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Abstract - Permeability of fibrous microstructures is a key material property for predicting the mold
fill times and resin flow path during composite manufacturing. In this work, we report an efficient
approach to predict the permeability of 3D microstructures from deep learning based permeability
predictions of 2D cross-sections combined via a circuit analogy. After wvalidating the mnetwork’s
predictions in 2D and extending it to 3D, we investigate its capabilities for handling images of various
sizes obtained from virtual and real microstructures. More than 90% of 2D predictions is within +30%
of their counterparts obtained via flow simulations, similarly for 3D transverse permeability predictions,
while in 3D case computational time is reduced from several thousands of seconds to less than 10
seconds. This work provides a robust and efficient framework for characterizing the permeability of
fibrous microstructures and paves the way for extending this capabilily to estimate the permeability of
fabric mesostructures.

Keywords - B. Permeability, B. Microstructures, C. Numerical analysis, Deep Learning

1. Introduction

Typical reinforcements used for manufacturing fiber reinforced polymer composites (FRPC)
are made of woven, braided or knitted yarns that contain thousands of individual fibers or
filaments [1]. Fabric construction, yarn geometry and filament count have implications for the
manufacturability [2,3] as well as the mechanical performance of FRPCs [4-6]. Permeability,
or the hydraulic conductivity, of the pore network is a 3D tensor defined by the pore structure
within the fabrics and is a key set of input parameters to flow simulations carried out during
mold design in Liquid Composite Molding (LCM) processes to predict mold-filling times and
to optimize the injection strategies [7-9].

Historically, permeability has been characterized experimentally [10-14] and many variants
are reported for both in-plane and out-of-plane permeability characterization with different
boundary conditions, relying on (un)steady flow conditions, or involving one, two or three
dimensional flow [10,11,13,15]. Owing to the development of numerical techniques to represent
the fabric structures and to simulate the flow within those, interest is growing to replace the
laborious and delicate permeability characterization experiments by physics-based numerical
simulation [16-19]. However, this approach lacks the representation of the inherent variability
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such as yarn deformation, nesting etc., as well as the random distribution of fibers within
yarns [20,21]. To overcome this limitation, an alternative route emerged based on collecting
the micro- and meso-structural 3D geometric information via X-ray computed
microtomography scans and performing flow simulations within those domains [22-26]. Despite
the aforementioned advances, these simulations still require access to high computational
power as they typically require hours even in highly parallelized systems [27]. On the other
hand, analytical models provide straightforward solutions to estimate the permeability of
textile reinforcements. These models range from simple models based on porosity of isotropic
porous media, [28-32], to models that also take into account the flow direction with respect to
the fiber orientation, either across or along the fibers as well as the tortuosity [33-38], with
some of these being only applicable to transverse flow [39-42]. However these solutions remain
typically limited in terms of dealing with ordered/disordered fibrous structures, as well as local
variability in the microstructures, such as abruptly changing fiber volume fraction due to
highly compacted areas or resin rich zones.

Artificial neural networks (ANNs) provide powerful alternatives for prediction of permeability,
among many other predictive capabilities, as they can consider local fiber distribution patterns
and relate these to bulk permeability in a generalizable manner. ANNs are made of processing
units which can discover and learn complex and meaningful patterns in a dataset through a
trial-and-error procedure - in the case of supervised learning. Deep learning is a subclass of
these machine learning techniques, named from the presence of many processing units - also
called layers - in series and in parallel in the artificial neural network [43]. In a broad sense,
deep learning techniques have been exploited for many purposes such as speech recognition,
language processing, autonomous-driving, medical diagnosis as well as in materials science [44—
48]. Convolutional neural networks (CNNs) are a type of deep learning algorithm that takes
images as input and relates the features of the image to a property of interest. In materials
science, they have been used for predicting the thermal, mechanical and hydraulic properties,
design and topology optimization of material systems [49-56]. In recent years, several studies
explored CNNs suitability for predicting local flow fields and the permeability of porous media,
mainly for isotropic porous media such as found in soil science [57-64]. To the best of our
knowledge, these advanced techniques have not been applied to the study of oriented fibrous
porous media and their particular highly anisotropic permeability.

