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Abstract
Peatlands at high latitudes have accumulated >400 Pg carbon (C) because saturated 
soil and cold temperatures suppress C decomposition. This substantial amount of C 
in Arctic and Boreal peatlands is potentially subject to increased decomposition if 
the water table (WT) decreases due to climate change, including permafrost thaw-
related drying. Here, we optimize a version of the Organizing Carbon and Hydrology 
In Dynamic Ecosystems model (ORCHIDEE-PCH4) using site-specific observations to 
investigate changes in CO2 and CH4 fluxes as well as C stock responses to an experi-
mentally manipulated decrease of WT at six northern peatlands. The unmanipulated 
control peatlands, with the WT <20 cm on average (seasonal max up to 45 cm) below 
the surface, currently act as C sinks in most years (58 ± 34 g C m−2 year−1; including 
6 ± 7 g C–CH4 m−2  year−1 emission). We found, however, that lowering the WT by 
10 cm reduced the CO2 sink by 13 ± 15 g C m−2  year−1 and decreased CH4 emission 
by 4 ± 4 g CH4 m−2 year−1, thus accumulating less C over 100 years (0.2 ± 0.2 kg C m−2). 
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1  |  INTRODUC TION

The carbon (C) stock of northern peatlands is estimated to be 265–
621 Pg (Gorham,  1991; Hugelius et al.,  2020; Treat et al.,  2019; 
Yu et al., 2010) with some estimates as high as 1055 PgC (Nichols 
& Peteet,  2019) despite controversy (Nichols & Peteet,  2021; 
Ratcliffe et al., 2021; Yu et al., 2021). Approximately half of north-
ern peatlands are underlain by permafrost (Hugelius et al., 2020), 
contributing to a large portion of permafrost C stock of 1035 ± 150 
Pg in the first 3 m depth (Hugelius et al., 2014; Schuur et al., 2015). 
Most of the northern peatlands C have accumulated after the last 
glacial maximum (Kleinen et al.,  2012; MacDonald et al.,  2006; 
Treat et al., 2019; Yu et al., 2010), and undisturbed peatlands con-
tinue to accumulate C at present (Bridgham et al., 2006; Hugelius 
et al.,  2020; Tarnocai et al.,  2009). Peatlands act as C sinks be-
cause plant productivity sustains litter C input but anaerobic con-
ditions, low pH, and poor litter quality inhibit peat decomposition. 
However, there is an increasing concern that this substantial C 
stock is becoming vulnerable to decomposition in response to dry-
ing. Drying, as a result of a lower water table (WT), exposes the 
upper peat horizons to aerobic conditions, which dramatically in-
creases C decomposition rates.

In low to mid-latitudes, substantial areas of peatlands have be-
come drier due to anthropogenic drainage by ditches for forestry, 
agriculture, and urbanization (Byrne et al., 2004; Evans et al., 2021; 
Wijedasa et al.,  2018), in addition to climate warming and drying 
over natural peatlands (Swindles et al., 2019). In northern high lat-
itudes, however, peatland drying is mostly associated with climate 
change through several processes. First, if evapotranspiration in-
creases faster than precipitation, the WT is likely to decrease. 
Generally, increasing precipitation is expected due to an enhanced 
hydrologic cycle (Bintanja & Andry, 2017; Bintanja & Selten, 2014) 
but the patterns vary spatially and temporally (Greve et al., 2014) 
together with more frequent extreme precipitation events (Palmer 
& Räisänen,  2002; Shiogama et al.,  2016). Furthermore, in the 
high latitudes, a large fraction of precipitation can be lost during 

the spring melt (Douville et al., 2021; Kirtman et al., 2013) and the 
growing season can have a negative water balance. Coupled Model 
Intercomparison Project (CMIP6) climate models predict shorter 
but stronger drought events at high latitudes by 2100 (Ukkola 
et al., 2020). Warmer temperatures also enhance evapotranspiration 
(Helbig et al., 2020), which decreases soil moisture, and possibly the 
WT in peatlands. Second, higher air temperatures thaw permafrost 
and melt extensive ground ice complexes, which subsequently in-
creases active layer thickness and changes surface morphology. This 
change in surface morphology alters the spatial and vertical distri-
bution of water in permafrost peatlands and exposes surface peat 
layers to aerobic decomposition in some areas (Lewis et al., 2012; 
Olefeldt et al., 2016). This can occur at small spatial scales, with a 
variation of local wet versus dry patches in polygonal tundra, or at 
large scales, such as thermokarst formation or thaw lake drainage, 
which are highly variable in space and time (Fewster et al.,  2022; 
Jones et al., 2022; Liljedahl et al., 2016).

Currently, Arctic and boreal peatlands are C sinks (Virkkala 
et al., 2021), and peatland drying has the potential to alter C fluxes 
and soil organic C (SOC) stocks (Avis et al., 2011; Lara et al., 2015; 
Lawrence et al., 2015; Vaughn et al., 2016; Wainwright et al., 2015). 
Generally, the exposure of peat soils to oxygen in the undersatu-
rated part of the soil profile decreases CH4 production and emis-
sions but increases CO2 emissions due to SOC decomposition 
(Huang et al., 2021; Leifeld et al., 2019; Leifeld & Menichetti, 2018), 
potentially contributing to a positive carbon-climate feedback 
(Günther et al., 2020). Huang et al. (2021) estimated CO2 emissions 
to be increased by 1.12 mg C m−2 h−1 cm−1 and CH4 emissions to be 
decreased by 0.09 mg C m−2 h−1  cm−1 due to drying in global peat-
lands, but the emission changes of northern peatlands were highly 
sensitive and variable compared to lower latitudes. In addition, tem-
perature sensitivity of CH4 emissions varies with WT and can add 
complexity to the CH4:CO2 ratio under temperature and WT varia-
tions (Chen et al., 2021).

Despite growing research on the sensitivity of peatlands to 
drying, both CO2 and CH4 gas responses and the change of C 

Yet, the reduced emission of CH4, which has a larger greenhouse warming potential, 
resulted in a net decrease in greenhouse gas balance by 310 ± 360 g CO2-eq m−2 year−1. 
Peatlands with the initial WT close to the soil surface were more vulnerable to C 
loss: Non-permafrost peatlands lost >2 kg C m−2 over 100 years when WT is lowered 
by 50 cm, while permafrost peatlands temporally switched from C sinks to sources. 
These results highlight that reductions in C storage capacity in response to drying of 
northern peatlands are offset in part by reduced CH4 emissions, thus slightly reducing 
the positive carbon climate feedbacks of peatlands under a warmer and drier future 
climate scenario.

