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Abstract: This study presents a deep learning model devoted to the analysis of swimming using a
single Inertial Measurement Unit (IMU) attached to the sacrum. Gyroscope and accelerometer data
were collected from 35 swimmers with various expertise levels during a protocol including the four
swimming techniques. The proposed methodology took high inter- and intra-swimmer variability
into account and was set up for the purpose of predicting eight swimming classes (the four swimming
techniques, rest, wallpush, underwater, and turns) at four swimming velocities ranging from low to
maximal. The overall F1-score of classification reached 0.96 with a temporal precision of 0.02 s. Lap
times were directly computed from the classifier thanks to a high temporal precision and validated
against a video gold standard. The mean absolute percentage error (MAPE) for this model against
the video was 1.15%, 1%, and 4.07%, respectively, for starting lap times, middle lap times, and ending
lap times. This model is a first step toward a powerful training assistant able to analyze swimmers
with various levels of expertise in the context of in situ training monitoring.

Keywords: swimming monitoring; inertial measurement units; deep learning; human activity
recognition; lap time

1. Introduction

There is a growing trend in swimming, as in many other sports, to monitor human
physiological function, technical skills, and performance during in situ training. Indeed,
current swimming training programs make monitoring of the swimmer’s training load
and performance a key concept [1]. To do this, several performance devices and sensors
are becoming more readily available for athletes and allow performance to be quantified
more precisely [2,3]. Among conventional devices, global positioning systems cannot be
used during indoor swimming while cameras suffer from optical occlusions and data
processing that is non-automatic as well as time consuming, making reliable assessment
hard to achieve. To overcome these limitations, inertial measurement units (IMU) have
become a relevant solution for monitoring and performance analysis [4]. Moreover, they
do not require any external equipment, are not confined to restricted capture areas, and
have the ability to continuously monitor swimmers in a real environment over a prolonged
period without huge technical and logistical pressure [5]. While IMUs are now widely
used for human movement analysis in various fields, such as clinical, ergonomics, and
sports [2], swimming possesses features that make it distinctive in comparison to other
sports. Indeed, swimming is characterized by the existence of four strokes that include
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large 3D sculling movements along with different intra-cycle phases (glide, catch, pull,
recovery) and transitional phases (the start, turn, and underwater phases). Moreover, the
design of a swimming training session is carried out on the basis of work and recovery
times and exercise intensities that impact the biomechanics of swimming [6,7]. This ob-
servation provides meaning and is an opportunity to provide valuable indicators (e.g.,
lap and rest times, stroke count and frequency, time spent underwater) in the frame of a
monitoring process. Another feature lies in the medium in which the swimmer moves,
which may influence raw IMU data. Indeed, gyroscopes are highly sensitive to temperature
variation [8–10], which may engender significant drift, particularly for temperatures higher
than 20 °C [11]. Another consideration is due to the oscillations between body and device,
i.e., soft tissue artefacts (STA) [12], which compete with drift as the most crucial source of
error. As STAs are both motor task- and subject-dependent [13], it can be assumed that
these oscillations in water differ from those recorded on land, despite fixation techniques
that may limit the oscillations. These considerations (biomechanical features and specificity
of the medium in which the swimmer moves) clearly illustrate the requirements for the
development of a specific method dedicated to the analysis of swimming activities based
on IMUs. Several valuable pieces of information can be extracted from IMU data during
swimming phases, as well as during the underwater and turn phases [4,5,14]: (1) temporal
parameters, e.g., lap and rest times; (2) instantaneous kinematic parameters, e.g., intracyclic
variations; and (3) stroke characteristics, e.g., stroke count and frequency and time spent
underwater. In a monitoring context, the identification of at least all swimming phases
(butterfly, backstroke, breaststroke, frontcrawl) and transitional phases (start, turn, and
underwater phases) along with lap and rest times is required. This can be achieved through
the development of a human activity recognition (HAR) methodology.

In this regard, various IMU-based classification algorithms have been proposed in
swimming [15–20]. Most published swimming activity recognition methods select features
from a set of engineered metrics by relying on conventional mathematical operations in
the time and frequency domains [21]. These methods include detection of extrema and/or
zero-crossing and filtering techniques applied to the signals based on a set of predefined
thresholds. Using an accelerometer located on the sacrum, Refs. [17,22] proposed a
threshold-based methodology from a combination of orientation and component energy to
determine the stroke type with 96.1% accuracy. This method, sometimes combined with a
gyroscopic signal, has been widely used in the literature for stroke recognition [23–25]; as
well as for the wall push, turn, and touch identification sometimes used for lap time (LT)
calculation [19,25–31]. LT calculation refers to identified peaks in the acceleration signal.
However, this threshold-based technique can lead to mistakes, as false positive peaks such
as those induced by a powerful leg kick may be confused with the beginning or end of a lap.
Despite their ease of use, these methods suffer from several drawbacks: (1) it is necessary to
find an optimal parameterisation for the processing functions in order to set the population
under study; (2) it is relatively difficult to deal with the inter- and intravariability of IMU
signals due to the differences in athletes’ technique; and (3) it has difficulty handling
environments with interference from other swimmers. These factors compromise the
ability of threshold-based techniques to provide automatic robust classification without
generalisation issues.

Recently, thanks to improvements in computing capabilities, many studies have used
machine learning (ML) approaches that can automatically classify sequences of features
or directly learn features from the signal in order to increase the accuracy of general
human activity recognition [2]. More specifically, for swimming activity classification these
approaches include Support Vector Machine (SVM) [32], Random Forest (RF) [33], and
Principal Component Analysis (PCA) [15] approaches. These methods have been mainly
used for feature selection in order to train a classifier for swimming style classification.
Such methods are often designed from large time windows for feature extraction, resulting
in poor temporal precision that may not be suited for monitoring elite swimming. Thus,
one recent paper compared sliding window techniques to an intra-stroke segmentation
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technique and pointed out the possibility of performing stroke-by-stroke analysis [20].
Moreover, depending on the objectives with which the model is developed, the cross-
validation technique has to be justified. When working with an identified group such as a
swimming team, it can be of great interest to develop a specific model for the team in order
to make the classification more informative and precise. In this case, either (1) a holdout or
(2) k-fold cross validation can be sufficient [34]. However, if the aim is to develop a model
that can be generalized to wide population panels, it is essential to separate the training,
validation, and testing sets with different subjects in order to assess the generalization
power of the model using a subject-independent cross-validation technique. For HAR, two
main methodologies of cross-validation are detailed in the literature: (1) leave-one-out
cross-validation, which typically has a high computational cost; and (2) hold-one-out cross-
validation, which is generally used when the algorithm requires considerable computation
to iterate, as with deep learning (DL) models [21].

