five of the seven optimizations of

the dihydrogen phosphate-water dimer (s101x7 database number 74) with the same MM/QC

partitioning (the two exceptions were those with the Small basis set). The reason for these

failures is due to the absence of Lennard-Jones interactions on water hydrogens in the stan-

dard OPLS force field, which means that in anionic systems it is possible for these hydrogens,

when treated in the QC region, to collapse onto negatively charged MM atoms, as is ob-

served here. This problem can be prevented by including suitable non-zero values for the

relevant Lennard-Jones parameters, a solution which is adopted, for example, in CHARMM’s

modified OPLS mTIP3P water model.23
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Histogram plots of the RMS coordinate differences between sets of optimized structures

with two different energy models are displayed in figure 5, and a statistical analyses of these

values in table 3. From the plots it can be seen that the: (i) the Full model structures in

general resemble more closely those optimized with the MM model than the HF model; (ii)

the use of the Medium and Large basis sets is to be preferred over that of the Small basis set;

and (iii) fitting with the anti-Coulomb operator gives fewer outlying structures compared to

the Full model than does fitting with the Coulomb operator.

The outlying structures in the histogram plots, those with the largest RMS coordinate

differences, are from only a small subset of dimers, namely those that contain peptide, DMSO,

phosphoric acid, benzylchloride and phenol together with water (s101x7 database numbers

4, 71, 75, 87 and 99, respectively). In the peptide, DMSO, benzylchloride and phenol

dimers the hydrogen bonds are between the water hydrogen and the carboxyl oxygen, the

sulfoxide oxygen, the chloride and the phenol oxygen, respectively. These bonding patterns

are maintained in the optimized structures with the variations being due, depending on the

model, to shifts of the water position (for example, by a 180o rotation about one of the water

bonds), and they can occur when the water is in either the QC or MM regions. By contrast,

the differences for the phosphoric acid dimer are due to a distored phosphoric acid structure

when it is treated with the MM model, although this distortion is not observed after MM

optimization of the isolated phosphoric acid monomer.

As can be seen from table 3, removal of these dimers from the statistical analysis greatly

improves the agreement between the Full and fitted density energy models. The remaining

high value in the table, 0.682 for the Small/C model, is due to the QC/MM structure of

the methylsulfide-water dimer (s101x7 database number 67) which adopts a sulfur hydrogen-

water oxygen hydrogen bond instead of the water hydrogen-sulfur bond found in the other

optimized structures. If this structure is also removed, the maximum RMS coordinate dif-

ference between the Small/C and Full model structures becomes 0.355, similar to that of the

other models.
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As a final note, it was observed that the average times required for a combined energy and

gradient evaluation during the dimer geometry optimizations with the various density-fitting

methods were often very close to and, in the case of the Medium/A approximation sometimes

faster, than those for the Full model with an un-fitted density. This provides support for

the potential promise of these approaches for the treatment of QC/MM interactions in much

larger simulations given the relatively small systems tested here, and the expectation that

the advantage of density fitting methods should grow as the number of MM atoms increases.

Conclusions

This paper has investigated the use of density fitting approaches for the calculation of elec-

trostatic interactions between QC and MM atoms in hybrid potential calculations. It was

shown that these approximations can reproduce to good precision the interactions deter-

mined using the full, un-fitted, densities even with fit basis sets that have been optimized

for the calculation of electron repulsion energies. Interestingly, employing an anti-Coulomb

operator to perform the density fit gives accuracies that are as good or better than those

obtained with the more usual Coulomb operator. Overall these results are promising and

suggest that density fitting methods could prove useful for helping to speed up QC/MM

simulations in large systems if sufficiently precise and sufficiently small fit basis sets specific

to these applications can be parametrized. Such developments are left for future work.

Supporting Information Available

A pdf file with: (i) tables of calculated property values for the 37 monomers from the s101x7

database using the B3LYP QC method and ten different representations of the QC electron

density; and (ii) figures of energy interaction curves calculated for the 101 dimers from the

s101x7 database using the HF QC method, MM/QC and QC/MM partitionings and seven

different representations of the QC electron density.
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Figure 1: Selected interaction curves for the water-water dimer (s101x7 database number 1).
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Figure 2: Selected interaction curves for the water-methanol dimer (s101x7 database number
2).
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Figure 3: Selected interaction curves for the fluromethane-water dimer (s101x7 database
number 77).
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Figure 4: Selected interaction curves for the acetate anion-water dimer (s101x7 database
number 95).
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Figure 5: Histogram plots of the RMS coordinate differences between optimized dimer structures determined with different
energy models. Each plot contains the results for 64 dimer optimizations made up of 33 with QC/MM partitioning but only
31 with MM/QC partitioning due to the failure of the Full hydrogen phosphate-water and dihydrogen phosphate-water cases
(s101x7 database numbers 73 and 74, respectively). Note that all differences were determined after superposition of the relevant
structures and that, where pertinent, structures with the same partitioning were employed (i.e. MM/QC with MM/QC and
QC/MM with QC/MM).
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Table 1: B3LYP calculated electronic properties for Methanol.

