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Abstract

Let n ≥ 3, and let Out(Wn) be the outer automorphism group of a free Coxeter group Wn

of rank n. We study the growth of the dimension of the homology groups (with coefficients
in any field K) along Farber sequences of finite-index subgroups of Out(Wn). We show
that, in all degrees up to ⌊n

2
⌋ − 1, these Betti numbers grow sublinearly in the index of

the subgroup. When K = Q, through Lück’s approximation theorem, this implies that all
ℓ
2-Betti numbers of Out(Wn) vanish up to degree ⌊n

2
⌋ − 1. In contrast, in top dimension

equal to n − 2, an argument of Gaboriau and Noûs implies that the ℓ
2-Betti number does

not vanish. We also prove that the torsion growth of the integral homology is sublinear.
Our proof of these results relies on a recent method introduced by Abért, Bergeron, Fra֒czyk
and Gaboriau. A key ingredient is to show that a version of the complex of partial bases of
Wn has the homotopy type of a bouquet of spheres of dimension ⌊n

2
⌋ − 2.
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1 Introduction

The homology groups of a Riemannian manifold or CW-complex X are among the most studied
and powerful invariants to understand its topology. Over time, the focus has shifted from the
space X to its fundamental group, and group homology has become an important topic on
its own. However, a precise computation of the rational homology of a group is often a very
complicated task; for example these numbers have an erratic behaviour with respect to simple
group-theoretic operations like passing to a finite-index subgroup. To smoothen this behaviour,
instead of considering the homology of the group G itself, one can study the growth of the Q-
dimension of the homology over a suitable sequence of finite-index subgroups of G, normalized
by the index. By Lück’s approximation theorem [Lüc94], when G is of type F∞, these numbers
converge to the ℓ2-Betti numbers of G, as defined by Atiyah [Ati76] and Cheeger-Gromov [CG86]
using ℓ2-chains and the notion of von Neumann dimension.

In recent work, Abért, Bergeron, Fra֒czyk and the first named author [ABFG21] have devel-
oped new tools to compute the homology growth with coefficients in any field that apply to many
families of groups and many degrees. This also enables to get some control on the growth of the
torsion part of the homology with Z coefficients. They obtained results regarding the homology
growth and homology torsion growth of SLd(Z), mapping class groups of finite-type surfaces,
and many Artin groups.
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In the present paper, we study these questions for the group Out(Wn) of outer automorphisms
of a free Coxeter group Wn = Z/2Z ∗ · · · ∗Z/2Z (the free product of n cyclic factors of order 2).
This group shares several rigidity properties with SLd(Z), the mapping class groups and Out(FN ),
see e.g. [Gue23]. Our main theorem is the following.

Theorem 1. For every n ≥ 3, every Farber sequence (Γk)k∈N of Out(Wn), every coefficient field
K and every 0 ≤ j ≤ ⌊n

2 ⌋ − 1 we have:

lim
k→∞

dimK Hj(Γk,K)

[Γ : Γk]
= 0 and lim

k→∞

log |Hj(Γk,Z)tors|

[Γ : Γk]
= 0.

We refer to [ABFG21, Definition 10.1] for the definition of a Farber sequence. Examples
include decreasing sequences of finite-index normal subgroups with trivial intersection. Notice
that Out(Wn) is residually finite [MO10, Theorem 1.5], so it admits Farber sequences.

In view of Lück’s approximation theorem [Lüc94] and Out(Wn) being of type F∞ (see Sec-
tion 4), we obtain the following consequence regarding the ℓ2-Betti numbers of Out(Wn).

Corollary 2. For every n ≥ 3 and every 0 ≤ j ≤ ⌊n
2 ⌋ − 1, one has β

(2)
j (Out(Wn)) = 0.

To complement Corollary 2, let us mention that on the other hand, the ℓ2-Betti number in
top dimension (equal to the virtual cohomological dimension of Out(Wn), i.e. n− 2, see [KV93,
Corollary 10.2]), does not vanish. This was essentially established by Gaboriau and Noûs [GN21,
Theorem 1.1]: they proved it for Out(FN ), but the same argument applies to Out(Wn), see
Section 5 of the present paper.

Theorem 3. For every n ≥ 3, one has β
(2)
n−2(Out(Wn)) > 0.

Notice that besides these results, essentially nothing is known about the homology of Out(Wn).
In the case of Out(FN ), Gaboriau and Noûs asked whether all ℓ2-Betti numbers up to dimen-

sion 2n − 4 (i.e. except for the top-dimensional one) vanish [GN21, Question 1.2]. This would
match a theorem of Borinsky and Vogtmann [BV20, Theorem A] asserting that the Euler char-
acteristic of Out(FN ) is negative for N ≥ 2. Similarly, the Euler characteristic of Out(Wn) was
computed by Jensen–McCammond–Meier in [JMM07]. In particular, its sign alternates with the
parity of n. This suggests the following question.

Question 4. Do all ℓ2-Betti numbers of Out(Wn) vanish up to dimension n− 3?

Let us now say a word about our proof of Theorem 1. This is based on the cheap α-rebuilding
property introduced by Abért-Bergeron-Fra֒czyk-Gaboriau in [ABFG21, Definition 10.6], from
which the conclusions of Theorem 1 follow in degree j up to α. The advantage of this property
is that it allows inductive arguments. The starting point is that infinite virtually abelian finitely
generated groups have the cheap rebuilding property. And if a residually finite group G acts
cellularly, cocompactly, without cell inversions on a CW-complex Ω which is (α− 1)-connected,
and in such a way that stabilizers of cells of dimension j ≤ α all have the cheap (α−j)-rebuilding
property, then G itself has the cheap α-rebuilding property (see Theorem 2.4 below, recording
[ABFG21, Theorem 10.9]).