The last approach takes advantages of recent enhancements in Deep Learning (DL).
Indeed, such techniques have made it possible to achieve promising accuracy, reproducibil-
ity, and temporal precision in exhaustive human activity recognition. DL refers mainly to
neural networks that exploit many layers of nonlinear transformation processing for non-
human-dependant feature extraction and classification. They are organised hierarchically,
with each layer processing the outputs of the previous layer. DL for time series classification
relies on the ability to automate the critical feature extraction module via learning from
signals, using, for example, layers in Convolutional Neural Networks (CNN) or in Long
Short-Term Memory (LSTM). Previous studies using IMU data have reported that using
DL is likely to surpass conventional ML algorithms in HAR [35]. More specifically, in
Swinmming Activity Recognition (SAR), CNN-based methods, which can automatically
extract discriminative features with convolutional kernels, have demonstrated better and
more generalizable performances than conventional methods using predesigned features
such as descriptive statistics [16]. An interesting DL approach for human swimming
style recognition and lap counting has been developed in which a convolutional neural
network (CNN) with high performance was successfully used in swimming style recog-
nition. Furthermore, studies based on recurrent neural networks (RNN) such as LSTM
have demonstrated interesting results for SAR [36] with a Bi-LSTM (Bidirectional Long
Short-Term Memory) network. Data records were collected from 40 swimmers and were
labeled into eight classes: Unknown, Null, Freestyle, Breaststroke, Backstroke, Butterfly,
Turn, and Kick. The Bi-LSTM method was able to perform activity classification with an
average F1 score of 91.39%. To attain such performance, the network used pre-extracted
statistical features as inputs instead of direct IMU signals. However, LSTM and Bi-LSTM
are designed to process and make predictions from available sequences of data. In contrast,
CNN is designed to exploit “spatial correlations” in data, making them perform well when
identifying shapes from images [37]. Therefore, it would be interesting to train a bi-LSTM-
based model on swimming without pre-extracted features, as in [36] except with raw IMU
data, in order to input data to be temporal series. All of the above-mentioned studies
relied on publicly available [16] databases with a non-video-based labelling of activity into
five classes: the four swimming techniques and a transition phase including the rest of
the swimmer’s activity (turn and break). Despite valuable contributions, this approach
requires the development of new classes to provide more widely applicable insights for
monitoring in real training conditions. From this perspective, it is be necessary to integrate
other essential variables of training control, such as LT and a classification separating
the underwater, turn, and rest phases. To the best of our knowledge, ML and DL have
never been used to compute LT automatically. Finally, while most of these models are well
suited to considering homogeneous data, they show large performance drops in ecological
conditions or when applied on high level populations, for example. Indeed, many papers
developed their models with a homogeneous population [25] and/or at homogeneous
paces [15]. Therefore, it may be important to gather a database in which the participants
have heterogeneous levels of swimming (inducing inter-subject variability) and swim at
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heterogeneous paces during their training (inducing intra-subject variability) in order to
ensure that the model can be widely generalized.

This study is primarily aimed at developing a deep learning model devoted to the
analysis of swimming using a single IMU attached to the sacrum. It should be able to
classify swimming activities at the different velocities that may occur during a full training
session. Moreover, the proposed methodology should be generalizable to a wide panel of
swimmers through the use of a database with high inter- and intra-swimmer variability.
Secondary purposes are to compute LT directly from the classifier with high temporal
precision and to validate LT values using a video gold standard.

2. Materials and Methods

Data were gathered from several sessions of experiments including 35 swimmers.
Participants were 11 females and 24 males (age: 23.23 ± 8.85 y.o.; height: 176.48 ± 9.61 cm;
mass: 65.81 ± 10.79 kg; BMI: 21.05 ± 2.46 m·kg−2; swim experience: 8.88 ± 2.95 y.o.)
with a swimming level of recreational to second league level. All participants signed an
informed consent form in agreement with the French Ethical Committee (approval obtained
under reference 2021-A00250-41) and conducted in accordance with the 1975 Declaration
of Helsinki.

2.1. Experimental Set-Up

The experiment took place in an indoor 25 m pool. The participants were instru-
mented with one waterproofed IMU (Cometa WaveTrack, Milano, Italy) composed of a 3D
accelerometer and 3D gyroscope. Accelerometer and gyroscope data were sampled at the
same frequency of 280 Hz using a full scale set at ±8 g and ±1000 deg · s−1, respectively.

The sensor was placed on the sacrum at the middle point between the two poste-
rior superior iliac spines, then fixed with double-sided tape and secured with waterproof
medical adhesive (Tegaderm, 3M, Cergy-Pontoise, France). The IMU described a coor-
dinate system defined with x-axis pointing cranially, y-axis pointing laterally, and z-axis
pointing posteriorly.

Three cameras sampled at 30 Hz were used to identify lap events and swimming
activities, and served as a reference for validation purposes. Two cameras (GoPro Hero 8,
San Mateo, CA, USA) were placed under the waterline at one meter from each poolside
in the direction of the wall in order to record the side-view of the pool and corresponding
swimmer activity (turn, touch, wall-push). The third camera (Handycam HDR-XR550,
Sony, Minato-ku, Tokyo, Japan) was used as a travelling camera above the water. The
three cameras were synchronised with the IMU using the flashlight of the LED embedded
in the IMU sensor. This procedure was repeated at the beginning and the end of each
measurement in order to ensure perfect synchronisation over the whole swimming trial.

Moreover, each LT was recorded by an operator with a stopwatch in order to compare
IMU lap times (LT IMU) with the stopwatch (LT MAN) and assess their validity with regard
to the cameras, considered as the true label, obtained by post hoc labeling based on the
video footage (LT CAM).

2.2. Experimental Protocol

After a standardized warm-up, participants attended one measurement session di-
vided into two exercises. First, swimmers were asked to perform a set of 3 × 100 m
medleys, with 1 min of passive rest between each, swum in the conventional order (but-
terfly, backstroke, breaststroke, front crawl) at a moderate pace. After 3 min of rest, they
randomly performed one 100 m per swimming style with 3 min of passive rest between
each. Swimmers were asked to increase their velocity across each 100 m in order to record
different swim speeds, with the intention of inducing larger intra-subject variability for
model training. Thus, the order used by the swimmers was to first swim the first 25 m
at low speed, then the second 25 m at moderate speed, the third at high speed, and the
last 25 m at maximum speed. Finally, swimmers walked 50 m along the pool in order to
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train the classifier not to misclassify a swimmer walking along the poolside as a swimming
phase. The resulting data set was therefore representative of a large variety of strokes,
non-swimming phases, and paces from swimmers with various levels of expertise. The
overall protocol is depicted in Figure 1. Moreover, each LT was recorded by an operator
with a stopwatch.

Figure 1. Overview of the protocol.

2.3. Ground Truth Activity Video Labelling and Lap Time Assessment

From the entire dataset, eight phases defining swimming activities were defined.
These phases and their defined starting and ending occurrences are summarised in Table 1
and were used to extract timecodes from the video gold standard. Then, the IMU signal
was labelled with this subsequent activity. Based on this digitization of swim activity, video-
based lap times (LT CAM) were computed according to specific definitions depending on
the swimming technique and the lap type, namely, the beginning, middle, and last lap of
an interval, respectively denoted as LT START, LT MIDDLE, and LT END (see Table 3).

Table 1. Phase identification used in video labelling and then for feeding into the algorithms.