Property Analysis Method
Small/A Small/C Small/O Medium/A Medium/C Medium/O Large/A Large/C Large/O Full

Charge / e O0 -1.617 -2.154 -2.431 0.461 0.279 -3.057 -0.026 0.096 -0.172 -0.474
H1 0.453 0.471 0.530 -0.355 -0.380 0.383 -0.208 -0.231 -0.170 0.296
C2 0.400 0.373 0.051 0.819 1.152 2.547 0.509 0.341 0.898 -0.064
H3 0.250 0.459 0.689 -0.265 -0.326 -0.066 0.017 0.049 -0.041 0.097
H4 0.257 0.426 0.580 -0.330 -0.363 0.097 -0.146 -0.128 -0.257 0.073
H5 0.256 0.426 0.580 -0.329 -0.363 0.097 -0.146 -0.128 -0.257 0.073

ESP Charge / e O0 -0.609 -0.615 -0.593 -0.638 -0.702 -1.569 -0.634 -0.646 -0.633 -0.628
H1 0.426 0.463 0.539 0.411 0.440 0.894 0.410 0.408 0.374 0.409
C2 0.011 -0.089 -0.265 0.222 0.286 0.802 0.213 0.255 0.299 0.189
H3 0.102 0.132 0.166 0.042 0.040 0.040 0.044 0.035 0.030 0.049
H4 0.034 0.055 0.076 -0.019 -0.032 -0.084 -0.016 -0.026 -0.035 -0.010
H5 0.034 0.055 0.076 -0.019 -0.032 -0.084 -0.016 -0.026 -0.035 -0.010

Dipole / D x 1.698 1.737 1.855 1.698 1.832 4.304 1.697 1.711 1.668 1.693
y 0.675 0.537 -0.099 0.693 0.818 2.387 0.693 0.746 0.916 0.688
z 1.558 1.652 1.852 1.550 1.640 3.581 1.549 1.540 1.394 1.547

Quadrupole / B xx -12.733 -12.765 -12.535 -12.609 -12.576 -12.725 -12.613 -12.530 -12.372 -12.634
yy -12.148 -12.148 -12.263 -12.111 -11.914 -9.450 -12.111 -12.072 -12.020 -12.125
zz -13.624 -13.743 -14.056 -13.523 -13.465 -12.423 -13.520 -13.482 -13.335 -13.517
xy -2.288 -2.482 -2.864 -2.237 -2.440 -5.118 -2.235 -2.239 -2.120 -2.220
xz -0.000 -0.000 -0.000 -0.000 -0.000 -0.000 -0.000 -0.000 -0.000 -0.000
yz 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000

Fit Error / % 0.216 0.984 2.005 0.057 0.888 5.050 0.024 0.137 1.989
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Table 2: B3LYP calculated electronic properties for Dibromomethane.

Property Analysis Method
Small/A Small/C Small/O Medium/A Medium/C Medium/O Large/A Large/C Large/O Full

Charge / e Br0 -1.396 -3.758 -14.374 0.038 0.703 -4.020 0.681 5.473 46.934 -0.067
Br1 -1.396 -3.758 -14.374 0.038 0.703 -4.020 0.681 5.473 46.934 -0.067
C2 2.070 6.042 22.964 0.398 0.768 27.912 -1.420 -8.423 -41.209 -0.214
H3 0.361 0.737 2.892 -0.237 -1.087 -9.936 0.030 -1.262 -26.330 0.174
H4 0.361 0.737 2.892 -0.237 -1.087 -9.936 0.030 -1.262 -26.330 0.174

ESP Charge / e Br0 0.105 -0.102 -1.798 0.029 -0.028 0.178 0.028 -0.118 -3.483 0.031
Br1 0.105 -0.102 -1.798 0.029 -0.028 0.178 0.028 -0.118 -3.483 0.031
C2 -1.174 -0.500 6.254 -0.702 -0.296 5.870 -0.697 0.138 21.959 -0.710
H3 0.482 0.352 -1.329 0.323 0.176 -3.113 0.320 0.049 -7.497 0.324
H4 0.482 0.352 -1.329 0.323 0.176 -3.113 0.320 0.049 -7.497 0.324

Dipole / D x 1.523 2.926 11.190 1.423 1.184 19.972 1.428 1.580 1.819 1.427
y -0.000 -0.000 -0.000 -0.000 -0.000 0.000 -0.000 -0.000 0.000 -0.000
z 1.523 2.926 11.190 1.423 1.184 -19.972 1.428 1.580 -1.819 1.427

Quadrupole / B xx -45.336 -53.857 -97.799 -43.674 -40.245 160.342 -43.771 -43.015 74.945 -43.761
yy -40.944 -41.442 -41.287 -40.312 -37.558 99.558 -40.340 -38.531 65.270 -40.395
zz -43.140 -43.180 -35.761 -42.671 -38.865 137.422 -42.638 -38.689 133.253 -42.701

Fit Error / % 0.199 1.604 2.203 0.123 8.421 68.698 0.123 8.420 68.69732



Table 3: Statistics of the RMS coordinate differences between structures result-
ing from the geometry optimizations with two different energy models. The first
statistics in each column are those when all converged optimized structures are
included in the calculation (64 values), whereas the second are those when the
dimers containing peptide, DMSO, phosphoric acid, benzylchloride and phenol
together with water (s101x7 database numbers 4, 71, 75, 87 and 99, respectively)
are excluded (54 values). Units are in Å.

Model 1 Model 2 Mean ± Standard Deviation Maximum

Full HF 0.224 ± 0.227 ; 0.163 ± 0.086 1.188 ; 0.363
Full MM 0.150 ± 0.232 ; 0.093 ± 0.090 1.092 ; 0.372
Small/A Full 0.115 ± 0.240 ; 0.053 ± 0.076 1.134 ; 0.339
Small/C Full 0.136 ± 0.240 ; 0.080 ± 0.128 1.137 ; 0.682
Medium/A Full 0.025 ± 0.094 ; 0.013 ± 0.018 0.757 ; 0.087
Medium/C Full 0.070 ± 0.177 ; 0.034 ± 0.057 1.140 ; 0.364
Large/A Full 0.025 ± 0.095 ; 0.010 ± 0.012 0.754 ; 0.082
Large/C Full 0.031 ± 0.096 ; 0.017 ± 0.034 0.728 ; 0.235
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