In-line with the aforementioned works and to speed up the “learning phase”, the aim of this
work is to propose a microstructure-guided upscaling procedure which combines (i) CNNs and
(ii) analytical upscaling technique as a fast and accurate method to predict the permeability
along the principal directions of fibrous 3D structures. The established route for this task
involves providing the CNN with real 3D images of microstructures whose permeability is
known, training the network for it to optimize its filters, and using the trained network to
predict the permeability of previously unseen 3D microstructures. However, this would require
extensive prior work to obtain the permeability and microstructure of hundreds to thousands
of unique fiber arrangements. An alternative route involves the computer generation of 3D
images, followed by fiber scale flow simulations to estimate the permeability, then training a
3D neural network on this set of generated images. Yet, this is still highly computationally
intensive. To further increase the computational efficiency in case of highly oriented fibrous



media exhibiting transverse isotropy, we propose to test the possibility of using a CNN that
predicts the permeability values of 2D slices along the fiber direction of artificially generated
3D structures, and then to use an electric circuit analogy as a simple upscaling technique
(which is well suited to the considered fibrous media only) to estimate the permeability of 3D
structures based on individual slices’ permeability predicted by the neural network. This allows
reducing the computational time from several thousands of seconds required for running 3D
flow simulations to estimate the permeability to less than 10 seconds without sacrificing the
permeability estimation quality, as will be discussed in the following sections. After validating
the 2D and 3D permeability prediction accuracy of this highly efficient approach, we
investigate image pre-processing strategies to demonstrate the suitability of our methodology
in images that have a different size than what the neural network expects as input (i.e., images
with pixel dimensions different from 400x400 pixels as will be introduced in the following
sections) or images with very large or very small fibers; or in other words, our approach is to
use synthetic data to train a CNN with the aim to transfer learning to real microstructures
where the image size as well as the fiber diameter can vary.

2. Methods

2.1  Elementary volume generation

Training and testing the suitability of a CNN for predicting the permeability requires
generating many elementary volumes (EVs) that will form a large dataset with good coverage
in terms of vy, fiber radius 7, fiber orientation and spatial distribution patterns. As discussed
by Rimmel et al. [65], images containing on the order of hundreds of fibers where each fiber’s
r is represented by approximately 10 pixels result in acceptable permeability values when the
permeability of these images is estimated via solvers working directly on the images (i.e.,
solvers that avoid using mesh based solvers thus bypassing a meshing procedure), as is our
case. More specifically, the authors compared three cases with 262, 484 and 799 fibers and
concluded that the case with lowest fiber count was more prone to probability of individual
images whose permeability is estimated to be 0 due to locally blocked structures. As the
computational cost of EV generation increases as the number of fibers increases; using larger
images as input to CNNs implies larger downstream layers, further increases the computational
cost.

Based on these considerations, we procedurally generated images of practically aligned fibers,
with dimensions of 400x400 pixels where each pixel corresponds to area of 1 pm?and where
the fibers had one of the following number of pixels as their radii, r: 6, 8, 10, 12, or 14 pixels
and where the fiber content vy varied between 0.25 and 0.70, by increments of 0.05. This
resulted in microstructures whose number of fibers varied between 65 (r = 14 pixel, vy = 0.25)
and 990 (r = 6 pixel, vy = 0.70), see Supporting Table 1 for the number of fibers in all the
studied cases. We used a Monte-Carlo procedure similar to that summarized by Chen and
Papathanasiou [66,67], which starts from an arbitrary packing of fibers with desired r and v
and attempts to move fibers one by one in randomly selected directions at a random extent
(see Supporting Figure 1 for additional information). Despite the suitability of this approach
to generate 2D microstructures, the sudden jumps of fibers result in an undesired short-range



tortuosity as depicted in Figure la. To overcome this limitation, we defined an initial direction
for each fiber which is slowly and randomly changed at each new slice as visually depicted in
Supporting Figure 2. This allowed us to generate microstructures as shown in Figure 1b which
was made up of fibers which had a long-range tortuosity while avoiding sudden jumps between
successive slices.

a)

Figure 1. a) EV generated by the original Monte-Carlo approach, b) EV generated without
the short-range behavior. In both cases, r = 10 pizel, vy = 0.6.

b) c)

Figure 2. Some examples of generated 3D architectures. a) v = 6 pivel, vp = 0.3, b)) v = 10
pizel, vp = 0.5, ¢) v = 14 pizel, vy = 0.7.

2.2 Flow simulations

When considering at the pore scale the Stokes flow of an incompressible Newtonian fluid, the
macroscale flow through porous media is described by Darcy’s law:

u= —iK-VP (1)

where u is the volume averaged flow velocity, K is the permeability tensor, u is the resin
viscosity and VP is the pressure gradient driving the resin impregnation through the pores. K
is a positive definite symmetric tensor which can be reduced to its diagonal form represented
by Ky, K, and K, terms corresponding to permeability along the x-, y-, and zdirections when
these directions are the principal directions of K as it is the case in the simulations shown
hereafter.

After generating the EVs, we performed flow simulations to extract the transverse and axial
permeability values. We performed simulations on EVs with a depth (in y-direction) of one
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(i.e., on 2D slices) to train the CNN as well as on full EVs (which consisted of 800 slices) to
validate our approach based on combining both the circuit analogy as an upscaling technique
which is well suited for the considered fibrous media and CNN predictions.