Name of the Phase Definition of the Phase Used for Video Labelling

Wallpush (WP) From the first frame when the swimmer switches from vertical to horizontal position or from the first frame
after TU or RS ends to the last frame when the swimmer’s feet touch the wall

Underwater (UN) From the first frame after WP ends to the first frame when the hands are dissociated before stroking

Butterfly (BU) From the first frame after UN ends when the swimmer performs BU style to the first frame when the
swimmer’s hands touch the wall

Backstroke (BA) From the first frame after UN ends when the swimmer performs BA style to the first frame when the
swimmer starts the last arm pull before rotating

Breaststroke (BR) From the first frame after UN ends when the swimmer performs BR style to the first frame when the
swimmer’s hand touch the wall

Frontcrawl (FR) From the first frame after UN ends when the swimmer performs FR technique to the first frame when the
swimmer starts the last arm pull before rotating

Turn (TU) From the first frame after BU, BA, BR, or FR ends to the first frame when the swimmer’s feet touch the wall
before leg extension

Rest (RS) From the first frame after BU or BA ends or first frame when the swimmer’s hand touches the wall during
FR or BA, then from rest to the first frame of WP following a rest period

2.4. IMU Data Processing and Deep Learning Model
2.4.1. IMU Data Preprocessing

Let X be the raw data that correspond to the sensor’s output time series:

X =
[
x1, x2, . . . , xt

]
where xi denotes the accelerometer and gyroscope values at time t. Raw data from the
IMU sensor were filtered using a second order Butterworth low-pass filter with a 10 Hz
cut-off frequency and downsampled to 50 Hz in order to lower the computational cost.
An example is shown in Figure 2. Standardization was applied to the input data. The
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mean (X̄ij) and the standard deviation (σ) were computed for each IMU channel. Then
standardization was applied to each time series following Equation (1):

Xnorm
ij =

Xij − X̄ij

σ
(1)

where Xij is a given IMU channel, X̄ij is the mean of the corresponding IMU channel accross
all subjects, and σ is the corresponding standard deviation. The time series data were then
transformed in a preprocessed time series, X′:

X′ =
[
x′1, x′2, . . . , x′n

]
where n is the number of total dimensions. This preprocessing is needed in order to
preserve the signal characteristics, including relevant information about the activity.

Following data recording and preprocessing steps, a two step methodology was
developed. The first step was performed using a deep learning model trained from the
database. The second step filtered the raw predictions of the DL model in order to eliminate
prediction mistakes through a previously engineered procedure [21].

Figure 2. Correspondance between the signal and the true activity of the swimmer: (top,center)
accelerometer and gyroscope signals for all axes, and (bottom) true activity of the signal, presented
as activity labelling.

2.4.2. Segmentation

The data segmentation step identified the segments of the preprocessed data most
likely to contain information about activities. Thus, each data segment si =

[
ts, te

]
was

defined by its start time ts and end time te within the preprocessed time series. Finally, the
segmentation step output a set of segments S containing a potential activity

S =
[
s1, s2, . . . , sn

]
In the present paper, segmentation was performed using a sliding window procedure.

The window size mainly affects the delay in the recognition process. As the optimal window
size is not obvious a priori, it can influence recognition performance [38]. The window
size usually corresponds to a tradeoff between segmentation precision and computational
cost. This size is dependant on the type and structure of the underlying time series data.
A window of 90 frames, i.e., 1.8 s duration, was selected in order to integrate at least one
period of each phase (swimming techniques, turn, wallpush, etcetera).
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The training set was then shuffled in order to prevent overfitting. The X input of the
network to be trained was a n × m × f 3D matrix, where n is the number of windows,
m = 6 is the number of IMU channels, and f = 90 is the window length.

2.4.3. Network Architecture

Let Y be the predefined activity, i.e, the labels that correspond to the activity performed
by the swimmer at the median frame of the time window

{Y1, Y2, . . . , Ym}

where m = 8 denotes the number of activity types. These activity types are defined in
Table 1 and are the outputs of the model.

Let F be the model that predicts an activity sequence Ŷ based on preprocessed sensor
data X′:

Ŷ = {Ŷ1, . . . , Ŷn} = F (X′), Ŷi ∈ Y

Let Y∗ be the true activity sequence (ground truth):

Y∗ = {Y∗1, . . . , Y∗n}, Y∗i ∈ Y

where n corresponds to the length of the sequence (n ≥ m). The objective of swimming
activity recognition is thus to learn the model by minimizing the discrepancy between the
predicted activity Ŷ and the ground truth activity Y∗.

A DL model was considered in order to predict the swimming activity at each time
step. The architecture is summarized in Table 2. The network was implemented using
Tensorflow [39] and Keras [40] and relied on LSTM cells [41] used bidirectionnaly [42].

Learning lasted ten epochs, an epoch being the number of passes through the entire
training dataset the DL algorithm has completed. The initial learning rate was fixed to
0.001 after performing a grid search optimisation on a range of learning rates from 0.1 to
0.00001, as this value led to the smallest loss for ten epochs. This selected learning rate was
scheduled with an epoch-dependant decline during training, as follows:

α =
0.001

800
epochs

100

(2)

Finally, based on testing set raw prediction sequence Ŷ, an algorithm developed with
Matlab (The Mathworks™, R2020b, Natick, MA, USA) was applied in order to remove
artefacts and prediction skips by filtering the activity predictions [21].

Parameter weight initialization of each layer followed Xavier uniform initializa-
tion [43]. An ADAM optimizer updated parameters weights during training [44]. The last
computation layer of the network prior to the classification output layer was composed
of a multilayer perceptron (MLP). Batch normalization was applied to this layer in order
to facilitate training and reduce internal covariate shift in this deeper layer [45]. Finally,
the loss function is a sparse categorical entropy one, as the present model corresponds to a
multi-class classification problem.
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Table 2. Network architecture and tuning.

Layer Type Output Shape Activation Function Dropout Recurrent Dropout Number of Parameters

Input layer (64,90,6)
Bi-LSTM (64,128,6) Tanh 0.25 0.25 79,360
Bi-LSTM (64,64,6) Tanh 0.25 0.25 41,216
Bi-LSTM (64,32,6) Tanh 0.25 0.25 10,368
Bi-LSTM (64,32) Tanh 0.25 0.25 6272
Flatten (64,32) 0
Dense (64,50) ReLU 0.5 1650

Batch Normalization (64,50) 0.5 200
Dense (64,8) Softmax 408

2.4.4. Training and Testing Sets

Model training was based on X′ time series, which were used to construct the different
sets (training, validation, and testing). A holdout-subject cross-validation (HOSCV) consist-
ing of extracting the validation set and testing set with subject-wise data, was employed.
One subject was randomly chosen to form these sets, and all other subjects accounted for
the training set. While this validation procedure relies on the same principle as holdout
cross-validation, it illustrates how the model works when tested on a subject that is not
part of the database, making the results more generalizable [21].

We recorded 990 laps during the experiments, along with calculations of LT CAM
during each lap. However, due to material bugs and human mistakes during the execution
of the protocol, only 952 laps and 870 laps were retained to compute LT IMU and LT MAN,
respectively. The method used to describe LT CAM and LT MAN is sumarized in Table 3.
LT IMUs were computed using Ŷ and based on class transitions, as shown in Table 4.

Table 3. Definition of phase and events to compute LT CAM and to monitor swimmer activity with
stopwatch (LT MAN).

START MIDDLE END

Frontcrawl and Backstroke
Time difference between the

beginning of initial wall push
and next wall push

Time difference between a
wall push and next wall push

Time difference between last
wall push and final touch with

the hand

Butterfly and Breaststroke

Time difference between
initial wall push and the first

simultaneous touch with
the hand

Time difference between a
touch with the hand on the
wall and the next touch on

the wall

Time difference between the
last touch on the wall with the

hand and the final touch
with hand

Table 4. Definition of phases and events to compute IMU lap times.