K E Y W O R D S
carbon flux, carbon stock, drainage, high latitude, land surface model, manipulation 
experiment, permafrost thaw
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stocks in northern circumarctic peatlands are still uncertain, es-
pecially for peatlands underlain by permafrost. Individual-site 
studies in Arctic and Boreal regions consistently showed in-
creased CO2 emissions from ecosystem respiration (Reco, [Kittler 
et al.,  2016; Martikainen et al.,  1995; Natali et al.,  2015]) and 
decreased CH4 emissions (Kittler et al., 2017; Kwon et al., 2017; 
Natali et al.,  2015; Nykänen et al.,  1998; Olefeldt et al.,  2017; 
Turetsky et al., 2008, 2014; Zona et al., 2009) in response to lower 
WT. However, gross primary production (GPP) showed contrasting 
responses, that is, reduced (Olefeldt et al., 2017) or increased GPP 
(Kittler et al.,  2016; Natali et al.,  2015), depending on the plant 
community composition and the occurrence of shift in species due 
to drying. Some studies synthesized the drying effects in northern 
circumarctic peatlands, but they were limited to CH4 (Nykänen 
et al., 1998; Olefeldt et al., 2013; Turetsky et al., 2014) or to a small 
region (Laine et al., 1996). To quantify the response of both CO2 
and CH4 fluxes and SOC stock to drying in northern peatlands, 
we compiled CO2 and CH4 fluxes from six field WT manipulation 
experiments from Arctic and Boreal sites, optimized key parame-
ters of the ORCHIDEE-PCH4 land surface model using data assim-
ilation to reproduce varying WT conditions, and quantified the C 
flux and stock change in response to drying. Specifically, using a 
site specifically optimized model, we first quantify the sensitivity 
of C fluxes of each site when WT is sequentially lowered by 5, 10, 
20, and 50 cm relative to the control WT, and then evaluate the 
changes in C stocks when the WT is lowered for 100 years. Lastly, 
we compare what drives the variations in C flux sensitivity among 
sites.

2  |  METHOD

2.1  |  Field drying manipulation experiment sites

We used data from six field WT manipulation (drainage) experi-
ments, which are located between 62- and 71-degree North: (1) 
Särkkä, Finland (FI-SAR), (2) Lakkasuo, Finland (FI-LAK), (3) Healy, 
Alaska (US-HEA), (4) Bonanza, Alaska (US-BZF), (5) Chersky, Russia 
(RU-CHE), and (6) Utqiagvik (a.k.a. Barrow), Akaska (US-BES; 
Table 1). The specific peatland types include boreal bog, fen, and 
moist/wet tundra. Three sites are underlain by permafrost, while 
the others are not (Table 1). Peat depths range from 0.2 to 2.7 m 
(Table 2; note that RU-CHE has peat depths of 0.2–0.4 m consid-
ering spatial heterogeneity, and to be exact it is not peatland by 
definition—peat depth should be >0.4 m). The average control WT 
varies from 20 cm (belowground) to −5 cm (aboveground), with the 
lowest seasonal WT ranging from 45 cm to −1 cm (Figure S1). The 
drainage experiments were carried out in parallel with the con-
trol experiments, and the drainage intensity varies by site, ranging 
from −17 (17 cm lower WT compared to the control) to 0 cm (no av-
erage difference). Flux rates were measured 0–30 years after the 
drying experiments started. CO2 and CH4 fluxes were measured 
using eddy covariance method and/or chambers. More details on TA
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site characteristics and experimental setups are found in the ref-
erences in Table 1.

2.2  |  Model description

We used a modified version of the land surface model ORCHIDEE-
PEAT that was developed to simulate northern peatlands (Qiu 
et al.,  2018). This version is called ORCHIDEE-PCH4, and simu-
lates hydrology, surface energy, and C cycle processes resulting in 
CO2 and CH4 fluxes in northern peatlands using the parameteriza-
tions from Qiu et al. (2018) and a CH4 module (Salmon et al., 2021). 
Photosynthesis and plant respiration are simulated for peatland veg-
etation type (represented as C3 graminoids) as described in section 
2.2.1 in Qiu et al.  (2018). After senescence, litterfall goes into two 
litter pools (metabolic and structural) and three soil C pools (active, 
slow, and passive) after a series of decomposition processes follow-
ing the CENTURY scheme (Krinner et al., 2005; Parton et al., 1987; 
Paustian et al., 1992). The decomposition rates of active, slow, and 
passive soil C pools, including the transfer among soil pools are 1.0, 
0.027, and 0.0006 year−1 at 30°C, and the actual rates are simulated 
considering soil temperature, moisture, and depth (Qiu et al., 2019). 
Peat C from three pools is decomposed to CO2 and CH4, with the 
decomposition rates affected by soil temperature and moisture, peat 
depth, and additionally oxygen concentration in soil pores in the 
case of CH4 (Qiu et al., 2019; Salmon et al., 2021). Oxygen is diffused 
between the atmosphere and the top soil layer, or through snow lay-
ers when existing, as well as between soil layers, and is also provided 
up to the rooting depths by plant roots (Salmon et al., 2021). Oxygen 
in soils oxidizes CH4, and the oxidation rate is determined by the 
turnover time of CH4 (Salmon et al., 2021). The residual CH4 after 
oxidation in each layer is then emitted to the atmosphere through 
diffusion, ebullition, and plant-mediated transport. Diffusion oc-
curs between soil layers as well as between top soil layer and the 
atmosphere based on the concentration gradients, soil moisture, and 
soil pore size. Methane bubbles form due to hydrostatic pressure in 
soil, and the probability of these bubbles to reach the atmosphere is 
simulated as ebullition. The amount of plant-mediated transport is 

influenced by the gas transport efficiency (representing aerenchyma 
density) and seasonal plant productivity. More details on these 
processes are described in section 2.1 in Salmon et al. (2021). Peat 
growth (accumulation of peat C; C input into soil minus CO2 & CH4 
production/decomposition) is simulated by transferring excessive 
peat C of one layer to the one below within the 32 discretized soil 
layers (section 2.1 in Qiu et al. (2019)).

2.3  |  Model setup and parameter optimization

The ORCHIDEE model allows multiple vegetation types in one 
grid cell, with distinct soil tiles to compute the hydrology of peat, 
herbaceous, and woody vegetation types. The fraction of the grid 
cell occupied by peatland receives runoff from the other non-
peat vegetation fractions to maintain a high WT (Qiu et al., 2018), 
and the prognostic WT in peatland depends on the fraction size 
of non-peatland vegetation. Here, we do not use the prognostic 
WT from the model but set the entire grid cell to be covered by 
peatlands. Then, we prescribed soil moisture according to the ob-
served daily WT (the resolution can be 30 min), and set soil mois-
ture to 0.80 (80% of soil porosity filled with water and 20% with 
air) for the soil layers below WT and to 0.50 for the soil layers 
above WT. These values are the averages soil moisture observed 
in US-HEA and RU-CHE sites, where volumetric soil moisture was 
measured.