We opted for the Geodict software (Math2Market® GmbH) and its FlowDict module to
perform our fiber scale simulations, as it can perform the simulations directly on the binarized
images thus eliminating the need for mesh generation and as it can be automated via Python
scripting to repeat the simulations on thousands of 2D binary images. We used an Explicit
Jump-Stokes solver to solve the governing Stokes flow equations (i.e., at negligible or zero-
valued Reynolds number) as reported in earlier work for permeability characterization
[22,65,68] with boundary conditions visually outlined in Figure 3. More specifically, we defined
periodic boundary conditions with implicit inlet and outlet along the flow direction (as shown
in Figure 3a for the z-direction) and defined periodic boundary conditions in the tangential
directions as our EVs already had periodic boundaries as well as to minimize computational
time without sacrificing the accuracy, as reported in [65] for similar simulations performed
with the same software/module to extract transverse permeability of 2D microstructures. To
run the simulations, the EVs were subjected to a macroscopic pressure difference of 0.02 Pa
and the fluid viscosity was arbitrarily set to 1 mPa s.



a) b)

Figure 3. Boundary conditions and corresponding flow fields in z- and y-directions (velocity
magnitude), respectively. (a€c) Boundary conditions highlighting the implicit inlet/outlet
voxels in orange and periodic tangential boundaries in blue. (b€8d) velocity magnitude fields
for the microstructure and boundary conditions shown in ac.

2.8 CNN architecture

We implemented a modified version of AlexNet [69] architecture that is derived from LeNet
network and paved the way for the most recent architectures which are based on the similar
filter features. It provides fairly good results in both complex classification and regression tasks
[70,71] and is available in Matlab’s Deep Learning toolbox. The design of the CNN is outlined
in Figure 4a. CNN takes a matrix with a size of 400x400 (i.e., an image with 400x400 pixels)
and outputs the permeability, thus the network is set up for a regression task where the input
is an image and the output is a numeric value. As mentioned before, we studied both axial
and transverse permeability values and we used the same network architecture after training
it with the desired data type. Each convolutional block shown in Figure 4 consists of a
convolutional layer followed by a rectified linear unit (ReLU) as the activation function which
is then followed by batch normalization and max pooling layers. The last convolutional block
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is followed by a dropout layer with a drop probability of 0.2 and by a fully connected layer to
adapt the network to a regression task. The use of batch normalization and the dropout layer
are common practice to avoid overfitting; batch normalization also accelerates the training
process [72-74]. The filters (or kernels) in convolution layers have a size of 7X7, 5x5, and 3X3
respectively. All three convolutional layers’ filters have a stride of 1 and paddings of 3, 2, and
1 and number of filters is 16, 32 and 64 respectively. Similarly, max pooling layers’ size and
stride vary with the first two of them having a size of 4x4 and a stride of 4 while the last one

has a size of 2%X2 and a stride of 1.

In total there are 50 unique microstructure types (5 different pixels per r and 10 different fiber
content vg), each with 1000 unique slices along the fiber direction. Out of these images, 1280
of them are selected randomly and used in the CNN training. As a 2D microstructure’s
permeability is identical when it is flipped upside down or left to right, we augmented the
image input by flipping the images and used them during CNN training with a split of 3:1
between training and validation images.

On the neural network output side, we used the logarithm of permeability and mapped it
between -1 and 1 using the minimum and maximum values. This approach outperformed other
options during our early trials such as directly using the permeability or mapping with the
mean and standard deviation of the logarithm of permeability. After defining the CNN
architecture, pre-processing the input and the output data, we trained the CNN for 500 epochs
using the ADAM optimizer via Matlab Deep Learning Toolbox (see Supporting Table 2 for
the hyperparameters used in training) on an Nvidia Quadro RTX6000 with 24GB memory;
the training lasted approximately 14 hours. Figure 4b shows the evolution of root mean square
error (RMSE) for training and validation data over 500 epochs. Stable value of RMSE for
validation data indicates the absence of overfitting, a desired feature for any neural network
training and fluctuation in the training curve is expected due to the use of a dropout layer
[75].
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a) b)

Figure 4. a) CNN architecture used in this study. Each convolution block corresponds to a
convolution layer followed by ReLU, batch normalization and mazx pooling layers. b) Evolution

of root mean square error (RMSE) for training and validation parts of data.