START MIDDLE END

Frontcrawl and Backstroke

Time difference between the
last prediction of a wall push
and next-to-last prediction of

a wall push or first
underwater prediction

Time difference between last
wall push prediction or first
underwater prediction and
the next last turn prediction

Time difference between last
wall push prediction or first
underwater prediction and

next first rest prediction

Butterfly and Breaststroke

Time difference between the
last prediction of a wall push

and next first prediction of
a turn

Time difference between
prediction of a turn and the

next first prediction of a turn

Time difference between
prediction of a turn and the

next first rest prediction

2.4.5. Model Performance Analysis

Evaluation of the model’s performance in predicting swimmer activity consisted of
applying the model on the validation and testing sets, respectively. Thus, the performance
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of the network was monitored during training by its accuracy on the validation set. After
training, the ability of the model to be generalized was evaluated using the performance
obtained on the testing set. The predictions of swimming activities provided by the model
were compared with the ground truth, and the performance of the model was assessed
by: (1) precision (i.e., the number of true positives over the sum of true positives and false
positives); (2) recall (i.e., the number of true positives over the number of true positives
plus the number of false negatives); and (3) an F1-score (i.e., precision time recall over
precision plus recall) confusion matrix.

Evaluation of the model;s performance in predicting the lap times was conducted through
a statistical analysis using R Studio (Version 1.2.5033, RStudio, Inc., Boston, MA, USA). The
agreement between LT IMU and LT CAM and between LT IMU and LT MAN was de-
termined using: (1) the bias and its 95% confidence interval; (2) the Typical Error of
Measurement (TEM) [46] and its 95% confidence interval; (3) a Bland–Altman plot and
analysis [47,48]; and (4) the Mean Absolute Percentage Error (MAPE) and its standard
deviation, additionally expressed in seconds as an indicator of the expected measurement
error [49]. Moreover, in order to assess the accuracy of the model as a function of lap type
(i.e., starting lap, intermediary lap, and ending lap), the IMU-based, camera-based and
stopwatch-based lap time agreement was calculated according to category (LT START, LT
MIDDLE, and LT END).

3. Results
3.1. Performance of Swim Activity Recognition

The results presented here are based on the predictions made by the model for each
iteration of the sliding window. Based on the video labeling, the model is supposed to
predict the performed activity at the median frame of the sliding window, which in this
work is the 45th frame of each window. They are presented in Table 5.

Prior to the filtering step, the average overall precision on the testing set was 0.77
and the weighted average precision was 0.92. As the dataset was unbalanced, assigning
weights to the classes as a function of their number of samples tended to improve the
precision, as the model trained better on those classes. Short classes such as wallpush,
turns, and underwater had lower precision, respectively, at 0.17, 0.58, and 0.71. However,
activities that were more well represented in the dataset (strokes and rest) were predicted
more precisely, as 0.98, 0.96, 0.83, 0.96, and 0.99, respectively, for the butterfly, backstroke,
breaststroke, front crawl, and rest.

This tendency remains the same for recall, with lower values for short classes and
higher values for stroke styles and rest. Indeed, recall was 0.08, 0.71, and 0.71 for the
wallpush, turns, and, underwater phase, respectively, and 0.83, 0.94, 0.95, 0.96, and 0.99,
respectively, for the butterfly, backstroke, breaststroke, front crawl, and rest.

The combination of those last two metrics, that is, the F1-score, was 0.91 on the testing
set. F1 scores per phase were between 0.11 and 0.99 for wallpush and rest, respectively.
For the four swimming techniques, F1 scores were between 0.89 and 0.96, with 0.90, 0.89,
0.95, and 0.96, respectively, for the butterfly, breaststroke, backstroke, and front crawl. For
the non-swimming phases, the underwater and turn phases had F1 scores of 0.91 and
0.82, respectively.

The second step of the model, filtering, removed artefacts due to misclassifications
Ŷf. Whatever the class, performance metrics were systematically improved after filtering.
The average overall precision on the testing set increased to 0.88 and, the weighted average
precision increased to 0.96. Short classes such as wallpush, turns, and underwater had
lower precision, at 0.53, 0.75, and 0.92, respectively. Strokes and rest reached 0.99, 0.98, 0.89,
0.99, and 0.99, respectively, for the butterfly, backstroke, breaststroke, front crawl, and rest.

This hierarchy remained the same for recall, with lower values for short classes and
higher values for stroke styles and rest. Recall values were 0.19, 0.91, and 0.91 for the
wallpush, turns, and underwater phase, respectively, and 0.88, 0.99, 0.98, 0.99, and 0.99 for
the butterfly, backstroke, breaststroke, front crawl, and rest, respectively.
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Finally, F1-score reached an overall value of 0.96. However, results showed heterogene-
ity in the performance repartition. Indeed, the wallpush F1-score was 0.28, while the rest
F1-score was 0.99. For the four swimming techniques the F1-score was between 0.93 and
0.99, at 0.93, 0.94, 0.99, and 0.99, respectively, for the butterfly, breaststroke, backstroke, and
front crawl. Regarding non-swimming phases, the underwater and turn phases reached an
F1-score of 0.91 and 0.82, respectively.

Table 5. Performance results in swimming activity recognition on testing set before and after filtering
step (Ŷ–Ŷf).

Class Precision Recall F1-Score n

Wallpush 0.17–0.53 0.08–0.19 0.11–0.28 581
Underwater 0.71–0.92 0.71–0.91 0.71–0.91 3519

Butterfly 0.98–0.99 0.83–0.88 0.90–0.93 7280
Turn 0.58–0.75 0.71–0.91 0.64–0.82 1553

Backstroke 0.96–0.98 0.94–0.99 0.95–0.99 6531
Breaststroke 0.83–0.89 0.95–0.98 0.89–0.94 7117
Frontcrawl 0.96–0.99 0.96–0.99 0.96–0.99 6124

Rest 0.99–0.99 0.99–0.99 0.99–0.99 17,539
Accuracy 0.91–0.96 50,244
Average 0.77–0.88 0.77–0.86 0.77–0.86 50,244

Weighted Average 0.92–0.96 0.91–0.96 0.91–0.96 50,244

3.2. Lap Time Assessment

The agreement between the lap times obtained from the IMU and the lap times
obtained from the gold standard video are presented in Table 6.

Table 6. Statistical agreement between lap times computed by IMU and gold standard video
(n = 952 laps) respectively.

Mean ± SD LT CAM Mean ± SD LT IMU TEM [IC] Biais [IC] MAPE ± SD

23.73 ± 3.39 s 23.79 ± 3.35 s 0.60 s [0.57 s; 0.63 s] 0.06 s [−0.05 s; 0.14 s] 1.77 ± 1.82%

LT IMUs are slightly overestimated, with an error (systematic ± random) of 0.06 s
(−0.05; 0.14) ± 0.60 s (0.57; 0.63) and MAPE of 1.77 ± 1.82%, corresponding to 0.42 s ± 0.43.
Figure 3 presents the Bland–Altman plot and density distribution of the differences between
LT IMU and LT CAM, summarized in Table 6. Reported errors are mainly around ±1 s.

The agreement between the lap times obtained from the stopwatch and those obtained
from gold standard video are presented in Table 7.

Table 7. Statistical agreement between lap times computed by stopwatch and gold standard video
(n = 870 laps).

Mean ± SD LT CAM Mean ± SD LT IMU TEM [IC] Biais [IC] MAPE ± SD

23.74 ± 3.39 s 23.63 ± 3.38 s 0.58 s [0.55 s; 0.61 s] −0.10 s [−0.14 s; −0.07 s] 1.43 ± 2.04%

LT MAN are slightly underestimated, with an error (systematic ± random) of −0.10 s
(−0.14; 0.07) ± 0.58 s (0.55; 0.61) and MAPE of 1.43 ± 2.04%, corresponding to 0.34 s ± 0.48 s.
Figure 3 presents the Bland–Altman plot and density distribution of the differences between
LT MAN and LT CAM, summarized in Table 7. Reported errors are mainly around ±0.75 s.
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Figure 3. (Left) Bland–Altman plot of IMU and gold standard video, (middle) Bland–Altman plot of
stopwatch and gold standard video, and (right) density distribution of difference between lap times
assessed by IMU and gold standard video and by stopwatch and video.