To more accurately simulate soil temperature, which is one of the 
critical drivers for CO2- and CH4-related processes and their rates, 
we used the thermal properties (heat capacity of 2.5∙106 J K−1  m−3 
and thermal conductivity of 0.05 W m−1 K−1 [dry] and 0.25 W m−1 K−1 
[solid]) of 100% organic soil in the model. The apparent heat capacity 
and thermal conductivity were calculated considering the water and 
ice content in soil (Guimberteau et al., 2018). Plus, when simulated 
soil temperature was higher than observations, we overwrote the 
thermal properties of dry peat soils at the top soil layers within the 
soil thermic sub-module to mimic the insulating function of an over-
lying moss or organic soil layer to accurately simulate observed soil 
temperature profiles (Gornall et al., 2007; Soudzilovskaia et al., 2013) 

TA B L E  2  Initialization parameters for each site for fitting soil temperature and soil organic carbon (C) content

Site
# dry peat 
layer (cm)

SOC accumulation 
(years)

obs. peat depth 
(m)

sim. peat 
depth (m)

obs.SOC 
(kg C m−2)

sim.SOC 
(kg C m−2)

FI-SAR 3 (1.0) 800 2.7 2.0 71–78 77

FI-LAK 2 (0.4) 700 2.3 2.0 71–78 76

US-HEA 4 (2.1) 800 0.35–0.45 1.5 19–31 35

US-BZF 2 (0.4) 800 1–2 1.5 - 53

RU-CHE 3 (1.0) 8000 0.2–0.4 0.7 12–24 24

US-BES 0 (0.0) 2000 1 1.5 16–31 34

Note: The number of dry peat layers (and corresponding thickness in cm) was included to increase goodness of fit between simulated and observed 
soil temperature, which does not influence the actual WT or soil moisture. Simulated peat depth and SOC are from the corresponding observation 
years for comparison to the observations, and may differ over the simulation years. The amount of SOC was simulated by adjusting the number of 
spin-up years, that is, SOC accumulation years.
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as in (Ekici et al., 2014). These dry peat layers were decoupled from 
the soil hydrology module and only used for simulating soil tempera-
ture profiles. The number of dry peat layers was optimized for each 
site by minimizing the root mean squared error (RMSE) and Nash-
Sutcliffe model efficiency coefficient (MEF) from the observed soil 
temperatures (shown in Table 2 and Figure S2).

We calibrated the key parameters that are associated with CO2 
and CH4 fluxes to simulate site-specific fluxes of the control treat-
ment (Table  3). Thus, the differences in C fluxes between control 
and dry treatments are driven by the prescribed WT of each treat-
ment and model parameters that change by soil moisture. For GPP, 
the Vcmax at 25°C (maximum carboxylation rate in photosynthesis 
at 25°C; default 40 μmol m−2 s−1 [Qiu et al., 2018]) was calibrated. In 
default setting, GPP decreases with decreasing soil moisture avail-
ability. However, some plants can photosynthesize more actively 
under dry condition (Sulman et al.,  2010). In addition, some sites 
(e.g., RU-CHE) showed significant changes in vegetation communi-
ties due to drying, with greater shrub abundance (Kwon et al., 2016) 
and GPP (Kittler et al., 2016). Increasing shrub abundance is often 
observed in drying northern peatlands unless taller trees outcom-
pete them for light (Harris et al., 2020; Laiho et al., 2003; Murphy 
et al., 2009). To test the effects of increased photosynthetic rates 
on flux and stock change with or without composition changes, we 
additionally ran simulations with the increased Vcmax at 25°C by 10% 
to mimic increased plant productivity. The phenology was selected 
between C3 grasses and C3 grasses + mosses by minimizing errors 
(RMSE and MEF) between simulations and observations. Phenology 
determines the onset time of photosynthesis, with the earlier onset 
when mosses are present, as they can photosynthesize at lower tem-
perature and lower light level than C3 grasses (Atanasiu, 1971). The 
growing degree days (GDD) threshold for the onset of C3 grass pho-
tosynthesis is calculated using

where temp is the average air temperature of the past 3 years. The 
coefficients of Equation (1) are calibrated globally for different vege-
tation types (Botta et al., 2000; Krinner et al., 2005). Earlier onset of 

photosynthesis for C3 grasses + mosses is achieved by reducing the 
threshold of GDD using

which is calibrated by GPP observations in 19 northern peatlands (Qiu 
et al., 2018). Different from the default setting of respiration (CO2 pro-
duction) cutoff below −1°C, we allowed a continuous CO2 respiration 
at sub-zero temperatures, with the temperature control on respiration 
using.

as non-growing season respiration can be considerable (Natali 
et al., 2019).

The amount of plant-mediated CH4 transport was calculated after 
subtracting the fixed fraction of methanotrophy at roots (mrox in the 
equation 9 in Salmon et al. (2021)) in the original model. Instead, we 
excluded the methanotrophy (mrox) term in the plant-mediated CH4 
transport equation but used mrox as the amount of oxygen provided 
into soil through roots, and let it oxidize CH4 during the methanot-
rophy process in soils, similar to Morel et al. (2019). This allowed the 
amount of plant-mediated CH4 transport decoupled from methan-
otrophy in soils. Then, six parameters were optimized targeting the 
best fit to the observed CH4 emissions of control treatment of each 
site using the ORCHIDEE Data Assimilation Systems (ORCHIDAS; 
Bastrikov et al. (2018); https://orchi​das.lsce.ipsl.fr/). Daily CH4 emis-
sions of growing season were linearly interpolated for days without 
observations, and the earliest (latest) observations of each year 
were used for CH4 emissions before (after) the first (last) observa-
tion of that year. Within the ORCHIDAS framework, we used the 
genetic algorithm (Goldberg & Holland, 1988; Haupt & Haupt, 2004) 
to find the best set of parameters within the defined boundary of 
each parameter. This stochastic algorithm is a global random search 
method based on the principles of genetics and natural selection, 
and was found in Bastrikov et al.  (2018) to outperform traditional 

(1)GDD threshold = 320 + 6.25 ⋅ temp + 3.125 ⋅ 10
−2

⋅ temp2

(2)GDD threshold =
1.93 ⋅ 105

(

1 + e

(

−8,13⋅10−2
⋅(temp−87.87)