3. Results and Discussion

3.1 2D transverse and axial permeability

We trained the CNN with the architecture shown in Figure 4a for two different cases: (i) to
predict the permeability along the z-direction, K, and (ii) to predict the permeability along
the longitudinal y-direction, K, respectively. It is also worth noting that the transverse
directions (i.e., 2~ and zdirections) can be tackled using a single network as the input 2D
images can be transposed such that the neural network trained for K, prediction can also be
used for predicting K,, as will be demonstrated below. Figure 5a and b show, for 2 and y-
directions respectively, the neural network predictions and the corresponding simulation
results for 3000 randomly selected images from the test data (see also Supporting Figures 3
and 4 for the histograms of permeability results obtained wvia simulations and via the neural
network predictions). In general, the predictions seem to be well-aligned with the simulation
results for both directions. FEven though the scatter is quite limited for the y-direction,
predictions for a-direction deviate from the simulation results at low permeability values
(roughly for permeability values lower than 1 10"* m*typically obtained when v; was equal to
or higher than 0.65). Coincidentally, Geodict tends to return 0 for transverse permeability of
high vy images and we excluded these data points from the training and testing of the neural
network. This practice obviously results in an imbalance within the dataset. The so-called
class imbalance is a common issue, and refers to the high representation of one of the classes
in the data and the resulting bias in the learning process in favor of the dominant class [76,77].
We note that improving the balance would require more simulation results with very high v
images. However, accounting for those cases would require switching to a mesh-based
simulation approach where local mesh refinement between the narrowly spaced fibers would
be necessary. For practical reasons, we opted to avoid switching to a mesh-based solver and
used the dataset as is. This imbalance in the dataset might have contributed to the scatter in
Figure 5a that is more pronounced in the low permeability regime.

Considering the predictions in both directions, the deviation from the Geodict results seems
to be rather low for all the images except those where fiber radius is 14 pixels, as will be
quantified in the following paragraph. Considering that the 14 pixel radius case is less prone
to discretization (or rasterization) based representation errors, that are prominent at low pixel
per radius situations, we suspect that the relatively low performance for the 14 pixel radius
case could be improved by altering the padding as well as the filter sizes. However, we note
that a sensitivity study of the aforementioned parameters will not be carried out in this first
paper as each modification requires subsequent changes in the downstream layers of the
network to maintain the output sizes; this will be investigated in a follow-up work.

To quantify the deviation of the CNN predictions from the simulation results, Figure 6 reports
the cumulative distribution of deviation in relative terms |GD — NN|/GD where GD and NN
correspond to Geodict results and neural network predictions, respectively (see also Supporting
Figure 5 for corresponding histograms). Dashed gray lines correspond to 30% deviation
between the simulation results and the network predictions. The choice of 30% deviation might
seem arbitrary at first glance. However, it corresponds to the deviation range found
experimentally under strictly controlled characterization settings [11,12]. In general, the
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deviation is lower along the y-direction predictions in comparison to those along the -
direction; only the 14 pixel radius case stands out from the rest of the results with a slightly
higher difference between simulation results and the neural network predictions. As mentioned
above, this is suspected to originate from the mismatch between the characteristic feature size
(boundaries of fibers which happen to have 14 pixels radius) and the filter sizes and padding
settings as also reported in [63,78] and will be investigated in a future work. We also note that
the relatively low fiber count in the images with 14 pixel radius fibers might have reduced the
predictive capability of the neural network. With the same logic, the relatively low deviation
for the 6 pixel radius case in Figure 6 originates from the relationship between the pixel per
radius and the filter sizes. The relatively higher scatter along the z-direction predictions
manifests itself as ~97% of predictions (upper dashed gray line in Figure 6a) having less than
30% deviation from the simulated results in the best case with 6 pixel radius. However, we
note that even in the worst case, ~90% of the predictions (lower dashed gray line in Figure
6a) are within the 30% deviation range, and the scattered points in Figure 5a result in an

extended upper tail for the 14 pixel case in Figure 6a.

10710 T T w 10710

O &pixels O 6 pixels
O 8 pixels O 8 pixels
O 10 pixels O 10 pixels
O 12 pixels O 12 pixels
— 10" O 14 pixels E — 10" E[ O 14pixels
o o
E E
2 8 2
S S
o o
g 10-12 g 10-12 b
Q. Q.
2 2
107 oo 10
o
o
o
-14 1 M L 10—14 i i i
10 10713 10712 101 10710 101 10713 10712 101 10710
a) Geodict Results [m?] b) Geodict Results [m?]
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3.2 3D permeability

Circuit analogy based on 2D predictions — In this section, we investigate the suitability of
combining 2D permeability predictions wvia circuit analogy to estimate the 3D permeability of
fibrous microstructures. To that end, we generated 15 new microstructures each consisting of
800 slices along the fiber direction with slices having a dimension of 400x400 pixels. Table 1
shows the fiber radii, r, and fiber content, vf, of the studied microstructures and the runtimes

of the Geodict flow simulations in all three directions.