Let us now describe the Out(Wn)-simplicial complex Ω to which we apply this criterion. A
partial W2-basis of Wn is a nonempty finite set {[A1], . . . , [Ak]} of conjugacy classes of subgroups
of Wn that are all isomorphic to the infinite dihedral group W2, and such that there exist
representatives Ai of [Ai] and a subgroup B ⊆ Wn (isomorphic to Wn−2k) such that Wn =
A1 ∗ · · · ∗ Ak ∗ B. The complex of partial W2-bases |PBn| is the geometric realization of the
partially ordered set of all partial W2-bases of Wn. In fact, we only work with a subcomplex
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of |PBn|, defined as follows. We fix once and for all a finite n-tuple X∗ = (x∗
1, . . . , x

∗
n) of order

2 elements forming a basis of Wn. We consider the subcomplex |PB∗
n| spanned by all partial

W2-bases that only contain conjugacy classes of free factors of the form 〈gx∗
2i−1g

−1, hx∗
2ih

−1〉
for some g, h ∈ Wn and some i ∈ {1, . . . , ⌊n

2 ⌋}. The subcomplex Ω := |PB∗
n| is preserved by a

finite-index subgroup Out0(Wn) of Out(Wn).
The stabilizers for the action of Out(Wn) on |PBn|, or of Out0(Wn) on |PB∗

n|, are well-
understood (see Section 4). Notably, given a cell σ of |PB∗

n|, its stabilizer Gσ in Out0(Wn) has
the cheap β-rebuilding property for every β ∈ N. This is because Gσ stabilizes the conjugacy
class of some system of virtually cyclic free factors. So Gσ acts on the spine of the corresponding
relative Outer space with infinite virtually abelian stabilizers, and this spine was proved to be
contractible by Guirardel and Levitt [GL07b, Corollary 4.4]. Thus [ABFG21, Theorem 10.9] also
applies to the action of Gσ on that spine.

Our main technical contribution in the present work is therefore to compute the homotopy
type of the complex |PB∗

n|.

Theorem 5. For every n ≥ 3, the complex |PB∗
n| has the homotopy type of a wedge of spheres of

dimension ⌊n
2 ⌋ − 1.

This is similar to results of Solomon-Tits [Sol69] for the rational Tits building of SLd(Z) and
of Harer [Har86] for the curve complex for the mapping class groups.

There are several analogues of these complexes for Out(FN ), in particular its complex of free
factors and its complex of partial bases. And similarly for Out(Wn). Our proof of Theorem 5
relies on techniques developed by Quillen to study the topology of partially ordered sets [Qui78],
and is inspired by the work of Brück and Gupta regarding the homotopy type of the free factor
complex in the Out(FN )-setting [BG20].

The analogue of Theorem 1 for Out(FN ) is unknown. Indeed, the homotopy type of the
complex of partial bases of the free group is still unknown, and our methods do not seem to apply
there. This was conjectured by Day and Putman to be homotopy equivalent to a bouquet of
spheres of dimensionN−1 [DP13, Conjecture 1.1]; this is only known to be true for the Aut(FN )-
version of the complex of partial bases, where elements are not considered up to conjugation, by
work of Sadofschi Costa [SC20].

Notice that it is important for us to work with the complex of partial W2-bases since for the
free factor analogue, some cell stabilizers Gσ have an action on their relative Outer space for
which the stabilizers do not all satisfy the cheap rebuilding property.

Acknowledgments. D.G. was partially supported by the LABEX MILYON (ANR-10-LABX-
0070) of Université de Lyon, within the program “Investissements d’Avenir” (ANR-11-IDEX-
0007) operated by the French National Research Agency (ANR). C.H. acknowledges support
from the Agence Nationale de la Recherche under Grant ANR22-ERCS-0011-01 Artin-Out-ME-
OA, and from the European Research Council under Grant 101040507 Artin-Out-ME-OA. All
three authors thank the Institut Henri Poincaré (UAR 839 CNRS-Sorbonne Université) for its
hospitality and support (through LabEx CARMIN, ANR-10-LABX-59-01) during the trimester
program Groups acting on fractals, Hyperbolicity and Self-similarity.

2 Preliminaries

2.1 The cheap rebuilding property and homology growth

In this section, we review work of Abért, Bergeron, Fra֒czyk and the first named author [ABFG21]
which is crucial for the present paper. They introduced the notion of the cheap α-rebuilding

3



property (with α ∈ N) for a countable group Γ. Before saying more about this property, its
importance comes from the following application.

Theorem 2.1 (Abért-Bergeron-Fra֒czyk-Gaboriau [ABFG21, Theorem 10.20]). Let Γ be a resid-
ually finite countable group. Let α ∈ N, and assume that Γ is of type Fα+1 and has the cheap
α-rebuilding property.

Then for every Farber sequence (Γk)k∈N of Γ, every coefficient field K, and every j ∈
{0, . . . , α}, one has

lim
k→∞

dimK Hj(Γk,K)

[Γ : Γk]
= 0 and lim

k→∞

log |Hj(Γk,Z)tors|

[Γ : Γk]
= 0.

In the present paper, we will derive our main theorem (Theorem 1) by establishing the cheap
α-rebuilding property for Out(Wn), with α = ⌊n

2 ⌋−1 (Theorem 4.2 below). The definition of the
cheap α-rebuilding property being quite involved, and since we will never need to use it explicitly,
we refer the reader to [ABFG21, Definition 10.6]. We will only use the facts that this property is
satisfied by Zm for every m > 0, and that it enjoys certain stability properties that are recalled
below. The important point for us is that the property can be established in an inductive way
by letting Γ act on a sufficiently connected simplicial complex, with simpler stabilizers that have
themselves the property (Theorem 2.4). The first building block for us is the following.

Proposition 2.2 (Abért-Bergeron-Fra֒czyk-Gaboriau [ABFG21, Corollary 10.13(3)]). For every
m ∈ N \ {0} and every α ∈ N, the group Zm has the cheap α-rebuilding property.

The following invariance property will also be useful.

Proposition 2.3 (Abért-Bergeron-Fra֒czyk-Gaboriau [ABFG21, Corollary 10.13(1)]). Let Γ be a
countable residually finite group, let Γ0 ⊆ Γ be a finite-index subgroup, and let α ∈ N.

Then Γ has the cheap α-rebuilding property if and only if Γ0 has the cheap α-rebuilding
property.