)
)

(3)Temperature control = e

(

0.69∗
soil temperature−30

10

)

, max = 1

TA B L E  3  Parameter sets for each site for fitting CO2 and CH4 fluxes: Vcmax at 25°C (maximum carboxylation rate in photosynthesis 
at 25°C), k (methanogenesis rate relative to the oxic decomposition), kMT (turnover time of methanotrophy), tveg (the amount of CH4 
transported through aerenchymatous plants), mrox (the amount of oxygen provided into soil through roots), mxr (the mixing ratio of CH4 in 
bubbles in soils), and wsize (the extent of the connected network of water-filled pores)

Site
Vcmax 
(μmol m−2 s−1) Phenology

k (ratio to oxic 
decomposition) kMT (s) tveg mrox

mxr 
(fraction)

wsize 
(m)

FI-SAR 40 C3 + moss 4.92 129,047 0.10 1.30 0.05 0.49

FI-LAK 40 C3 + moss 4.56 86,400 0.25 1.03 0.07 0.48

US-HEA 40 C3 9.82 153,127 0.41 0.39 0.52 0.24

US-BZF 45 C3 6.65 86,400 1.30 0.5 0.20 0.38

RU-CHE 40 C3 1.02 97,695 2.23 1.07 0.11 0.41

US-BES 40 C3 + moss 2.00 161,472 3.71 0.70 0.39 0.05

Note: The parameters related to CH4 processes are optimized using the ORCHIDAS.

https://orchidas.lsce.ipsl.fr/
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gradient-based approaches when optimizing key ORCHIDEE model 
parameters. Calibrated parameters include k (methanogenesis rate 
relative to the oxic decomposition; for example, k of 2 represents 
the CO2 and CH4 maximum production ratio of 2:1; ranging from 1 
to 10; Khvorostyanov et al., 2008; Wania et al., 2010), kMT (turnover 
time of methanotrophy; ranging from 1 to 5 days; Juncher Jørgensen 
et al., 2014; Khvorostyanov et al., 2008; Morel et al., 2019), tveg (the 
amount of CH4 transported through aerenchymatous plants; rang-
ing from 0 to 30; Walter & Heimann, 2000), mrox (the amount of 
oxygen provided into soil through roots, which can oxidize CH4 in 
soils; ranging from 0 to 5, Walter & Heimann, 2000), mxr (the mix-
ing ratio of CH4 in bubbles in soils; ranging from 0.05 to 0.53; Baird 
et al., 2004; Morel et al., 2019; Riley et al., 2011), and wsize (the ex-
tent of the connected network of water-filled pores that affects the 
probability of CH4 bubbles to reach the soil surface; ranging from 
0.001 to 0.5; Khvorostyanov et al., 2008) are summarized in Table 3. 
The range of each parameter was defined and modified following 
Salmon et al. (2021), which evaluated CH4 fluxes across 14 northern 
peatlands. Optimized parameter sets were used during the experi-
mental simulations (at the start of the drying experiment; described 
in the next section). The first 20 years of simulations were excluded, 
which may include transitional status due to changed parameters.

2.4  |  Model simulations of each site

The simulation was forced by the measured meteorology of random 
years at each site on a 30-min time-step. When meteorological meas-
urements were not available, they were substituted by CRUNCEP 
v8 for the corresponding grid cell for the site-specific observation 
years (https://vesg.ipsl.upmc.fr/thred​ds/catal​og/work/p529v​iov/
crunc​ep/V8_1901_2016/catal​og.html). The model simulations were 
performed as follows: (1) the full model was run for 50 years to ob-
tain steady state daily values for soil C inputs, (2) a soil accumulating 
spin-up sub-model was run for a site-specific time period to match 
simulated SOC content with observed SOC (Table 2), and (3) another 
50 years of the full model run was conducted to achieve the equi-
librium of physical variables. During the spin-up, atmospheric (CO2) 
was set to the pre-industrial level of 286 ppm, and (4) transient simu-
lations were carried out with the observed rising atmospheric [CO2] 
for 100 years until the starting year of drying experiment. During 
the simulations, WT was prescribed with the site-specific daily WT 
of the control treatment.

Afterwards, another 100 years of experimental simulations 
were conducted at each site, using (a) the WT of the control sites 
(Figure S1), (b) the WT of the dried sites (Figure S1), and (c) the WT 
sequentially lowered by 5, 10, 20, and 50 cm relative to the WT of 
the control sites. Sequential drying was applied until the WT did not 
exceed the maximum thaw depth for permafrost-affected peatlands, 
which was equivalent to a WT depth 20 cm lower than controls, and 
until the WT up to 50 cm belowground for non-permafrost peat-
lands because hydrological self-regulation of peatlands may not sus-
tain low WT in the long term (Dise, 2009; Waddington et al., 2015). 

When WT and fluxes were measured at multiple locations within 
the study site (chamber-based method), we used the average WT for 
one representative simulation of that site. In addition, we excluded 
sub-plots, which experienced significant tree growth following dry-
ing (two sub-plots were excluded out of six in the case of FI-LAK).

2.5  |  Model-observation comparison and 
statistical analysis

Model simulation errors against observations were estimated: RMSE, 
and the squared of its two partitioned components, squared differ-
ence of standard deviations (SDSD) and the lack of positive correla-
tion weighted by the standard deviation (LCS) following Kobayashi 
and Salam (2000). They measure the magnitudes, for example, maxi-
mum and minimum seasonal flux rates, and patterns of fluctuations, 
for example, seasonality, respectively. We also estimated MEF for 
each site and treatment. When the model simulation is fully match-
ing with the observation, RMSE, SDSD, and LCS are 0 and MEF is 1.

To compare the flux sensitivity to drying, we fitted exponential 
equations for NEE (net ecosystem CO2 exchange; Reco – GPP) and 
CH4 for each site with the sequential drying.

 using the nls fit function in R (R Development Core Team, 2013).

2.6  |  Combined effects of CO2 and CH4

Using the new global warming potential metrics (GWP*; Allen 
et al., 2018; Cain et al., 2019; Lynch et al., 2020), we estimated the 
combined effects of CO2 and CH4 flux changes. Different from the 
conventional GWP, GWP* considers the removal of short-lived 
gases over time, for example, the removal of CH4 from the atmos-
phere after the residence time of 12 years. Thus, its application can 
be especially beneficial when the CH4 emission is stable or decreas-
ing over time.