For o and z directions, the equivalent permeability is calculated by the circuit analogy of 800
resistances (1/Ky) in parallel using the arithmetic mean of individual slices’ permeability or in
other words, a Voigt bound of the flow resistivity whereas along the y-direction case, the
equivalent permeability is based on the circuit analogy of 800 resistances (1/K,,) in series using
the harmonic mean of individual slices’ permeability or, in other words, a Reuss bound of the
flow resistivity. Figure 7 shows the runtimes of the CNN based permeability prediction
algorithm and for 800 images the total duration is 8.56 seconds (including the time spent for
loading the network, loading the images and subsequent calculations for circuit analogy, see
also Supporting Table 3 for a list of the computational times presented in Figure 7). Compared
to the simulation runtimes listed in Table 1 that are on the order of thousands of seconds, the
merit of this approach in terms of reducing the computational intensity is clear and its

prediction accuracy will be investigated in the following subsections.

Figure 8 shows the construction of the circuit analogies and the reader is referred to our
previous work for a detailed description of circuit analogy for permeability estimation purposes
[2,79]. Figure 9 shows the permeability values obtained via 3D simulations (GD-3D), the mean
and the standard deviation of 2D permeability values obtained via Geodict (GD-2D) and the
neural network (NN-2D) as well as the resulting circuit analogy results, namely GD-circuit
and NN-circuit. Figure 9a, b, and ¢ report the results for r = 10 pixel cases for 2, y-, and 2
directions, respectively, and the same results for r = 6 and 14 pixel cases are reported in
Supporting Figure 6. Results show a characteristic difference between the trends for 2 and 2
directions on one side, with most of the results falling in a small range. On the other side,
along the y-direction, there seems to be an order of magnitude difference between 2D results
and 3D results, both for the simulation and the circuit analogy.

Along the 2 and zdirections, the circuit analogies (GD-circuit and NN-circuit) and 2D
permeability results (GD-2D and NN-2D) exhibit a small scatter except for very high vy cases
where the high standard deviation of GD-2D results is due to simulation returning 0 for the
permeability in these cases as reported in previous subsections. Figure 9a and ¢ show that the
circuit analogy of neural network predictions (NN-circuit) approximates well the permeability
obtained wia the flow simulation on the full 3D geometry. Figure 10a, b, ¢ shows the ratio,
Kyn—circuit/ Kep—3p, for the three studied radius value (6, 10, and 14 pixels per radius); the
ratio fluctuates between ~0.6 and ~1.1 for the results along the 2~ and zdirections, with a
general tendency of neural network circuit underestimating the permeability around a ratio of
~0.8 (see also Supporting Figure 7 for Ksp_circuit/Kep—3p results). However, given the fact the
3D simulations take hours to run and there is an entry barrier to the use of any software, the
value of the neural network circuit analogy lies in its accuracy as well the fact that one can
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obtain these results within a fraction of a second. Another interesting behavior is the departure
of both GD-3D and NN-circuit from Gebart's permeability predictions (see ref. [33] or
supplementary document for Gebart permeability models’ equations for both longitudinal and
transverse cases) at high vy regime, a phenomenon also observed in Refs. [80,81] further

validating our simulated and predicted transverse permeability results.

Table 1. Runtimes (in seconds) of 3D flow simulations in Geodict for the investigated
microstructures with different vy and pizel per radius and dimensions of 400X 800X 400 pizels
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Figure 7. Computational time required for permeability prediction using the CNN
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Figure 8. Circuit analogy configuration used for estimating the principal permeability values
of the considered 3D fibrous structures.
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12



Implementing a slightly modified neural network that makes use of 3D images instead of 2D
ones could be a route for increasing the accuracy of the permeability predictions of 3D images.
However, this would require hundreds if not thousands of unique 3D images and to perform
the simulations on each 3D image so that they can be used for training, validating, and testing
the neural network. It is not hard to imagine that this task would require several months of
computation, thus reiterates the value of our approach as it only relies on simulations on 2D
images which take much shorter time to generate as well as to perform the flow simulations
on these. We note that another approach to improve the accuracy in prediction of the 3D
permeability tensor is to make use of more complex relations, such as an upscaling approach
based on the tortuosity and specific surface area definition as pursued by Saxena et al. [82].
However, as demonstrated in that paper as well, the use of tortuosity and specific surface area
usually implies lower permeability as one goes from 2D to 3D while 3D permeability is higher
in our case. This inversed relationship might result from the simulation setup that we used
(boundary conditions etc.), as also manifested along the y-direction results shown in Figure
9b.