It is worth noticing that finite groups do not have the cheap α-rebuilding property, for any
α. Indeed a residually finite group has the cheap 0-rebuilding property if and only if it is infinite
[ABFG21, Remark 10.7].

From these initial building blocks, the cheap α-rebuilding property can be proved inductively
using the following theorem.

Theorem 2.4 (Abért-Bergeron-Fra֒czyk-Gaboriau [ABFG21, Theorem 10.9]). Let Γ be a residually
finite countable group. Let Ω be a CW-complex on which Γ acts cellularly, in such a way that
the pointwise stabilizer of any cell ω ∈ Ω coincides with its setwise stabilizer. Let α ∈ N, and
assume that the following conditions hold:

1. Γ\Ω has finite α-skeleton;

2. Ω is (α− 1)-connected;

3. for every j ≤ α, the Γ-stabilizer of any cell of Ω of dimension j has the cheap (α − j)-
rebuilding property.

Then Γ has the cheap α-rebuilding property.

In the case α = 0, the assumption (2) in the above theorem is just that Ω is non-empty.
Our goal in the present paper will be to establish the cheap α-rebuilding property for Out(Wn)

by studying an appropriate action of (some finite-index subgroup of) Out(Wn) on an appropriate
simplicial complex, namely the complex PB∗

n introduced in Section 3 below. The value α =
⌊n
2 ⌋ − 1 we will obtain relies on the connectivity properties of PB∗

n (see Theorem 3.1) together
with the restriction given by the assumption (2) in Theorem 2.4.
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2.2 The Outer space of Wn

Outer space. The Outer space was first introduced by Culler and Vogtmann [CV86] in the
context of free groups, and later extended to free products by Guirardel and Levitt [GL07b].

A simplicial Grushko Wn-tree is a simplicial minimal Wn-tree S with trivial edge stabilizers
in which every nontrivial vertex stabilizer is isomorphic to Z/2Z (here minimal means that S
does not contain any proper nonempty Wn-invariant subtree). A metric Grushko Wn-tree is the
metric space obtained from a simplicial Grushko Wn-tree S by making every edge of S isometric
to an interval of R of positive length (with edge lengths being Wn-invariant), and equipping S
with the induced path metric.

Given a metric Grushko Wn-tree T and a subgroup A ⊆ Wn, there is a unique minimal
nonempty A-invariant subtree in T , which we denote by TA.

The unprojectivized Outer space O of Wn is the space of all equivariant isometry classes
of metric Grushko Wn-trees. The projectivized Outer space PO is the space of all equivariant
homothety classes of metric Grushko Wn-trees (i.e. two trees T, T ′ are identified in PO if there
exists a Wn-equivariant map T → T ′ that multiplies all distances by the same positive factor).

The projectivized Outer space PO has naturally the structure of a simplicial complex with
missing faces, where open simplices are obtained by considering all projective metric trees ob-
tained from a given simplicial Grushko Wn-tree by varying edge lengths, keeping them positive.
Faces of a simplex are obtained by allowing some edge lengths to degenerate to 0. The missing
faces correspond to degeneracies that merge together some vertices with stabilizer Z/2Z. As all
vertex stabilizers in Grushko Wn-trees are finite, the simplicial structure on PO is locally finite.
The preimage of a simplex of PO in O is a cone.

Topologies on Outer space. The space PO has several natural topologies described below, which
turn out to all be equivalent because the simplicial structure on PO is locally finite, see e.g.
[GL07a, Proposition 5.4]. We will use two of them. First, the weak topology is the one where
a subset is open if its intersection with every open simplex is open. Second, the equivariant
Gromov-Hausdorff topology on O was introduced by Paulin [Pau88] as the topology for which
a basis of open neighborhoods of a Wn-tree T is given by the sets VT (K,F, ε), where K ⊆ T
and F ⊆ Wn are finite subsets, and ε > 0, defined as follows: VT (K,F, ε) consists of all trees T ′

for which there exists a map θ : K → T ′ such that for all x, y ∈ K and every g ∈ F , one has
|dT ′(θ(x), gθ(y)) − dT (x, gy)| < ε. Informally, this means that two trees are close if any finite
subtree τ in one can be approximated by a finite subtree τ ′ in the other, in such a way that the
actions of large finite subsets of Wn on τ and τ ′ almost coincide through this approximation.
The space PO is then equipped with the quotient topology, which is also called the equivariant
Gromov-Hausdorff topology. Another commonly used topology (though we will not need it in the
present paper) is the axes topology, which was shown by Paulin to coincide with the equivariant
Gromov-Hausdorff topology [Pau89]. Equipped with any of these topologies, the spaces O and
PO are contractible [CV86, GL07b].

Morphisms between Wn-trees. A morphism between two metric Grushko Wn-trees T, T ′ is a
Wn-equivariant map f : T → T ′ such that every segment of T can be written as a union of
finitely many subsegments, each of which is sent isometrically to T ′. There is also an equivariant
Gromov-Hausdorff topology on the setM of morphisms between trees in O, which was introduced
by Guirardel and Levitt in [GL07b, Section 3.2]. We will only use it in our proof of Lemma 3.6.
In this topology, a basis of open neighborhoods of a morphism f : S → T is given by the
sets Vf (K,F, ε), where K ⊆ S and F ⊆ Wn are finite subsets, and ε > 0, defined as follows:
Vf (K,F, ε) consists of all morphisms f ′ : S′ → T ′ between metric Grushko Wn-trees for which
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there exists a map θ : K → S′ such that for all x, y ∈ K and every g ∈ F , one has

|dS′(θ(x), gθ(y)) − dS(x, gy)| < ε and |dT ′(f ′(θ(x)), f ′(gθ(y))) − dT (f(x), f(gy))| < ε.

The source and range maps are continuous.