Lap Time Type Analysis

The statistical agreement between LT IMU and LT CAM according to the type of lap is
presented in Table 8, and Bland–Altman plots are shown in Figure 4.

The greatest error (systematic± random) was for LT END, with 0.25 s (0.13; 0.38)± 0.98 s
(0.90; 1.08), whereas the errors are lower and in the same range. Indeed, LT START and
LT MIDDLE revealed errors of 0.01s (−0.04; 0.06) ± 0.39 s (0.36; 0.43) and 0.00 s (−0.03;
0.03) ± 0.37 (0.34; 0.39), respectively.

Figure 4. Statistical agreement between gold standard lap times and IMU lap times per type of
lap time.
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Table 8. Statistical agreement between lap times assessed by IMU and gold standard video according
to lap time type.

n Type Mean ± SD
LT CAM

Mean ± SD
LT IMU TEM [IC] Biais [IC] MAPE ± SD

243 START 22.64 ± 3.27 s 22.65 ± 3.20 s 0.39 s [0.36 s; 0.43 s] 0.01 s [−0.04 s; 0.06 s] 1.15 ± 1.31%
470 MIDDLE 24.96 ± 3.18 s 24.96 ± 3.17 s 0.37 s [0.34 s; 0.39 s] 0.00 s [−0.03 s; 0.03 s] 1.00 ± 1.06%
239 END 22.41 ± 3.15 s 22.67 ± 3.06 s 0.98 s [0.90 s; 1.08 s] 0.25 s [0.13 s; 0.38 s] 4.07 ± 1.93%

4. Discussion

This study aimed to develop a deep learning model devoted to analysis of swimming
using a single IMU attached to the sacrum. In particular, the proposed methodology was set
up for the purpose of classifying swimming activities at several swimming velocities that
may occur during a full training session. A second purpose was to assess the performance
of the model in automatically calculating lap times during the exercise.

Previous studies investigated lap detection and/or swimming technique identification
using a single IMU sensor located on the sacrum [27], head [50], chest [18], or wrist [16], or
in multiple sensor locations [15]. In the present study, the sensor was placed on the sacrum,
which is a convenient placement in terms of comfort, safety, and minimal obstruction of
movement [20]. Moreover, a recent study has shown that the highest performance in both
lap detection and swimming technique identification were achieved with a sensor placed
on the sacrum [15].

Most previous papers collected data from relatively homogeneous groups of swim-
mers. Indeed, the data used for the classification algorithm settings independently con-
sidered elite level [20], college level [18], national second league level [16], and national
level [15] swimmers. Thus, each of these studies were likely to rely on similar swimming
techniques. This homogeneity in terms of the swimming level may affect the process of
model training, as the resulting model may fail to generalize the algorithms to swimmers
with different skills and levels. In the present study, a strong restriction on swimming
level was imposed in the inclusion of participants. As the present database included elite
and non-elite swimmers from the regional to the second league level to participation in
the national championship, the dataset used here was representative of a large variety of
stroke techniques and levels. This suggests that the proposed model can be used reliably
with a wide range of swimming proficiency levels. Moreover, many previous studies
involved small numbers of participants, i.e., N = 3 [51], N = 11 [52], N = 13 [25], and
N = 17 [15]. Apart from [16,18], who collected data from a large number of swimmers,
i.e., 45 and 40, respectively, to the best of out knowledge, the data collection presented in
this manuscript represents one of the largest databases collected in the literature to date
regarding IMU-based swimming activity classification. Moreover, with strong inter- and
intra-subject variability, it can be hypothetised that the present database covers most of
the swimming skills and techniques needed to train an in-field generalisable classifier.
Furthermore, the literature highlights a clear imbalance in terms of the different swimming
actions analyzed. Indeed, most previous studies were restricted to specific swimming
techniques or phases. While most classification algorithms have focused on the front crawl
and backstroke, studies investigating the butterfly and/or breaststroke are more scarce.
Moreover, apart from [15], the identification of swimming microphases, including turns and
underwater phases, have not previously been tackled. However, the identification of those
phases is decisive in analysis over a full training session, or at least during a swimming
set. The deep learning model presented in this manuscript is able to distinguish eight
classes, including wallpush, underwater, turn, rest, and the four swimming techniques.
Consequently, beyond traditional metrics used to analyse swimming performances during
training, this model should be able to monitor a swimmer’s performance on non-swimming
phases (turn time, underwater time) as well, and could therefore allow new metrics to be
derived, for example, underwater distance covered, which is nowadays an important part



Sensors 2022, 22, 5786 13 of 19

of the final performance. Another original aspect of the present manuscript lies in the ability
to detect rest periods, which is a crucial components of training monitoring. Furthermore,
most previously published studies have focused on homogeneous swimming intensities,
introducing poor intra-subject variability. Despite high levels of accuracy obtained, this
can raise the question of whether the model can be generalized to different swimming
velocities. Indeed, Ref. [15] raised the hypothesis that only machine learning methods may
be efficient to deal with inter- and intra-swimmer variability in terms of technique. Finally,
incorporation of all four swimming techniques combined with different intensities and
variability in the level of expertise during the training stage is the starting point to produce
a robust model, which is an important contribution of the present manuscript.

To the best of our knowledge, little attention has been paid to deep learning in the
context of swimming analysis using IMU data. However, deep learning is a powerful
solution to the development of models adapted to a wide panel of users with generalisation
performances that can be controlled during model training. Such models are now used
for high complexity classification problems such as computer vision. Therefore, such
algorithms may be suitable for the complexity of HAR. Recurrent neural networks such as
LSTM networks are considered one of the most efficient approaches in learning dynamics
from time series [53]. Moreover, this problem of classification involved sequences for which
all time steps are available before performing the prediction. Consequently, it is possible
for the network to learn dependencies in both directions of the signal. Indeed, bi-LSTM
networks were first designed to learn dependencies on the input sequence as-is and on
a reversed copy of the input sequence [42]. Furthermore, the problem of classification
faced here is a multivariate classification problems with non-linear temporal dynamics as
input. For this reason, the model architecture used several bi-LSTM layers. LSTM layers
have memory cells that act as an accumulator or a gated leaky neuron [37]. Increasing
the depth of the network allows recombining the learned temporal representations from
previous layers to increase the level of abstraction with the new representations [54]. This
use of bi-LSTM for swimming classification with temporal series as inputs and eight label
classes as target outputs is, to the best of the authors’ knowledge, the main contribution
of this model to the state of the art. From a more technical perspective, a difficulty was in
reaching a good balance between the number of parameters important enough to be used
in modeling the whole classification problem without leading to any important variance
during the use of unknown data (this variance would be a consequence of overfitting). In
order to reach this objective, we tried to make the ratio between parameters and the number
of samples input to the model ultimately tend towards 0. In order to fulfill this objective,
an architecture with four successive layers of bi-LSTM was chosen, with a decrease in
units followed by one dense layers. Moreover, important care was taken to not overfit
the data during training. To achieve this, deep learning techniques such as dropout [55]
and recurrent dropout [56] were applied in the bi-LSTM layers and dense layers during
training. Furthermore, the performance between the training, validation, and testing sets
was compared in order to control the tradeoff between bias and variance.