For the y-direction results, i.e., along the main fiber orientation, there is almost an order of
magnitude difference between 3D simulation results and the circuit analogy, as well as between
3D and 2D simulation results. Considering that the 3D simulation results are comparable with
Gebart's permeability predictions and slightly higher than those at high vy range as also
reported by Endruweit et al. [80], and as the agreement between 2D simulation results and
CNN predictions has been established in the previous section, the difference seems to be
originating from the 2D simulation results and their circuit analogy. The agreement between
2D permeability predictions and 2D simulation results is already established in section 3.1,
thus the issue originates from our 2D flow simulations as will be detailed in what follows. Upon
closer inspection of the simulation settings, the implicit inlet/outlet definition stood out as a
potential source of error. To investigate this, we took a random slice from every one of 15
studied configurations and extruded it to a depth of 10, 100 and 1000 slices as visualized in
Figure 11a, repeated the simulations and collected the permeability estimations. Figure 11b
shows the permeability predictions normalized with the permeability obtained with images of
1000 slice depth (K;/Kigpo where i = 1, 10, 100, or 1000) for r = 10 pixel case and in
Supporting Figure 8a and ¢ for r = 6 and r = 14 pixel cases. Supporting Table 4 presents the
corresponding permeability values of these simulations. For the - and zdirections, all the
results fall in a narrow range with a slightly higher variability in the 6 pixel radius case. On
the other hand, the y-direction results show that the permeability obtained using a single slice
(K1) is a fraction of Ky and the ratio increases monotonically as the number of slices increases.
However, repeating the same simulations without defining implicit inlet/outlet resulted in
elimination of the monotonic increase as seen in Figure 11lc for r = 10 pixel case (and in
Supporting Figure 8b and d for r = 6 and r = 14 pixel cases) where the scatter of y-direction
results was comparable with that of other two directions. This confirms that the difference
between the 2D and 3D results in Figure 9b originates from the use of implicit inlet/outlet
voxels or rather its unsuitability with 2D simulations along y-direction. Based on this
conclusion, the further analyses reported herein focus on the predictive capabilities of circuit
analogy based extension of neural network predictions along the transverse directions z and z.
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Case studies — Based on the previous subsection’s results, we analyze two case studies which
focus on transverse permeability prediction (i.e., K, and K,) in the cases where the input image
size differs from what the neural network takes as input, more precisely images with a
resolution different from the 400x400 pixel dimensions. In the following subsections, we first
investigate the prediction accuracy of the neural network with square images that can have
either smaller or larger edge length than 400 pixels and then investigate the prediction accuracy
on rectangular images of real microstructures where the fiber radius r as well as vy in
individual slices is variable; for the latter purpose we make use of the dataset distributed
within the framework of virtual permeability benchmark study, which consisted of a 3D binary
image with dimensions of 1003x124x973 voxels.

Input image with a different size — One limitation of the neural network architecture used in
this study is its inflexibility to the input image size. As described in 2.3, our neural network
expects a binary image with 400X400 pixel dimensions. However, in practice, one can collect
images via different methods such as micrography that not necessarily lead to the
aforementioned dimensions. A straightforward route is outlined in Figure 12 for square images
where one can resize the image to the input dimension expected by the network, estimate the
permeability and multiply it with the square of the rescaling ratio as permeability is known to
scale with 72, thus the square of the edge length since r scales with the edge length. In this
case, the rescaling ratio equals to the ratio between the edge lengths of the original image and
the resized image.