The spine of Outer space. The set of all simplicial Grushko Wn-trees is equipped with a partial
order, where S ≤ T if T collapses onto S, i.e. if S is obtained from T by collapsing to a point
each connected component of a given Wn-invariant subset. The spine of Outer space |Kn| is the
simplicial complex defined as the geometric realization of the partially ordered set Kn of Grushko
Wn-trees [CV86, GL07b]. It naturally embeds in PO as the barycentric spine of its simplicial
structure with missing faces: a vertex of |Kn| (corresponding to a simplicial tree S) is sent to
the barycenter of the simplex of S in PO. There is also a deformation retraction π : PO → |Kn|
with the property that π([T ]) always belongs to the open simplex of [T ]. In particular |Kn| is
also contractible, like O and PO.

The relative Outer space and its spine. There is also a relative version of Outer space, introduced
by Guirardel and Levitt in [GL07b, Section 4]. We will only use it in the proof of Proposition 4.1.
A free factor system F of Wn is a set {[A1], . . . , [Ak]} of conjugacy classes of subgroups of Wn

such that there exist representatives A1, . . . , Ak and a subgroup B ⊆ Wn such that Wn =
A1 ∗ · · · ∗ Ak ∗ B. A metric Grushko (Wn,F)-tree is a minimal metric simplicial Wn-tree with
trivial arc stabilizers, in which all Ai fix a point vi, and all infinite point stabilizers are conjugate
to one of the subgroups Ai. The relative Outer space O(Wn,F) is the space of all equivariant
isometry classes of metric Grushko (Wn,F)-trees. We denote by PO(Wn,F) its projectivized
version, where trees are considered up to equivariant homothety instead of isometry. Again
PO(Wn,F) has a natural structure of a simplicial complex with missing faces. When equipped
with the weak topology, it retracts by deformation to its spine |K(Wn,F)|, defined as above
using Grushko (Wn,F)-trees instead of Grushko Wn-trees. The space PO(Wn,F), equipped
with the weak topology, is contractible [GL07b, Corollary 4.4], and therefore so is |K(Wn,F)|.
Although we will not use this fact, let us mention that PO is also contractible in the equivariant
Gromov–Hausdorff topology [GL07b, Theorem 4.2]: this topology is still equivalent to the axes
topology, but is no longer equivalent to the weak topology when some factors in F are infinite.

3 Homotopy type of the complex of partial W2-bases

We recall that a subgroup A ⊆ Wn is a free factor if there exists a subgroup B ⊆ Wn such that
Wn = A ∗B. A free W2-factor is a free factor of Wn isomorphic to W2. A partial W2-basis is a
free factor system consisting of conjugacy classes of free W2-factors.

The set PBn of all partial W2-bases of Wn is ordered by inclusion. The complex of partial
W2-bases, denoted by |PBn|, is the geometric realization of this partially ordered set. It has
dimension ⌊n

2 ⌋ − 1. The group Out(Wn) acts on |PBn| by simplicial automorphisms.

We denote by Out0(Wn) the finite-index subgroup of Out(Wn) consisting of all automor-
phisms that preserve the conjugacy class of each element of order 2 (as opposed to permuting
them).

We now choose once and for all a finite n-tuple X∗ = (x∗
1, . . . , x

∗
n) of order 2 elements forming

a basis of Wn. We associate them pairwise; more precisely, we say that a free W2-factor of Wn is
X∗-paired if it is of the form 〈gx∗

2i−1g
−1, hx∗

2ih
−1〉 for some g, h ∈ Wn and some i ∈ {1, . . . , ⌊n

2 ⌋}.
We define PB∗

n as the subset of PBn whose elements are the partial W2-bases consisting only
of conjugacy classes of X∗-paired free W2-factors, equipped with the subposet structure. Its
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geometric realization |PB∗
n| (a subcomplex of |PBn|) has dimension ⌊n

2 ⌋ − 1. Notice that the

finite-index subgroup Out0(Wn) preserves the subcomplex |PB∗
n|. This action is not free. The

stabilizers shall be explained later on in Section 4.

Theorem 3.1. For every n ≥ 4, the complex |PB∗
n| is

(

⌊n
2 ⌋ − 2

)

-connected.

Remark 3.2. Using classical theorems of Hurewicz and Whitehead (as recorded e.g. in [BG20,
Remark 2.9]), it follows since |PB∗

n| has dimension ⌊n
2 ⌋− 1 that |PB∗

n| is either homotopy equiv-
alent to a nontrivial bouquet of spheres of dimension ⌊n

2 ⌋ − 1 or else is contractible. We will see
later on (Theorem 5.2 below) that for n ≥ 3, the complex |PB∗

n| is indeed noncontractible. For
n = 3, the complex |PB∗

3| consists of a countable set of isolated points, including all conjugacy
classes of free W2-factors of the form 〈x∗

1, x
∗
3(x

∗
1x

∗
3)

nx∗
2(x

∗
3x

∗
1)

nx∗
3〉.

Remark 3.3. Contrarily to |PB∗
n|, we expect the complex |PBn| not to be

(

⌊n
2 ⌋ − 2

)

-connected
in general. For instance |PB4| is not connected: it has exactly three connected components
corresponding to pairing basis elements of Wn according to X∗

1 = (x∗
1, x

∗
2, x

∗
3, x

∗
4), to X∗

2 =
(x∗

1, x
∗
3, x

∗
2, x

∗
4), or to X∗

3 = (x∗
1, x

∗
4, x

∗
2, x

∗
3). This led us to consider |PB∗

n| instead of |PBn|. The
only place in the proof where the distinction between |PBn| and |PB∗

n| is crucial is Lemma 3.10.

The general strategy of our proof of Theorem 3.1 is inspired by work of Brück and Gupta
[BG20, Section 7]. In order to analyze the homotopy type of |PB∗

n|, we will make use of the
following lemmas due to Quillen, applied to well-chosen complexes that will be introduced below.

Let Q be a poset, we denote its geometric realization by |Q|. If σ ∈ Q, we consider the
following subsets Q≤σ := {τ ∈ Q : τ ≤ σ} and Q≥σ := {τ ∈ Q : τ ≥ σ}.

Lemma 3.4 (Quillen [Qui78, Propositions 1.6 and 7.6]). Let P,Q be posets, and let f : P → Q be
a poset map.

1. Assume that for every σ ∈ Q, the geometric realization of the subspace f−1(Q≤σ) is con-
tractible. Then f induces a homotopy equivalence between |P | and |Q|.