3  |  RESULTS

3.1  |  Comparison between observations and 
simulations

The model simulated soil temperature profiles well (Figure  S2). 
Although peat pore CO2 and CH4 concentrations can vary with 
WT and site-specific characteristics, simulated concentrations (ca. 
3–40 g CH4 m−2) were comparable with those of the previous stud-
ies (Saarnio et al., 1997; Waddington et al., 2009). Together with the 
prescribed WT, reasonable soil temperature and pore gas concen-
trations, and calibration of flux-related parameters, model simu-
lations and observations of daily CO2 and CH4 fluxes agreed well 

(4)NEE or CH4 = a∗ e(b∗WT)

https://vesg.ipsl.upmc.fr/thredds/catalog/work/p529viov/cruncep/V8_1901_2016/catalog.html
https://vesg.ipsl.upmc.fr/thredds/catalog/work/p529viov/cruncep/V8_1901_2016/catalog.html
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for both NEE (average RMSE: 1.04 g C–CO2 m−2  day−1 and MEF: 
−0.36, Table S1 and Figures 1, 2 and Figure S3) and CH4 (average 
RMSE: 0.03 g CH4 m−2 day−1 and MEF: −8.27, Table S1; Figures 1, 2 
and Figure S3) for control and drying treatments (for NEE, average 
RMSE: 1.20 g C–CO2 m−2  day−1 and MEF: −2.05; for CH4, average 

RMSE: 0.03 g CH4 m−2 day−1 and MEF: −2.84, Table S1; Figures 1, 2 
and Figure S3). The model was calibrated using observations from 
control treatments, and similar model performance for the drying 
treatment implies that the model can capture the response of C 
flux to WT variations well (Tables S1 and S2). Fluxes of some sites 

F I G U R E  1  Comparison of NEE (a, e), CH4 (b, f), Reco (c, g), and GPP (d, h) between the model simulations (X-axis) and the observations (Y-
axis) for control (a–d) and dry (e–h) treatments after the calibration for each site. Lines are drawn for 1:1 comparisons (solid) and regressions 
(dashed). Asterisks next to the site name indicate non-permafrost peatlands.
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showed opposite differences between the simulated and observed 
dynamics. For example, in the case of US-BZF, drying reduced CH4 
emissions in simulations but the observed data showed increases in 

CH4 emissions. These differences were related to measurements 
being made at multiple plots with high heterogeneity. Across most 
sites and fluxes model errors were due to seasonal patterns rather 

F I G U R E  2  Taylor diagrams of daily NEE (a), CH4 (b), Reco (c), and GPP (d) using model simulations and observations for control and dry 
treatments. Asterisks next to the site name indicate non-permafrost peatlands.

F I G U R E  3  The response of NEE (a) and CH4 (b) fluxes to sequential drying by 5, 10, 20, and 50 cm (filled circles) starting from the initial 
WT of control treatment (unfilled circles; highest WT of each site). Points and error bars represent the averages and standard deviations of 
annual WT and C fluxes for 100-year simulations of each site (color). The exponential lines were fitted for NEE and CH4. Positive values of 
WT denote WT above the soil surface. Asterisks next to the site name indicate non-permafrost peatlands.
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than magnitude, as inferred from larger LCS than SDSD (Table S1; 
Figures 1, 2 and Figure S3). The drying treatment (deeper WT) of 
RU-CHE showed that errors from magnitude were larger than those 
from the seasonality for CO2 fluxes, where drying decreased GPP in 
simulation but increased GPP in observations. With a good agree-
ment between simulations and observations, we described the re-
sults based on the simulations from here.

3.2  |  Response of C fluxes to drying

With the initial WT of the control treatment (simulation during the 
observation years), NEE ranged from −133 g C–CO2 m−2 year−1 (US-
BZF) to −21 g C–CO2 m−2 year−1 (US-BES; Figure 5a). Across all sites 
drying reduced the net CO2 uptake (i.e., less negative NEE) by 16 g 
C–CO2 m−2 year−1 on average, with the smallest uptake decrease in 
US-HEA by 1 g C–CO2 m−2  year−1 (with the smallest drying inten-
sity) and the largest uptake decrease in RU-CHE by 50 g C–CO2 
m−2 year−1 (with the largest drying intensity). The change in NEE was 
driven primarily by reduced GPP (11 g C–CO2 m−2 year−1 on average) 
and increased Reco (5 g C–CO2 m−2  year−1 on average). The annual 
CH4 emissions were largest at US-BZF (19 g C–CH4 m−2 year−1) and 
smallest at US-HEA (0.1 g C–CH4 m−2 year−1) for the control treat-
ment (Figure 5b). CH4 emissions decreased by 2 g C–CH4 m−2 year−1 
on average due to the drying treatment, with the smallest decrease 
in US-HEA by 0.003 g C–CH4 m−2 year−1 and the largest decrease in 
RU-CHE by 5 g C–CH4 m−2 year−1.

The drying intensity (change in WT) and the number of years 
since the start of the drainage differed among sites. To analyze the 
C flux sensitivity to drying by site, we compared C flux responses 
to sequential decrease of the WT by 5, 10, 20, and 50 cm compared 
to the control simulation. As WT draws down, net CO2 uptake de-
creased (Figure 3a). This decreased uptake was driven both by re-
duced GPP and increased Reco (Figure S4). The response of NEE to 
a change of the WT was large when the initial WT was close to the 
soil surface, and insignificant and almost linear when the initial WT 
was below 10 cm (Figure 3a and Figure S4). The average decrease in 
the CO2 sink was 13 ± 15 g C–CO2 m−2 year−1 with 10 cm decrease in 
WT, ranging from 0 to 36 g C–CO2 m−2 year−1. A similar response was 
found for CH4 emissions. They decreased sharply when the initial 
WT was close to zero cm but showed negligible changes when the 
initial WT was below 10 cm (Figure 3b and Figure S4). The average 
decrease in the CH4 emissions due to 10 cm lower WT cm was 4 ± 4 g 
CH4 m−2 year−1 with the range between 0 and 9 g CH4 m−2 year−1. 
These responses were mostly driven by reduced CH4 production 
and CH4 transport by plants, while CH4 oxidation was decreased 
(US-HEA, RU-CHE, and US-BES), increased (FI-SAR and FI-LAK), or 
unchanged (US-BZF) with lowered WT (Figure S5).