When considering image scaling, a limitation arises from the statistics of the training data,
more specifically from the fact that the fibers in the images used in neural network training
have a radius r between 6 and 14 pixels. Rescaling operations may result in fiber radii that
are either too small or too large, potentially lowering the prediction accuracy. To investigate
whether this is the case, we generated 120 individual images with 200x200 pixels where the r
was 4, 7, 10 or 14 pixels and vy was 0.3, 0.5 or 0.7 (10 images per vy and pixel per radius
combination) and images with 800x800 pixels as will be discussed below. Upon scaling up to
the desired dimension of 400X400 pixels these fiber radii double; with 10 and 14 pixels the
radius becoming 20 and 28 pixels, thus falling out of the radius range considered during neural
network training. In such a case one would expect the 4 and 7 pixel radius cases to have
comparable accuracy as that of the original test images whose results are reported in Figure
ba. Figure 13a shows that this is indeed the case and the permeability predictions for those
two cases are scattered around the equality line and similarly for 10 pixel radius cases except
for the high vy range, as also indicated by the purple arrow. Accuracy is significantly lower
for r = 14 pixel cases that manifests itself across the whole v range and amplified at higher
vy values as also indicated by the dashed green line. As speculated above, we suspect that this
behavior originates from the fiber radius (14 pixelsx 2 = 28 pixels) being out of the range of
the fiber radius in the training images (6 to 14 pixels), thus the microstructure statistics not
being considered during training. We verify this conclusion by exploiting the periodic
boundaries of these images and generating 400x400 pixel images by stitching four identical
copies of each 200200 image as depicted in Figure 14. By this practice, the fiber radii remain
untouched; and in this case only the 4 pixel radius falls out of the training range. As seen in
Figure 15, predictions of the 14 pixel images are scattered around the equality line indicating
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a much better accuracy in comparison to what is reported in Figure 13a. Similarly, prediction
accuracy for the 10 pixel radius images at high vf range is improved in comparison to their
upscaled counterparts reported in Figure 13a, but an overestimation similar to what is reported
in Figure Ha is still present, indicating that it most likely originates from the neural networks'
lower accuracy at permeability values below 10 m?. On the contrary, the 4 pixel radius results
with high vy display a departure from the equality line, as indicated by the orange arrow in
Figure 15, in comparison to Figure 13a and this re-emphasizes the limitation of the neural
network when it comes to predicting the permeability of images that contain fibers whose radii
are out of the range considered during the neural network training. However, we note that
there are several ways around this limitation, be it rescaling or stitching or cropping (which
would also provide a route for assessing the permeability of rectangular images) and there
exists an ultimate solution that involves training the neural network with a larger dataset
involving a larger radius range.

Similar trends are present in the case of images with 800x800 pixel dimensions. In this case,
we generated 120 individual images where the fiber radius was 8, 20, 40 or 50 pixels and vy
was 0.3, 0.5 or 0.7. The fiber radii are halved upon downscaling the images to 400x400 pixel
dimensions and the 20 pixel radius becomes 10 pixels which is in the range of fiber radii used
in neural network training while the other three cases (8, 40 or 50 pixel radius) falls out of the
training range. This reflects on the prediction accuracy of the neural network for this fiber
radius as reported in Figure 13b. The 50 pixel radius images (which become 25 pixels upon
downscaling to 400x400 pixels) exhibit the most deviation from the equality line as also
indicated by the dashed green line. The 8 and 40 pixel radius cases have relatively better
prediction accuracy, despite them also falling out of the training range. This also indicates the
robustness of the neural network to deal with microstructures that are not considered during
the training. We also note that the 8 pixel results consist of only two separate clusters instead
of three (similarly 4 pixel and 7 pixel cases in Figure 13a). This originates from the simulation
results that return 0 permeability at high vy.

Predict
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Figure 12. A visual summary of permeability calculation of images with resolution other than
400X 400 pizels. Pictures are not to be scaled.
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Virtual permeability benchmark dataset — The ultimate test to assess the performance of our

network is to subject it to real images (i) that have non-constant fiber radius r and fiber
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content vy along the fiber direction, (ii) non-periodic boundary conditions and (iii) that are
rectangular in shape with an aspect ratio different from 1. For this purpose, we used the 3D
image dataset used in the virtual permeability benchmark whose first results are reported in
[83]. The provided binary image has dimensions of 1003xX973x124 voxels and was obtained
using X-ray computed microtomography with a carbon fiber yarn and with a spatial resolution
of 0.52 pm/voxel. Each of the 973 slices along the fiber direction contains several hundreds of

fibers whose radii vary between ~6 and ~12 pixels.

We followed the procedure outlined in Figure 16 to prepare the images that can be input to
the neural network. This consisted in mirroring the image along the zdirection twice to reach
dimensions of 1003X973x496. We then cropped a region from each slice’s center with
dimensions of 800400 and this resulted with a 3D image with dimensions of 800x973x400.
We then split this image into two images with the size of 400x973x400 pixels. We predicted
the transverse permeability values (K, and K,) of each slice of both parts, then obtained the
permeability of each part via circuit analogy of resistances in parallel as also described in
subsection 3.1. To estimate the K, of the complete image (800x973x400), we treated the two
parts as resistances in series whereas the K, required treatment of the two image parts as

parallel resistances.

Table 2 presents the permeability predictions for both parts of the image as well as the bulk
permeability values along the 2~ and zdirections. Ref [83] reported the K, estimations of all
participants of the virtual permeability benchmark to scatter between ~4 10> m?and ~5 10"
m? with a mean value of 1.06 10" m2. Considering the large scatter within the results obtained
with the physics-based simulations performed by the participants and the fact that the
permeability estimation via our proposed procedure takes less than a minute (most of which
is spent for image processing rather than neural network calculations), our estimation of
6.67 10 m? can be considered as a very fast and accurate approach for permeability
estimation. Another observation in [83] is that the K, is higher than that in z-direction with a
scatter between ~8 10" m?and ~7 10" m? and a mean value of 1.41 10" m?2. A similar trend
is present in our estimations as the K, is estimated to be 8.79 10" m” More interestingly,
K,/K, ratio in the benchmark results is 1.33 (1.41 10"/1.06 10"*) while it is 1.32 (8.79 10
1/6.67 10**) for our predictions. Even though our neural network predictions are only as good
as the simulation results that are used for its training, the close match between K, /K, values
indicates that the network can also be used as a tool to assess the extent of anisotropy in the

microstructures.