2. Let m ∈ N. Assume that for every σ ∈ Q, the geometric realization of f−1(Q≤σ) is m-
connected. Then |P | is m-connected if and only if |Q| is m-connected. The same conclusion
holds if Q≤σ is replaced by Q≥σ in the assumption.

Lemma 3.5 (Quillen [Qui78, 1.3]). Let P be a poset and let f : P → P be a poset map such that,
for every σ ∈ P , we have f(σ) ≤ σ. Then the map induced by f on |P | is homotopic to the
identity.

Let us now introduce a property we shall use to define the space to which we apply these
lemmas. Given a Grushko Wn-tree S and a free W2-factor A ⊆ Wn, we say that A is visible in
S if the minimal A-invariant subtree SA of S is such that, for every g ∈ Wn, either gSA = SA or
gSA∩SA is at most one point. Equivalently, this means that the quotient graph A\SA embeds in
Wn\S. Notice that visibility in S only depends on the conjugacy class of A. A partial W2-basis
B = {[A1], . . . , [Ak]} is visible in S if, for every i ∈ {1, . . . , k}, the free W2-factor Ai is visible in
S.

Let Z ⊆ PB∗
n ×Kn be the subset consisting of all pairs (B,S) with B visible in S. We equip

PB∗
n × Kn with the product poset structure (i.e. (B,S) ≤ (B′, S′) if and only if B ≤ B′ and

S ≤ S′), and Z with the subposet structure.
Our proof has two parts. First we show that its geometric realization |Z| is homotopically

equivalent to |PB∗
n| (Lemma 3.7) by showing that the fibers of the first projection are contractible

(Lemma 3.6). Then we determine the homotopy type of |Z| by using the second projection
(Lemma 3.10).
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Given a partialW2-basisB, the visibility space ofB in |Kn|, denoted by VK
B , is the subcomplex

of |Kn| spanned by all vertices corresponding to Wn-trees where B is visible. When B ∈ PB∗
n,

then VK
B is the geometric realization of the fiber of B under the first projection Z → PB∗

n.
Likewise, we define VO

B and VPO
B as the subspaces of O and PO, respectively, consisting of

all trees where B is visible (this makes sense as visibility of B in a tree only depends on the
underlying simplicial tree and not on the choice of a metric). The following lemma is a variation
over [BG20, Lemma 5.5] and crucially relies on the proof by Guirardel and Levitt [GL07b] of the
contractibility of O.

Lemma 3.6. Let B be a partial W2-basis of Wn. Then VO
B ,VPO

B and VK
B are contractible.

Proof. We will first prove the contractibility of VO
B . This will be done by working with the

equivariant Gromov-Hausdorff topology.
Write B = {[〈x1, x2〉], . . . , [〈x2k−1, x2k〉]}, and choose x2k+1, . . . , xn so that {x1, . . . , xn} is a

basis of Wn. For every i ∈ {1, . . . , k}, let Ai = 〈x2i−1, x2i〉.
Let S0 ∈ VO

B be the (metric) Grushko Wn-tree whose quotient graph G0 := Wn\S0 is the
segment of groups with n vertices whose associated groups are successively 〈x1〉, 〈x2〉, . . . , 〈xn〉,
with all edges of length equal to 1.

For every T in the (unprojectivized) Outer space O, we now define a morphism ρT : S0(T ) →
T , where S0(T ) is a tree in O obtained from S0 by varying edge lengths in (0,∞). For this, we
first pull-back G0 as a tree inside S0. The equivariance requires us to send the S0-fixed point vj
of xj to the T -fixed point wj of xj . We extend ρT by equivariance to all the vertices of S0. Then
we extend it to the edges by linearity. We finally adjust the lengths of the edges in G0 so that
ρT becomes an isometry on each edge of S0: this metric Wn-tree is the required S0(T ).

Notice that, for every i ∈ {1, . . . , k}, the minimal subtree of Ai = 〈x2i−1, x2i〉 in S0(T ) is sent
isometrically by ρT to the minimal subtree of Ai in T . Notice also that, when T belongs to the
cone of S0 in O, one has S0(T ) = T .

The trees S0(T ) vary continuously with T . The family of morphisms ρT is also continuous
in the equivariant Gromov-Hausdorff topology. Indeed, every vertex u in S0 is the fixed point
of some gu ∈ Wn, hence for every pair of vertices u, v in S0 and every element g ∈ Wn, the
points ρT (u) and gρT (v) are algebraically determined as the fixed points of gu and ggvg

−1 in T .
Therefore dT (ρT (u), gρT (v)) varies continuously with T , so ρT varies continuously with T .

LetM be the space ofWn-equivariantmorphisms between metric GrushkoWn-trees, equipped
with the equivariant Gromov-Hausdorff topology. By [GL07b, Proposition 3.4], there are two
continuous maps Φ,Ψ : M× [0,∞] → M such that if f : T0 → T∞ is any morphism then Φ(f, s)
is a morphism T0 → Ts and Ψ(f, s) is a morphism Ts → T∞ such that Ψ(f, s) ◦ Φ(f, s) = f ,
where Φ(f, 0) = idT0

, Φ(f,∞) = f while Ψ(f, 0) = f , Ψ(f,∞) = idT∞
. See [GL07b, Remark 4.1]

for the reason why the intermediate trees Ts all belong to O.
This is used to build a continuous map r : O × [0,+∞] → O which is a retraction by

deformation onto the cone of S0, by considering the composition of the following continuous
maps (where the second is Φ and the third is the map sending a morphism to its range):

O × [0,+∞] → M× [0,+∞] → M → O
(T, s) 7→ (ρT , s) 7→ Φ(ρT , s) 7→ range(Φ(ρT , s)) =: Ts.

Notice that Ts varies continuously between T0 = S0(T ) and T+∞ = T , so the above defines a
retraction by deformation onto the cone of S0.

In order to deduce the contractibility of VO
B , there remains to prove that r(VO

B × [0,+∞]) ⊆
VO
B . It suffices to prove that, for every T ∈ VO

B and every s ∈ [0,+∞], we have Ts ∈ VO
B .