Permafrost peatlands showed smaller net CO2 uptake and lower 
CH4 emissions compared to the non-permafrost peatlands (Figure 3; 
note that * indicates non-permafrost sites), which was also repre-
sented by larger and smaller coefficient values of ‘a’ of the exponen-
tial fits for NEE and CH4, respectively (Figure S6). Despite smaller 

net CO2 uptake due to drying, the average NEE remained negative 
during the 100 years of simulation, indicating the persistence of 
peatland C sinks, even under drier conditions. Two permafrost un-
derlain peatlands (RU-CHE and US-BES), which show low net CO2 
uptake due to the existence of permafrost and large response to dry-
ing due to high initial WT, showed net CO2 emission in some years 
(Figure 3a), indicating reduced C sinks and the potential switch to C 
sources.

3.3  |  Carbon stock changes due to drying

Although CH4 emissions decreased in response to drying, larger de-
creases in net CO2 uptake (less negative NEE) resulted in lower soil 
C stocks compared to the control (Figure 4a,b). When subjected to 
a lowered WT by 10 cm, peatlands still accumulate C but the rate of 
accumulation is lower by 0.2 ± 0.2 kg C m−2 over 100 years. We found 
that most of this reduction in C accumulation came from the active 
(labile) C pool (Figure 4d). Larger decreases in the active C pool and 
C stock were observed in US-BZF and RU-CHE, where the initial WT 
is close to 0 and the NEE response to drying was stronger than at 
other sites (Figure 4a,b). The most significant reduction in C stock 
(over 2 kg C m−2) was observed at US-BZF with 50 cm lower WT, 
where permafrost does not exist (Figure 4a). Increasing photosyn-
thetic uptake due to drying (increasing Vcmax25 by 10%) reduced the 
differences in GPP between simulation and observation at US-BZF 
and RU-CHE, where drying increased GPP (Table S2). Because of the 
larger C input to soil, increased GPP increased C stock compared 
to the control treatment in most sites (Figure 4c), out-compensating 
the C loss by drying. However, it was not the case for US-BZF when 
dried by >10 cm, that additional C input due to increased productiv-
ity was not enough to offset enhanced Rh.

3.4  |  Net GHG balance change

When comparing C fluxes between control and a lower WT by 10 cm 
over 100 years, drying reduced net CO2 uptake (Figure 5a,d), but de-
creased CH4 emissions (Figure 5b,e). These contrasting effects are 
combined using GWP*, with the following patterns observed across 
the study sites: control treatments of US-BZF and RU-CHE acted as 
net CO2-eq sources, FI-SAR, US-HEA, and US-BES as CO2-eq sinks, 
and FI-LAK switched from a CO2-eq source to sink after 50 years 
(Figure  5c). Lowering the WT by 10 cm reduced CO2-eq emissions 
by 310 ± 360 g CO2-eq m−2  year−1 because reduced CH4 emissions 
played a larger role than the reduced CO2 uptake (Figure 5f). It is 
noteworthy that when the initial CH4 emission rates were high, as in 
the case of US-BZF, the peatland still acted as a net CO2-eq source 
after drying (Figure 5c). Peatlands that had the initial WT close to the 
soil surface showed larger responses than those that experienced a 
lower WT (Figure 5). Similar trends were shown for drying by 5 cm 
and 20 cm, but we observed smaller reductions in CO2-eq emissions 
with smaller drying intensity (Figure S7).
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4  |  DISCUSSION

4.1  |  Responses of CO2 and CH4 fluxes to drying

Carbon sequestration and storage is one of the vital climate 
regulating services provided by peatlands; however, the C stor-
age capacity of peatlands may be greatly altered under chang-
ing climatic conditions. We showed that drying of peatlands by 
lowering WT resulted in less C sequestration. First, lowered WT 
decreased C input into soil, due to reduced photosynthetic activ-
ity (i.e., GPP) under decreased water availability in shallow soil 
layers, where most roots exist. This response can be, however, 
different depending upon plant species. For example, vascular 
plants show higher productivity with lowered WT, while mosses 
show lower productivity (Sulman et al., 2010). In addition to the 
instant responses of GPP to WT variations, plant composition 
can shift (Breeuwer et al.,  2009; Potvin et al.,  2015) and GPP 
may decrease (Churchill et al., 2014; McPartland et al., 2019) or 
increase (Kittler et al., 2016) when WT in peatlands persistently 
lowers. Increasing productivity due to drying can compensate 
the C loss, but may not be enough under intense drying as shown 
in Figure 4c.

In addition to reduced photosynthesis, peatland drying gen-
erally increased peat C loss through heterotrophic respiration 
(Rh) despite decreased autotrophic respiration (Ra) offsetting this 
change. Respiration rates are higher under aerobic conditions 

compared to water-saturated conditions (Moyano et al.,  2013), 
and this mechanistic relationship is well represented in the model. 
Although drying did not significantly affect soil temperatures in 
the simulation, drying reduced deep soil temperature at US-HEA 
and RU-CHE in the observations because of insulation effects of 
drier peat at the surface (Kwon et al., 2019). This implies that the 
respiration response of deep soil layers to drying can be limited as 
compared to the surface soil layers. The combined effects of dry-
ing on GPP and Reco, thus the direction of C gain or loss, are largely 
dependent on the response of the plant productivity to drying, as 
shown in the reversed C stock change with the increased produc-
tivity in most sites (Figure 4a,c). The initial WT also plays a role 
that higher initial WT with a large proportion of labile C can show 
a stronger Rh response to drying, driving the net CO2 response 
toward a larger loss.

In contrast to the reduced net CO2 uptake following peat-
land drying, CH4 emissions decreased with lowered WT with 
similar decreasing rates to those of the previous studies (Evans 
et al.,  2021; Huang et al.,  2021; Kuhn et al.,  2021; Nykänen 
et al., 1998; Olefeldt et al., 2013). This exponential decrease with 
lower WT (Figure 3b) can be attributed to thinner anaerobic peat 
layers at deep soil layers and thicker aerobic peat layers at the 
surface (Kuhn et al., 2021; Kwon et al., 2017; Olefeldt et al., 2013). 
Although atmospheric CH4 can be oxidized in top soils by high-
affinity methanotrophs, thereby reducing net CH4 emission to 
the atmosphere (Oh et al., 2020), the response of CH4 emissions 

F I G U R E  4  Carbon stock change due to decreasing WT by 5, 10, 20, and 50 cm compared to the control treatment. Total C change (a), 
total C change in % (b), total C change when Vcmax25 is increased by 10% (c), and C change by pool (d). Negative (positive) values represent 
C loss (gain) or smaller (larger) C accumulation compared to the control treatment. Positive values of WT denote WT above the soil surface. 
Asterisks next to the site name indicate non-permafrost peatlands.
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to WT was largely driven by CH4 production because most CH4 
is oxidized by low-affinity methanotrophs when abundant CH4 
exists in peat soils (Kwon et al., 2017, 2021). The initial WT, thus, 
largely affected CH4 emissions through the rate of methanogen-
esis (aerobic respiration to methanogenesis ratio; k) and metha-
notrophy (kMT; turnover time of methanotrophy; Figure S8). For 
example, a low ratio of aerobic respiration to methanogenesis 
(smaller k; higher CH4 production potential) in RU-CHE and US-
BES compared to other sites can be attributed to higher average 
WT and smaller temporal variations (Figure S1), which kept the 
soil more anaerobic than other sites. The variations in these op-
timized parameters among sites may represent other environ-
mental status that the model does not include, such as substrate 
status (Chang et al., 2020; Roy Chowdhury et al., 2021).