This methodology finally led us to predict swimmers’ activity for each frame recorded
during their activity, i.e, every 0.02 s. Recent studies have developed novel approaches to
increase the temporal precision of such predictions, such as the one in [20]. More specifically,
these authors used a synthetic minority oversampling technique (SMOTE) [57] relevant for
microphase analysis. The only paper considering numerous microphases is that of [15], who
performed SAR in the same eight classes we investigated, namely, wallpush, underwater,
turn, rest, and the four main swimming techniques. However, with a single intensity at
80% of maximal speed, their database suffered from a lack of generalisation; this would
require various intensities to be encountered during training. The present manuscript, in
contrast, tried to attain high temporal precision with numerous types of activities predicted
at very different speeds and intensities.

The literature regarding SAR is composed of three main methodologies: signal pro-
cessing methods, classical machine learning methods, and deep learning methods. Signal
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processing methods are the most investigated methodology and have shown good results,
with up to 100% stroke recognition and up to 99% the lap segmentation [25]. Regarding
machine learning methodologies, they have shown good results, with an accuracy up
to 98.63 ± 1.9%, 99.04 ± 0.91%, 99.10 ± 1.43%, and 97.24 ± 1.71% for butterfly stroke,
breaststroke, backstroke, and front crawl, respectively [51]. Furthermore, Ref. [58] showed
that combining several consecutive predictions led to 100% good predictions. More recently,
Ref. [20] reached F1-scores greater than 0.99 with a stroke-by-stroke approach, realizing
better temporal precision in the identification of stroke types. Finally, Ref. [16] used a deep
learning method to reach an average F1-score of 97.4. In the present manuscript, with F1
scores of 0.93, 0.99, 0.84, and 0.99 for the butterfly, backstroke, breaststroke, and front crawl,
respectively, the results are in the same range as the results of most previous studies with
respect to stroke recognition.

More generally, the choice presented in this paper, i.e., to make predictions using a
sliding window overlapped frame per frame, showed excellent performance over most of
the eight classes. Indeed, the weighted averaged overall F1-score after network training
and filtering was 0.96, although the F1-score reached by each class showed a high variability
between different classes’ precision and recall. Indeed, very short classes such as wallpush
and turns were those with the poorest precision, with F1-scores of 0.28 and 0.82, respectively.
This poor identification may be due to the duration of phases that are very short, leading
to a lower representation in the database of those phases and consequently to fewer
opportunities for the model to train on such temporal configurations. However, identifying
a wall push is not systematically necessary to identify lap times, because the identification
of pre- and post-phases may be sufficient. Moreover, the analysis of the classification
report showed that wallpush is most of the time confused with either the underwater, turn,
or rest phases, which are the adjacent classes. This analysis suggests that there is not a
misclassification of wallpush with other classes; rather, the model has difficulty identifying
boundaries between turns, underwater and rest phases, and wall pushes. Moreover, most
wall pushes appeared to last less than a few tenths of second. Therefore, using the adjacent
classes does not alter the precision of our results. Another tendency that can be pointed
out is that of the underwater phase to be misclassified with butterfly and breaststrokes
in certain cases. This intra-phase confusion can be explained by the similarity between
the sacral kinematics of underwater phases and simultaneous stroke styles that include
undulatory movements. However, for classical phase identification the performance is
excellent, as previously mentioned. Thus, the model presented in this manuscript may
be promising for a wide range of applications. Several key variables in the monitoring
of swimming training can be derived from the prediction of swimmers’ activity. Indeed,
the time spent underwater and turning time are variables of transition phases that, while
poorly investigated by coaches, represent up to one third of the final performance [59]. In
addition to the classical variables (mean swimming speed per lap, lap times, etc.), the use
of this model may be of great value for elite swimmers and coaches.

However, in order to make further comparisons with the existing literature, it has to
be noted that whereas most of the previous studies performed prediction for a session or
window with a size ranging from tenths to tens of a second, leading to macro-prediction of
swimmers’ activity, this model performs a prediction at every time step, i.e., every 0.02 s.
Consequently, it is difficult to compare the performance of this model with the existing
literature using predictions with a significant difference in temporal precision. Moreover,
several authors adjusted their algorithm to the homogeneity of their population [25], which
is convenient when working with a small and identical group but not generalizable when
working with wide panels of unknown swimmers. Therefore, another contribution of the
present manuscript is the development of a model suited for any level of swimmer and
intensity of swimming, regarding the variability embodied in the database. Such precision
has, to the best of our knowledge, never been reached in the previous literature aiming to
classify swimming activity with machine learning models.
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Our results on lap times highlights a minimal loss compared to stopwatch measure-
ment (3.84% vs. 12.12%), demonstrating the relevance for coaches of such an automated
method. This may help coaches to automatically monitor many swimmers at the same
time. In comparison with previous works based on thresholds, the present results based on
a large data base show lower differences between IMU-based and video-based lap times.
Indeed, a difference of 0.06 ± 0.6 s was obtained with n = 952 samples, whereas previous
works reported differences of 0.72 ± 0.26 s with n = 132 [25] and −0.32 ± 0.58 s with
n = 164; Ref. [22] reported a typical error of measurement (TEM) of 0.6 s between their
model and the stopwatch. In this study, the TEM with the stopwatch was 0.58 s. This
systematic error is nearly identical between our model and an expert coach taking lap times
with a stopwatch, reinforcing the confidence a trainer can have in such an approach. To
fully investigate this criteria, an excellent statistical indicator seems to be the MAPE. In this
paper, the MAPE was 1.15% for LT START, 1% for LT MIDDLE, and 4.07% for LT END.
For comparison, Ref. [60] found an MAPE of 3.22% for the TritonWear device (TritonWear,
Toronto, ON, Canada) over a 144-bout medley, without distinguishing between bout local-
ization. This paper is therefore a strong contribution towards accurate lap time prediction,
which can help in gathering a wide panel of swimming performance data. Gathering
data with such precision would be of great interest for coaches, allowing them to better
monitor swimmers’ performance in a longitudinal way, as well as for scientists, whose
objective would be to model swimming performance across seasons. Moreover, to the best
of our knowledge, the separation between LT START, LT MIDDLE, and LT END has never
been investigated in the literature with such precisions. However, further improvement in
the accuracy of this measurement are very possible. Indeed, whereas good homogeneity
between LT START and LT MIDDLE can be highlighted, LT END shows the largest MAPE.
This discrepancy with other LT elements can be explained by the transition between a
swimming phase and a rest phase, which sometimes may not be easily identified when the
swimmer does not actually touch the wall at the end of a training session. This finding is in
agreement with other studies that report difficulties in identifying the final touch [22,25,30].

5. Limits and Perspectives

The present manuscript is among the first to reach such good performance in the clas-
sification of swimming activity with this level of temporal precision and data heterogeneity.
However, this work suffers from limitations that may engender interesting perspectives
for future studies. The database we used was imbalanced, and certain classes were under-
represented compared to other swimming activities (i.e., wallpush and turns), leading to
lower performance in predicting these short and under-represented activites. Therefore,
it would be interesting to use methodologies dealing with imbalanced datasets, such as
SMOTE, in order to improve performance on those classes. Moreover, the present model
did not take the diving start and leg kicking phases into account. The inclusion of such
phases in the algorithm would be an interesting improvement in view of its usability in
daily training routines and monitoring. Finally, the network architecture presented here
relies mainly on bi-LSTM. It would be interesting to compare different neural network
architectures and their respective performance, as has been carried out in several previous
papers. A final interesting point involves the inputs of the neural network. We made the
choice to use raw IMU data as the input of the model in order to retain the maximum
amount of information and not discretize the data. A hybrid approach using raw IMU
data and discretized data in the temporal and frequency domains, respectively, as in tradi-
tional machine learning, might be an interesting approach and allow the model to attain
better performance.