Suppose towards a contradiction that there exist T ∈ VO
B and s ∈ (0,+∞) such that Ts /∈ VO

B .
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There exist i ∈ {1, . . . , k}, g ∈ Wn and an edge e of (Ts)Ai
such that g(Ts)Ai

6= (Ts)Ai
and

e ⊆ (Ts)Ai
∩ g(Ts)Ai

. Let ẽ be the intersection of the full preimage of e under the morphism
Φ(ρT , s) : S0(T ) → Ts with the line S0(T )Ai

. Since ρT sends the Ai-minimal subtree of S0(T )
bijectively to the Ai-minimal subtree of T , the morphism Φ(ρT , s) also sends bijectively S0(T )Ai

to (Ts)Ai
. Thus ẽ is an interval of S0(T )Ai

which is nonempty and not reduced to a point.
Likewise, let ẽg be the intersection of the full preimage of e with gS0(T )Ai

. Using once again
that ρT sends the Ai-minimal subtree of S0(T ) bijectively to the Ai-minimal subtree of T , we
then have ρT (ẽ) ⊆ TAi

and ρT (ẽg) ⊆ gTAi
, and they are not reduced to a point. On the other

hand ρT (ẽ) = Ψ(ρT , s)(e) = ρT (ẽg). This contradicts the visibility of B in T .
We have thus proved the contractibility of VO

B , and we will now deduce the contractibility
of VPO

B . For this, we choose a continuous section s : PO → O of the natural projection χ :
O → PO, by choosing the representative of covolume 1 of each tree. We then have a retraction
r̄ : PO × [0,+∞] → PO by considering the composition of the following continuous maps:

PO × [0,+∞] → O × [0,+∞] → O → PO,

where the first map is given using the section s, the second one is the retraction r constructed
above, and the third one is the projection χ. This gives a continuous retraction onto the simplex
of χ(S0) (which is itself contractible). The retraction r̄ preserves the visibility subspace VPO

B (i.e.
r̄(VPO

B × [0,+∞]) ⊆ VPO
B ) since this is true for r and VO

B , and since visibility only depends on
the homothety class of a tree.

We finally prove the contractibility of VK
B . For this, recall that there is a natural embedding

of |Kn| in PO as its barycentric spine. Observe that under this embedding, the subcomplex VK
B

is mapped into VPO
B . There is also a continuous retraction π : PO → |Kn|, with the property

that π([T ]) always belongs to the (open) simplex of [T ] – the continuity of π is clear in the weak
topology, and since the simplicial structure on PO is locally finite, the weak topology and the
equivariant Gromov-Hausdorff topology on PO coincide. Therefore, we can construct a retraction
by deformation r̂ : |Kn| × [0,+∞] → |Kn| onto a point (corresponding to the simplex of χ(S0)),
by composing the following continuous maps:

|Kn| × [0,+∞] → PO × [0,+∞] → PO → |Kn|,

where the first map is obtained from the inclusion |Kn| → PO, the second one is the retraction by
deformation r̄ constructed above, and the third one is the retraction π. We finally observe that r̂
preserves the visibility subspace VK

B (i.e. r̂(VK
B × [0,+∞]) ⊆ VK

B ), using the facts that r̄ preserves
visibility, that π sends open simplices inside themselves and that visibility is independent of the
choice of a tree in an open simplex.

Recall that Z ⊆ PB∗
n × Kn is the subset consisting of all pairs (B,S) with B visible in S,

equipped with the product poset structure.

Lemma 3.7. The simplicial complex |Z| is homotopy equivalent to |PB∗
n|.

Proof. We will apply Lemma 3.4(1) to the projection π1 : Z → PB∗
n. So let us prove that for

every partial basis B ∈ PB∗
n, the geometric realization of

π−1
1 ((PB∗

n)≥B) = {(B′, S) : B′ ≥ B and B′ is visible in S}

is contractible. We first observe that if B′ is visible in S and B′ ≥ B, then B is visible in S. Using
Lemma 3.5, the map (B′, S) 7→ (B,S) yields a retraction from |π−1

1 ((PB∗
n)≥B)| to |π−1

1 ({B})|.
The space |π−1

1 ({B})| is equal to the subcomplex VK
B of |Kn| spanned by all Grushko Wn-trees

where B is visible. This is contractible in view of Lemma 3.6.
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Let us now turn to determine the homotopy type of |Z|.
Recall that the quotient Wn\S of a Grushko Wn-tree S is a finite tree with vertex groups

of order 1 or 2. A basis of Wn is adapted to S if it consists of the nontrivial stabilizers of the
vertices of a connected fundamental domain L ⊆ S.

Lemma 3.8. Let S ∈ Kn, let X be a basis of Wn adapted to S. Let x, y ∈ X, and let ax, ay be
their fixed points in S. Let x = x1, x2, . . . , xp = y be the generators of the successive nontrivial
stabilizers of vertices in the segment [ax, ay] (all the xi belong to X because X is adapted to S).

If A = 〈x, gyg−1〉 for some g ∈ Wn is a visible free W2-factor in S then there exist ǫ1, . . . , ǫp ∈
{0, 1} such that g = xǫ1

1 . . . x
ǫp
p .

In particular, the set of partial W2-bases that are visible in S is finite.

Proof. First note that [ax, gay] is a fundamental domain for the action of A on SA. Since A
is visible in S, the image of [ax, gay] in Wn\S is injective and is the same as that of [ax, ay].
Thus, the segment [ax, gay] contains the same number of vertices with nontrivial stabilizers. Let
a1, . . . , ap be the fixed points in S of x1, . . . , xp, and let b1, . . . , bp be the vertices of [ax, gay] whose
images in Wn\S are the same as a1, . . . , ap, respectively. Note that b1 = ax and that bp = gay.
Let ℓ ∈ {1, . . . , p} be the greatest integer such that bℓ ∈ [ax, ay]∩ [ax, gay]. If ℓ = p, then bℓ = ay,
that is gay = ay. Hence g ∈ 〈xp〉 and we are done. Otherwise, since [aℓ, aℓ+1] and [aℓ, bℓ+1] have
the same image in the quotient and have fixed point free interiors, there is a nontrivial element of
the stabilizer of aℓ, i.e. xℓ, sending one to the other. Thus, the segment [ax, xℓbℓ+1] = [ax, aℓ+1]
is contained in [ax, ay]. Up to replacing g by xℓg, the length of [ax, ay] ∩ [ax, gay] has increased.
An immediate finite induction concludes the proof.