4.2  |  Variations in sensitivity to drying

The fluxes of CO2 and CH4 were sensitive to drying when the 
initial WT was close to 0. Unless there had been an abrupt hy-
drological change before the observations, the current WT can 
be represented as the long-term WT. Water-saturated peatlands, 
which are less exposed to aerobic conditions, have a large frac-
tion of partially decomposed C in the topsoil compared to peat-
lands with lower WT, the topsoil of which has already been largely 
decomposed. Thus, a large fraction of remaining labile C can be 
rapidly decomposed to CO2 instead of CH4 when WT lowers, thus 
showing a stronger drying response. Non-permafrost peatland 
with high initial WT in US-BZF showed the strongest response 
to drying up to 50 cm, with >2 kg C m−2 less C accumulating over 

F I G U R E  5  Cumulative CO2 (a), CH4 (b), and combined (c) flux change over 100 years for control (solid) and dry by 10 cm (dashed) 
treatments. Positive (negative) values represent net emission (uptake) to (from) the atmosphere (a–c). The differences between control 
and dry by 10 cm treatments are depicted in d–f, with positive values representing increased CO2-eq emissions or decreased CO2-eq uptake 
compared to the control treatment. Asterisks next to the site name indicate non-permafrost peatlands.
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100 years compared to the initial WT condition. In contrast, peat-
lands with low initial WT may show no or subtle responses to 
drying due to less available labile C in deeper soil layers (Huang 
et al., 2021; Muhr et al., 2011). Larger temperature fluctuations in 
shallow layers compared to deeper layers may contribute to these 
stronger responses (Kwon et al.,  2017). Fluctuations in WT can 
also affect the magnitude of the responses: Although the largest 
response was observed in US-BZF because of the combination of 
high WT and a large C stock, temporal lowering of WT resulted in 
a smaller slope change than in RU-CHE (Figure 3 and Figure S6), 
where WT was constantly high.

Permafrost underlain peatlands showed lower CO2 and CH4 
fluxes compared to the other sites, as shown in previous studies 
(Kuhn et al., 2021; Olefeldt et al., 2013; Treat et al., 2018). This is 
mainly because permafrost limits the plant rooting depth and pro-
ductivity, subsequently leading to reduced C input to soils, and re-
duced decomposition. However, the responses to drying in terms of 
direction and magnitude were similar between permafrost and non-
permafrost peatlands. Low absolute C fluxes in permafrost peatlands 
affected the variations, leading to almost no response in C fluxes and 
stock to drying in US-HEA, where initial WT is low and the existence 
of permafrost retards deep soil processes. Furthermore, low abso-
lute CO2 fluxes in RU-CHE and US-BES resulted in a temporal switch 
from net CO2 uptake to net CO2 emission in response to drying.

The simulated exponential decrease in CH4 fluxes as a func-
tion of WT was very similar to previous observations in natu-
ral (Huang et al.,  2021; Kuhn et al.,  2021; Nykänen et al.,  1998; 
Olefeldt et al.,  2013) and managed peatlands (Evans et al.,  2021). 
However, our simulations showed exponentially decreasing NEE to 
near-neutral NEE with lowered WT, in contrast to the linear rela-
tionship between WT and NEE in the managed peatlands of Evans 
et al.  (2021). The difference can be attributed to the management 
(harvest): Fens and bogs without harvest hardly showed the net CO2 
emissions with low WT, but grasslands and croplands showed net 
CO2 emissions with low WT possibly because of different biogeo-
chemical processes from natural peatlands, for example, disturbance 
and nutrient status (Evans et al., 2021). Nevertheless, we can further 
investigate whether natural peatlands can act as the net CO2 source 
with extremely low WT by including more sites and more years with 
climate variability (Fenner & Freeman, 2011; Qiu et al., 2022).

4.3  |  C stock change and warming effects

Stronger decreases in the net CO2 uptake than decreases in CH4 
emission resulted in smaller C accumulation in dry peatlands. Also, 
water-saturated peatlands were more vulnerable to C loss in re-
sponse to drying compared to peatlands with initially lower WT. 
Furthermore, a significant C loss was observed in non-permafrost 
peatlands and a possible switch from C sink to source in permafrost 
peatlands. It is challenging to detect the change in SOC in field ma-
nipulation experiments since the soil C pool changes slowly, but 
we can infer from a large accumulation of C in peatlands that wet 

conditions are favorable for slower turnover and higher C accumula-
tion in soils (Hugelius et al., 2020; MacDonald et al., 2006). Whether 
these C sinks become C sources or not is highly uncertain, but it is 
likely that C sink capacity decreases or even turns into a C source 
(Hugelius et al., 2020), combined with higher risk of peat fire may 
make these C stocks more vulnerable to future warming (Turetsky 
et al., 2011; Witze, 2020). Günther et al. (2020) showed that peat-
land drying has a net warming effect due to larger increases in long-
lived CO2 emission than decreases in short-lived CH4 emission, 
which contrasts with this present study. Günther et al. (2020) used 
emission factors to estimate warming effects, with much larger CO2 
emission rates than CH4 in temperate and tropical zones compared 
to the smaller warming effects reported here for the drying response 
of boreal peatlands. As both CO2 and CH4 fluxes are responding 
non-linearly to a lower WT and the relative changes between CO2 
and CH4 fluxes differ by site combined with temperature sensitivity 
(Chen et al., 2021), more thorough analyses are needed to quantify 
the compound effects of warming and drying on peatland C.