6. Conclusions

This study contributes a deep learning model devoted to the analysis of swimming,
using a single IMU attached to the sacrum. The proposed methodology was set up for
the purpose of classifying eight swimming activities at four swimming velocities that may
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occur during a full training session. The proposed methodology took high inter- and
intra-swimmer variability into account. LTs were directly computed from the classifier
thanks to high temporal precision, and were validated against a video gold standard. This
model is a first step towards a powerful training assistant able to analyze swimmers with
multiple skill levels according to their needs in the context of in situ training monitoring.

Author Contributions: E.D., A.B., N.B. and G.N. were involved in the conceptualization and design
of the study; E.D. and A.B. recruited the participants and collected the data; E.D., A.B. and N.B.
processed and analyzed the data; E.D. and A.B. produced the figures and tables; E.D., A.B., N.B.,
B.B., G.N. and J.P.V.-B. drafted the manuscript. All authors critically revised the manuscript and
approved the final submitted version. All authors have read and agreed to the published version of
the manuscript.

Funding: This research was funded by the French Agence Nationale de la Recherche, grant number
ANR-19-STPH-004. Erwan Delhaye was supported by a Ph.D. scholarship from the Ecole Normale
Supérieure de Rennes.

Institutional Review Board Statement: The study was conducted in accordance with the Declaration
of Helsinki and approved by the French Ethical Committee approved under reference 2021-A00250-41.

Informed Consent Statement: Informed consent was obtained from all subjects involved in the study.

Conflicts of Interest: The authors declare no conflict of interest.

Abbreviations
The following abbreviations are used in this manuscript:

IMU Intertial Measurement Units
STA Soft Tissue Artefact
HAR Human Activity Recognition
ML Machine Learning
RF Random Forest
SVM Support Vector Machine
PCA Principal Component Analysis
DL Deep Learning
LSTM Long Short-Term Memory
bi-LSTM Bidirectional Long Short-Term Memory
CNN Convolutional Neural Network
RNN Recurrent Neural Network
BMI Body Mass Index
WP Wallpush
UN Underwater Phase
BU Butterfly
TU Turn
BA Backstroke
BR Breastroke
FC Frontcrawl
RS Rest
LT Lap Time
MLP Multilayer Perceptron
LT IMU Lap Time computed by IMU
LT MAN Lap Time timed with a Stopwatch
LT CAM Lap Time timed with a Camera
HOSCV Hold-Out Subject Cross Validation
TEM Typical Error of Measurement
MAPE Mean Absolute Percentage Error
SAR Swimming Activity Recognition
SMOTE Synthetic Minority Oversampling Technique



Sensors 2022, 22, 5786 17 of 19

References
1. Feijen, S.; Tate, A.R.; Kuppens, K.; Barry, L.; Struyf, F. Monitoring the swimmer’s training load: A narrative review of monitoring

strategies applied in research. Scand. J. Med. Sci. Sports 2020, 30, 2037–2043. [CrossRef]
2. Camomilla, V.; Bergamini, E.; Fantozzi, S.; Vannozzi, G. Trends Supporting the In-Field Use of Wearable Inertial Sensors for Sport

Performance Evaluation: A Systematic Review. Sensors 2018, 18, 873. [CrossRef] [PubMed]
3. Seshadri, D.R.; Drummond, C.; Craker, J.; Rowbottom, J.R.; Voos, J.E. Wearable devices for sports: New integrated technologies

allow coaches, physicians, and trainers to better understand the physical demands of athletes in real time. IEEE Pulse 2017,
8, 38–43. [CrossRef] [PubMed]

4. Mooney, R.; Corley, G.; Godfrey, A.; Quinlan, L.R.; ÓLaighin, G. Inertial Sensor Technology for Elite Swimming Performance
Analysis: A Systematic Review. Sensors 2015, 16, 18. [CrossRef] [PubMed]

5. Guignard, B.; Rouard, A.; Chollet, D.; Seifert, L. Behavioral dynamics in swimming: The appropriate use of inertial measurement
units. Front. Psychol. 2017, 8, 383. [CrossRef] [PubMed]

6. Barbosa, T.M.; Marinho, D.A.; Costa, M.J.; Silva, A.J. Biomechanics of competitive swimming strokes. Biomech. Appl. 2011, 367–388.
7. Toussaint, H.M.; Hollander, A.P.; Van den Berg, C.; Vorontsov, A. Biomechanics of swimming. Exerc. Sport Sci. 2000, 639–660.
8. Aggarwal, P.; Syed, Z.; Niu, X.; El-Sheimy, N. A Standard Testing and Calibration Procedure for Low Cost MEMS Inertial Sensors

and Units. J. Navig. 2008, 61, 323–336. [CrossRef]
9. Niu, X.; Li, Y.; Zhang, H.; Wang, Q.; Ban, Y. Fast thermal calibration of low-grade inertial sensors and inertial measurement units.

Sensors 2013, 13, 12192–12217. [CrossRef]
10. Nez, A.; Fradet, L.; Laguillaumie, P.; Monnet, T.; Lacouture, P. Simple and efficient thermal calibration for MEMS gyroscopes.

Med. Eng. Phys. 2018, 55, 60–67. [CrossRef]
11. Shcheglov, K.; Evans, C.; Gutierrez, R.; Tang, T.K. Temperature dependent characteristics of the JPL silicon MEMS gyroscope.

In Proceedings of the 2000 IEEE Aerospace Conference. Proceedings (Cat. No. 00TH8484), Big Sky, MT, USA, 25 March 2000;
Volume 1, pp. 403–411.

12. Camomilla, V.; Dumas, R.; Cappozzo, A. Human movement analysis: The soft tissue artefact issue. J. Biomech. 2017, 62, 1–4.
[CrossRef] [PubMed]

13. Cereatti, A.; Bonci, T.; Akbarshahi, M.; Aminian, K.; Barré, A.; Begon, M.; Benoit, D.L.; Charbonnier, C.; Dal Maso, F.; Fantozzi, S.;
et al. Standardization proposal of soft tissue artefact description for data sharing in human motion measurements. J. Biomech.
2017, 62, 5–13. [CrossRef] [PubMed]

14. Magalhães, F.A.; Vannozzi, G.; Gatta, G.; Fantozzi, S. Wearable inertial sensors in swimming motion analysis: A systematic
review. J. Sports Sci. 2015, 33, 732–745. [CrossRef] [PubMed]

15. Hamidi Rad, M.; Gremeaux, V.; Dadashi, F.; Aminian, K. A Novel Macro-Micro Approach for Swimming Analysis in Main
Swimming Techniques Using IMU Sensors. Front. Bioeng. Biotechnol. 2021, 8, 1511. [CrossRef] [PubMed]

16. Brunner, G.; Melnyk, D.; Sigfússon, B.; Wattenhofer, R. Swimming Style Recognition and Lap Counting Using a Smartwatch and
Deep Learning. In Proceedings of the 23rd International Symposium on Wearable Computers, ISWC ’19, White Plains, NY, USA,
21–23 October 2003; pp. 23–31. [CrossRef]