Lemma 3.9. Let S ∈ Kn. Let C = {[A1], . . . , [Ak]} be any finite set of conjugacy classes of free
W2-factors such that

1. each [Ai] is visible in S;

2. given any i 6= j and any representatives A′
i, A

′
j in the conjugacy classes [Ai], [Aj ], one has

A′
i ∩ A′

j = {1}.

Then C is a partial W2-basis.

Proof. Let {x1, . . . , xn} be a free basis of Wn which is adapted to S. For every i ∈ {1, . . . , n},
let ai be the fixed point of xi in S. Since the basis is adapted, the finite subtree L of S spanned
by the vertices ai is a fundamental domain for the Wn-action on S. Since the quotient Wn\S is
a tree, we can (and shall) assume that the numbering of {x1, . . . , xn} has been chosen so that
for every i ∈ {1, . . . , n}, the convex hull of {a1, . . . , ai} does not contain aj for j > i.

For every j ∈ {1, . . . , k}, there exist two integers α(j) ≤ β(j) and gj ∈ Wn such that
A′

j = 〈xα(j), gjxβ(j)g
−1
j 〉 is a representative of the conjugacy class [Aj ]. The second assumption

of the lemma ensures that the integers α(1), β(1), . . . , α(k), β(k) are pairwise distinct.
We will now construct a finite set {y1, . . . , yn} of elements of order 2 with the following

properties:

(i) for every j ∈ {1, . . . , k}, we have A′
j = 〈yα(j), yβ(j)〉;

(ii) for every i ∈ {1, . . . , n}, we have xi ∈ 〈y1, . . . , yi〉.

The second property will imply that {y1, . . . , yn} is a free basis of Wn, and the lemma follows.
We now construct the elements yi inductively. We first set y1 = x1. Let now i ≥ 2, and

assume y1, . . . , yi−1 have already been constructed.
– If xi is not conjugate into any of the free factors A′

j , we set yi = xi, and Property (ii) holds by
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induction.
Suppose now that there exists j ∈ {1, . . . , k} such that xi is conjugate into A′

j .
– If xi = xα(j), we set yi = xi, and Property (ii) holds by induction.

– If xi = xβ(j), we set yi = gjxβ(j)g
−1
j . By assumption [A′

j ] is visible in S. Also, by the choice
of the numbering of the set {x1, . . . , xn}, the segment [aα(j), aβ(j)] does not contain any vertex
aℓ with ℓ > β(j). We can therefore apply Lemma 3.8 and deduce that gj ∈ 〈x1, . . . , xβ(j)−1〉. By
induction we have gj ∈ 〈y1, . . . , yi−1〉, hence xi ∈ 〈y1, . . . , yi〉. So Property (ii) holds.

Finally, our construction ensures that for every j ∈ {1, . . . , k}, we have yα(j) = xα(j) and

yβ(j) = gjxβ(j)g
−1
j , so 〈yα(j), yβ(j)〉 = A′

j . This checks Property (i), and concludes our proof.

Recall that the definition of PB∗
n relies on a choice of a basis X∗ = (x∗

1, . . . , x
∗
n) of Wn. Given

S ∈ Kn, we denote by PB∗
S the subposet of PB∗

n whose elements are the X∗-paired partial
W2-bases that are visible in S.

Lemma 3.10. For every S ∈ Kn, the complex |PB∗
S | is either contractible or homotopy equivalent

to a wedge of spheres of dimension ⌊n
2 ⌋ − 1.

Proof. For every i ∈ {1, . . . , ⌊n
2 ⌋}, we let Xi be the set of all conjugacy classes of free W2-factors

that are visible in S and conjugate to a free factor of the form 〈x∗
2i−1, gx

∗
2ig

−1〉 for some g ∈ Wn.
Lemma 3.8 implies that Xi is finite. We now let X =

∐

Xi. Let P be the partially ordered set
(by inclusion) of all nonempty subsets of X that contain at most one element in each subset of
the form Xi.

It follows from Lemma 3.9 that any collection of conjugacy classes of free W2-factors taken
from different Xi’s is automatically a partial W2-basis. Then PB∗

S is isomorphic to P . The
conclusion thus follows from the independent Lemma 3.11 below.

Lemma 3.11. Let X =
∐

Xi be a partition of a finite set X into k disjoint nonempty subsets.
Let P be the partially ordered set (ordered by inclusion) consisting of all finite nonempty subsets
of X that contain at most one element in each subset of the form Xi.

Then |P | is either contractible or homotopy equivalent to a wedge of spheres of dimension
k − 1.

Proof. The proof is by induction on k. If k = 1, then |P | is just a disjoint union of card(X1)

points. Let now k ≥ 2, let X ′ =
∐k−1

i=1 Xi, and let P ′ be the corresponding partially ordered set.
Let Y be the cone over |P ′|, i.e. Y = (|P ′|× [0, 1])/∼, where ∼ is the equivalence relation defined
by letting (x, 1) ∼ (y, 1) for all x, y ∈ |P ′|. Then |P | is homeomorphic to the space obtained by
gluing card(Xk) copies of Y along the subspaces |P ′| × {0} via the identity map. Therefore |P |
is contractible if card(Xk) = 1 or if |P ′| is contractible; otherwise by induction |P ′| is homotopy
equivalent to a wedge of spheres of dimension k− 2, and therefore |P | is homotopy equivalent to
a wedge of card(Xk)− 1 spheres of dimension k − 1.

Proof of Theorem 3.1. By Lemma 3.7, the complex |PB∗
n| is homotopy equivalent to |Z|. We will

apply Lemma 3.4(2) to the projection π2 : Z → Kn. As |Kn| is contractible, we only need to check
that for every S ∈ Kn, the geometric realization of the fiber π−1

2 ((Kn)≥S) is (⌊
n
2 ⌋−2)-connected.