We did not include climate change other than WT drawdown 
in this study, but WT dynamics are tightly connected with climate 
change. For example, warming itself can increase evapotranspiration 
and warming-induced increases in plant biomass can accelerate this 
change (Helbig et al.,  2020), further lowering WT in peatlands. In 
addition, drier peatlands with lower water availability can increase 
sensible heat flux, which can warm lower atmosphere (Göckede 
et al.,  2017). Changing precipitation patterns can modify WT of 
peatlands in the local and regional scales (Qiu et al., 2022). Because 
of high uncertainty and large temporal and spatial variations in the 
relationship among temperature, precipitation, and peatland WT, it 
is challenging to forecast the direction and magnitude of C response 
of northern peatlands and their feedback with climate. However, 
studies including climate change predict that northern peatlands will 
reduce their C sink capacity (Chaudhary et al., 2020) or lose C (Treat 
et al., 2021; Wu et al., 2013) especially under strong warming sce-
narios (Chaudhary et al., 2022; Qiu et al., 2022). Although the mag-
nitude of C loss in response to WT changes in our study is less than 
the previously studied temperature and precipitation responses, our 
results indicate that drying may exacerbate C loss due warming of 
northern peatlands.

4.4  |  Limitations and future directions

Despite well simulated fluxes after optimizing the model param-
eters, some processes can be added for further improvement. For 
example, our model does not differentiate peatland types, such as 
fens and bogs, which have distinguishable hydrologic connectivity to 
groundwater and nutrient supply (Charman, 2009). Greater param-
eter value (Vcmax25) for plant productivity in US-BZF (fen) than other 
sites could have represented higher nutrient supply, but different 
seasonality among peatland types may not be captured depending 
on the relative importance of hydrologic connectivity on the C cycle. 
Furthermore, processes in the standing water in fens, such as CH4 
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oxidation in the water column (Ward et al., 2020), contribution of 
algae (Kane et al., 2021) and predation (Wyatt et al., 2021), can be 
incorporated.

Our current model has one peatland-representative plant 
functional type and does not distinguish multiple peatland plant 
species, such as sedges, mosses, shrubs, and trees, which can 
respond differently to short-term hydrological changes (Sulman 
et al.,  2010), and their potential compositional change following 
long-term hydrological changes (Breeuwer et al.,  2009). We did 
not include peatland forestry in this study, but intensive drain-
age that results in significant tree growth can be another aspect 
to consider, which may increase (Krüger et al.,  2016; Minkkinen 
et al., 1999; Simola et al., 2012) or decrease (Krüger et al., 2016; 
Minkkinen et al., 1999; Nykänen et al., 2020; Simola et al., 2012) 
soil C but increase plant biomass and total terrestrial C stock 
(Minkkinen et al., 1999). Furthermore, potentially deepening root-
ing depth (priming effects) may accelerate C loss as well in deeper 
soils (Keuper et al., 2020). In addition, our current model has con-
stant peatland surface elevation, although peatland surfaces are 
not static and changes in their physical properties can alter soil 
biogeochemical properties: Persistent dry conditions can change 
the peat properties, such as bulk density, which can subsequently 
influence hydraulic and thermal properties, decomposition rates, 
and plant composition (Kreyling et al., 2021; Nykänen et al., 1998; 
Turetsky et al., 2014). After a substantial portion of the dry peat 
at the surface is decomposed and becomes compact, the sur-
face subsides and the relative WT becomes higher (hydrological 
self-regulation of peatlands; Belyea & Baird,  2006; Dise,  2009; 
Waddington et al.,  2015). We prescribed the WT with the ob-
servations (relative to the surface), and short-term responses up 
to the observation point were well simulated. However, without 
dynamic surface elevation (e.g., subsidence) represented in the 
current model, WT drawdown and its effect on the C cycle can 
be overestimated in the long-term especially in non-permafrost 
peatlands (Nijp et al., 2017). This overestimation can be less of a 
concern in permafrost peatlands, because permafrost and ground 
ice block or retard the vertical and lateral water drainage, and per-
mafrost thaw and ground ice melt will remove surface water that 
connects the hydrological feedback process. The intensity of this 
change can be also species specific and can be strong at the sur-
face, where abundant macro-pores exist (McCarter et al., 2020). 
Additional model development to take into account these short 
term and long term as well as aboveground and belowground 
factors could further reduce the uncertainty of the direction and 
magnitude of C stock changes.

With a finely calibrated land surface model with a multilayer 
soil module, we demonstrated decreasing CO2 sink strength and 
CH4 emissions in response to drying, and these responses were 
stronger when initial WT conditions were close to the soil sur-
face. There is limitation in upscaling this response to the whole 
northern peatlands based on the results from only six northern 
peatlands. For example, US-BZF showed the highest CH4 fluxes 
among all six sites of this study, but its CH4 flux rate is comparably 

lower than other northern peatlands (Kuhn et al., 2021) possibly 
because methanogens are outcompeted by reducers of alter-
native electron acceptors (Kane et al., 2013; Rupp et al., 2021). 
Variations in parameters that are associated with methanogen-
esis (k) partially represent redox status, yet such processes can 
be included. Using averaged parameters for the whole region 
can over- or under-estimate fluxes (Qiu et al.,  2018; Salmon 
et al.,  2021; Treat et al.,  2018), or converge to the average 
fluxes. In addition, despite several available peatland/wetland 
maps (Hugelius et al., 2020; Olefeldt et al., 2021; Xu et al., 2018) 
and possible usage of precipitation minus evapotranspiration as 
a proxy of relative WT variations (Gulev et al., 2021), the lack of 
highly heterogeneous local WT data in the northern peatlands 
will not allow us to accurately assess the current responses of 
northern peatlands to changes in water balance. In addition to 
the high uncertainty in the temporal and spatial variations in WT 
depending on climate and anthropogenic activities, permafrost-
thaw-related changes add more complexity to evaluation of 
long-term trends. When excessive ground ice melts, it can in-
duce further hydrological changes (Andresen et al., 2020; Lewis 
et al., 2012; Nitzbon et al., 2020; Rodenhizer et al., 2020). Thus, 
the inclusion of ground ice dynamics and the associated topo-
graphical and hydrological change in the model are essential to 
constrain C flux and stock change in permafrost peatlands (Cai 
et al., 2020; O'Neill et al., 2019).

Although peatland drying reduced the net CO2-eq fluxes, it de-
creased C accumulation, which is one of the crucial functions of 
northern peatlands. In particular, peatlands with a high WT are 
more vulnerable to C loss, including a large potential C loss in non-
permafrost peatlands and a possible switch from C sink to source 
in permafrost peatlands. Human-induced drainage can be avoided 
to reduce this C loss, but climate-driven peatland drying, including 
permafrost-thaw related drying, cannot be prevented without strong 
climate change mitigation. Furthermore, re-wetting does not neces-
sarily restore peatlands to pre-drying conditions (Harris et al., 2020; 
Kreyling et al., 2021), and the intact wet conditions are critical for 
maximizing C storing function of peatlands.
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