17. Davey, N.P.; James, D.A.; Anderson, M.E. Signal analysis of accelerometry data using gravity-based modeling. In Microelectronics:
Design, Technology, and Packaging; Abbott, D., Eshraghian, K., Musca, C.A., Pavlidis, D., Weste, N., Eds.; International Society for
Optics and Photonics: Bellingham, WA, USA, 2004; Volume 5274, pp. 362–370. [CrossRef]

18. Ohgi, Y.; Kaneda, K.; Takakura, A. Sensor Data Mining on the Kinematical Characteristics of the Competitive Swimming. Procedia
Eng. 2014, 72, 829–834. [CrossRef]

19. Ramos Félix, E.; Silva, H.P.D.; Olstad, B.H.; Cabri, J.; Lobato Correia, P. SwimBIT: A Novel Approach to Stroke Analysis During
Swim Training Based on Attitude and Heading Reference System (AHRS). Sports 2019, 7, 238. [CrossRef] [PubMed]

20. Worsey, M.T.O.; Pahl, R.; Espinosa, H.G.; Shepherd, J.B.; Thiel, D.V. Is machine learning and automatic classification of swimming
data what unlocks the power of inertial measurement units in swimming? J. Sports Sci. 2021, 39, 2095–2114. [CrossRef] [PubMed]

21. Talha, S.A.W. Apport des Techniques d’Analyse et de Traitement de Données pour la Reconnaissance des Actions en vue d’un
Suivi du Comportement Humain. Ph.D. Thesis, Ecole Nationale Supérieure Mines-Télécom Lille Douai, Douai, France, 2020.

22. Davey, N.; Anderson, M.; James, D. Validation trial of an accelerometer-based sensor platform for swimming. Sport. Technol.
2008, 1, 202–207. [CrossRef]

23. Yuen, P. Swim Monitor. World Intellectual Property Organization. Technical Report. 7 October 2010. Available online: https:
//patentimages.storage.googleapis.com/6c/4a/a9/d2e69e0e418d1f/WO2010113135A1.pdf (accessed on 17 December 2021).

24. Delgado-Gonzalo, R.; Lemkaddem, A.; Renevey, P.; Calvo, E.M.; Lemay, M.; Cox, K.; Ashby, D.; Willardson, J.; Bertschi, M.
Real-time monitoring of swimming performance. In Proceedings of the 2016 38th Annual International Conference of the IEEE
Engineering in Medicine and Biology Society (EMBC), Orlando, FL, USA, 16–20 August 2016; pp. 4743–4746. [CrossRef]

25. Ganzevles, S.; Vullings, R.; Beek, P.; Daanen, H.; Truijens, M. Using Tri-Axial Accelerometry in Daily Elite Swim Training Practice.
Sensors 2017, 17, 990. [CrossRef] [PubMed]

26. Le Sage, T.; Bindel, A.; Conway, P.; Justham, L.; Slawson, S.; West, A. Development of a real time system for monitoring of
swimming performance. Procedia Eng. 2010, 2, 2707–2712. [CrossRef]

27. Le Sage, T.; Bindel, A.; Conway, P.; Justham, L.; Slawson, S.; West, A. Embedded programming and real-time signal processing of
swimming strokes. Sports Eng. 2011, 14, 1. [CrossRef]

http://doi.org/10.1111/sms.13798
http://dx.doi.org/10.3390/s18030873
http://www.ncbi.nlm.nih.gov/pubmed/29543747
http://dx.doi.org/10.1109/MPUL.2016.2627240
http://www.ncbi.nlm.nih.gov/pubmed/28129141
http://dx.doi.org/10.3390/s16010018
http://www.ncbi.nlm.nih.gov/pubmed/26712760
http://dx.doi.org/10.3389/fpsyg.2017.00383
http://www.ncbi.nlm.nih.gov/pubmed/28352243
http://dx.doi.org/10.1017/S0373463307004560
http://dx.doi.org/10.3390/s130912192
http://dx.doi.org/10.1016/j.medengphy.2018.03.002
http://dx.doi.org/10.1016/j.jbiomech.2017.09.001
http://www.ncbi.nlm.nih.gov/pubmed/28923393
http://dx.doi.org/10.1016/j.jbiomech.2017.02.004
http://www.ncbi.nlm.nih.gov/pubmed/28259462
http://dx.doi.org/10.1080/02640414.2014.962574
http://www.ncbi.nlm.nih.gov/pubmed/25356682
http://dx.doi.org/10.3389/fbioe.2020.597738
http://www.ncbi.nlm.nih.gov/pubmed/33520955
http://dx.doi.org/10.1145/3341163.3347719
http://dx.doi.org/10.1117/12.530184
http://dx.doi.org/10.1016/j.proeng.2014.06.036
http://dx.doi.org/10.3390/sports7110238
http://www.ncbi.nlm.nih.gov/pubmed/31744156
http://dx.doi.org/10.1080/02640414.2021.1918432
http://www.ncbi.nlm.nih.gov/pubmed/33966610
http://dx.doi.org/10.1080/19346182.2008.9648474
https://patentimages.storage.googleapis.com/6c/4a/a9/d2e69e0e418d1f/WO2010113135A1.pdf
https://patentimages.storage.googleapis.com/6c/4a/a9/d2e69e0e418d1f/WO2010113135A1.pdf
http://dx.doi.org/10.1109/EMBC.2016.7591787
http://dx.doi.org/10.3390/s17050990
http://www.ncbi.nlm.nih.gov/pubmed/28468255
http://dx.doi.org/10.1016/j.proeng.2010.04.055
http://dx.doi.org/10.1007/s12283-011-0070-7


Sensors 2022, 22, 5786 18 of 19

28. James, D.A.; Burkett, B.; Thiel, D.V. An unobtrusive swimming monitoring system for recreational and elite performance
monitoring. Procedia Eng. 2011, 13, 113–119. [CrossRef]

29. Bächlin, M.; Tröster, G. Swimming performance and technique evaluation with wearable acceleration sensors. Pervasive Mob.
Comput. 2012, 8, 68–81. [CrossRef]

30. Callaway, A.J. Measuring kinematic variables in front crawl swimming using accelerometers: A validation study. Sensors 2015,
15, 11363–11386. [CrossRef] [PubMed]

31. Michaels, S.; Taunton, D.; Forrester, A.; Hudson, D.; Phillips, C.; Holliss, B.; Turnock, S. The Use of a Cap-mounted Tri-axial
Accelerometer for Measurement of Distance, Lap Times and Stroke Rates in Swim Training. Procedia Eng. 2016, 147, 649–654.
[CrossRef]

32. Jensen, U.; Blank, P.; Kugler, P.; Eskofier, B.M. Unobtrusive and Energy-Efficient Swimming Exercise Tracking Using On-Node
Processing. IEEE Sens. J. 2016, 16, 3972–3980. [CrossRef]

33. Costa, J.; Silva, C.; Santos, M.; Fernandes, T.; Faria, S. Framework for Intelligent Swimming Analytics with Wearable Sensors for
Stroke Classification. Sensors 2021, 21, 5162. [CrossRef]

34. Halilaj, E.; Rajagopal, A.; Fiterau, M.; Hicks, J.L.; Hastie, T.J.; Delp, S.L. Machine learning in human movement biomechanics:
Best practices, common pitfalls, and new opportunities. J. Biomech. 2018, 81, 1–11. [CrossRef]

35. Nweke, H.F.; Wah Teh, Y.; Al-garadi, M.A.; Rita Alo, U. Deep learning algorithms for human activity recognition using mobile
and wearable sensor networks: State of the art and research challenges. Expert Syst. Appl. 2018, 105, 233–261. [CrossRef]
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