We note that the extension from 2D to 3D permeability can be further improved by considering
the tortuosity induced effects or by altering the operations followed for obtaining the images
that can be used as inputs to the neural network. The former can be integrated into the neural
network’s prediction capability as demonstrated in [84] for simple 2D images. For the latter,
we pursued a different strategy to crop and mirror the images as outlined in Supporting Figure
9. Corresponding permeability predictions in Supporting Table 5 are slightly lower in this case
and this is likely to have arisen from the relatively low vy in the boundaries of the original
binary image due to difficulty of circle detection at the image boundaries which was used for
obtaining the binary images from the grayscale outputs of microtomography scans.
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prediction.

Table 2. Permeability prediction along the x- and z- directions using the CNN trained for
transverse permeability prediction. Part 1 and 2 (R, and R3) are constructed as 973 resistors
in parallel. Circuit analogy between R; and Ry is constructed as two resistances connected in
series for x-direction and as two resistances in parallel for z-direction.

Part 1 Part 2 Equivalent

permeability
Permeability [m?] | Kx 5.59 10 8.27 10 6.67 10"
K, 7.61 10 9.96 10 8.79 10

4. Conclusions

We demonstrated the relevance of a mixed and fast numerical-analytical strategy to estimate
the permeability of highly oriented 3D fibrous microstructures, by using permeability
estimation of 2D slices with convolutional neural networks (CNNs) and by extending the
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obtained predictions to full 3D flows via circuit analogy (i.e., simple Voigt and Reuss estimates
which are relevant for the considered fibrous microstructures). Despite CNNs being capable of
directly predicting the permeability of 3D microstructures, we opted for this mixed strategy
to avoid generating and performing flow simulations on thousands of 3D geometries - an
operation which would have costed months if not years of CPU time.

We first validated the prediction accuracy of CNN based 2D permeability estimation for
transverse and axial permeability values with 400x400 pixel images which contained fibers
with radii ranging from 6 pixels to 14 pixels and fiber volume fraction ranging from 0.3 to 0.7.
The prediction accuracy was rather high throughout the fiber radius and fiber volume fraction
range, with more than 90% of predictions being within +30% of the simulated results, and
also exhibiting a slight decrease at the very low permeability range that might originate from
the imbalance in the training data. We then extended the CNN based predictions to estimate
the permeability of 3D microstructures by making use of the circuit analogy which called for
parallel resistances approach for transverse permeability values (K, and K,) and for serial
resistances for the longitudinal permeability, K, . Along the transverse directions, the
estimations well fitted the permeability values obtained from fiber scale flow simulations
performed with Geodict across the whole studied range. However, the axial permeability
predictions were almost an order of magnitude lower than the reference values obtained from
Geodict. An investigation of the source of this mismatch showed that the discrepancy
originated from the selection of the boundary conditions in the simulations themselves.

As this work’s focus was on the feasibility of using CNNs for permeability prediction, we then
investigated cases where the image size was different from what the CNNs expected as the
input, namely dimensions of 400Xx400 pixels. Through analyses of images that are both smaller
and larger than this size, we could show that rescaling the images and feeding them to the
CNNs yielded highly accurate predictions. The only issue arose when the fiber radius was
significantly out of the range of what the CNNs have been trained with, more precisely the
range between 6 pixels and 14 pixels. As the last case study, we estimated the permeability of
a microtomography scan image that had rectangular shape, non-periodic boundary conditions
and contained fibers with moderate varying radii. For this purpose, we used the dataset
provided within the framework of the virtual permeability benchmark and we showed that our
approach presents a fast and accurate alternative to the flow simulations that were performed
by the benchmark participants to collect permeability information.

Further extension of the CNN prediction capabilities is possible, for instance to collect
tortuosity information, as well as other structural descriptors, that can be used to enhance the
permeability predictions or to account for the dual scale effects that can arise for some textile
reinforcements. Extending the fiber radius range in the training data is another change that
could extend the capabilities of the CNNs. However, it might be necessary to enlarge the image
size in this case and that would also necessitate altering the networks parameters such as
padding and filter sizes or adding a new convolutional block to the network.
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