Notice that given any tree T ∈ Kn that collapses onto S (i.e. T ≥ S), if a partial W2-basis B is
visible in T , then it is also visible in S. Therefore, the map (B, T ) 7→ (B,S) defines a retraction
from |π−1

2 ((Kn)≥S)| to |π−1
2 (S)| = |PB∗

S |. Using Lemma 3.5, this retraction is homotopic to the
identity. Thus |π−1

2 ((Kn)≥S)| is homotopy equivalent to |PB∗
S |. By Lemma 3.10, this space is

(⌊n
2 ⌋ − 2)-connected, which concludes our proof.
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4 Cheap rebuilding property for the stabilizers, and proof of the

main results

In the previous section, we established that |PB∗
n| is

(

⌊n
2 ⌋ − 2

)

-connected for n ≥ 4 (Theo-
rem 3.1). In order to apply the criterion given by Theorem 2.4, we are left with establishing the
cheap rebuilding property for cell stabilizers of the Out0(Wn)-action on |PB∗

n|, i.e. stabilizers in
Out0(Wn) of partial W2-bases of Wn. This is the contents of Proposition 4.1 below. The proof
of our main theorem will be completed afterwards.

Given a finite set F of conjugacy classes of subgroups of Wn, we denote by Out(Wn,F) the
subgroup of Out(Wn) consisting of all automorphisms that preserve F (setwise). Cell stabilizers
of the Out0(Wn)-action on |PB∗

n| are virtually isomorphic to Out(Wn,B) for some partial W2-
basis B of Wn.

Proposition 4.1. Let n ≥ 3, and let B = {[A1], . . . , [Aℓ]} be a (nonempty) partial W2-basis of
Wn. Then the group Out(Wn,B) satisfies the cheap β-rebuilding property for every β ∈ N.

Proof. The group G = Out(Wn,B) acts on the spine |K| = |K(Wn,B)| of the relative Outer
space, and we will apply Theorem 2.4 to this action. First, notice that Out(Wn) is residually
finite, see e.g. [MO10, Theorem 1.5] since Wn is residually finite and infinitely-ended. Therefore,
its subgroup Out(Wn,B) is also residually finite. The space |K| is contractible by [GL07b,
Corollary 4.4]. The quotient Out(Wn,B)\|K| is a finite simplicial complex.

We will now prove that the Out(Wn,B)-stabilizer of any simplex τ of |K| contains a finite-
index infinite abelian subgroup. Indeed, the cell τ is represented by a finite chain S0 → · · · → Sℓ of
simplicial Grushko (Wn,B)-trees where the arrows represent collapse maps (i.e. Si+1 is obtained
from Si by collapsing every connected component of a Wn-invariant subforest to a point). Let
Stab0G(S0) be the finite-index subgroup of StabG(S0) consisting of the outer automorphisms
that act trivially on the quotient graph Wn\S0. Then every element of Stab0G(S0) also fixes all
collapsed trees S1, . . . , Sℓ. Thus Stab0G(S0) ⊆ StabG(τ) ⊆ StabG(S0), and these are finite-index
inclusions. As every infinite vertex stabilizer in S0 is isomorphic to W2, it follows from results
of Levitt [Lev05, Propositions 2.2 and 3.1] that StabG(S0) is virtually isomorphic to W d

2 , where
d ≥ 1 is the number of (oriented) edges of Wn\S0 whose origin has an infinite vertex group. This
shows that StabG(τ) contains a finite-index infinite abelian subgroup, and therefore it satisfies
the β-cheap rebuilding property for any β by Propositions 2.2 and 2.3.

Notice that the description of the simplices of |K| shows that in the action of Out(Wn,B) on
|K|, the setwise stabilizer of any cell is equal to its pointwise stabilizer. Therefore, Theorem 2.4
applies to show that G satisfies the β-cheap rebuilding property for every β.

Theorem 4.2. Let n ≥ 3. Then Out(Wn) has the cheap α-rebuilding property for α = ⌊n
2 ⌋ − 1.

Proof. The group Out(Wn) is residually finite, see e.g. [MO10, Theorem 1.5].
When n = 3, the theorem holds because Out(W3) is infinite (this is exactly the cheap 0-

rebuilding property); it is isomorphic to PGL(2,Z) (see for instance [Gue20, Proposition 2.2]).
We now assume that n ≥ 4. By Proposition 2.3, it is enough to prove that the finite-index
subgroup Out0(Wn) (introduced in the previous section) consisting of all automorphisms that
preserve the conjugacy class of each element of order 2 satisfies the cheap α-rebuilding property.

We will apply Theorem 2.4 to the action of Out0(Wn) on |PB∗
n|. Every automorphism that

preserves a cell σ of |PB∗
n| fixes it pointwise (as the vertices of a simplex represent partial

W2-bases of different cardinalities). By the universal property of free products, Out(Wn) acts
transitively on the set of partial W2-bases of a given cardinality, thus the quotient simplicial
complex Out(Wn)\|PBn| is finite, and so is Out0(Wn)\|PB

∗
n|. By Theorem 3.1, the complex
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|PB∗
n| is (α − 1)-connected (n ≥ 4). Now, let σ be a cell of |PB∗

n| corresponding to a chain
B1 ⊆ · · · ⊆ Bk of partial W2-bases, with Bk = {[A1], . . . , [Aℓ]}. Then the stabilizer Gσ of σ is
equal to Out0(Wn,Bk) := Out0(Wn)∩Out(Wn,Bk): indeed, the definition of Out0(Wn) ensures
that every outer automorphism in Out0(Wn,Bk) fixes each of the conjugacy classes [Ai] (as
opposed to permuting them) and therefore it fixes the chain B1 ⊆ · · · ⊆ Bk. By Proposition 4.1,
the group Out(Wn,Bk) satisfies the cheap β-rebuilding property for every β ∈ N. Therefore,
so does its finite-index subgroup Gσ. The assumptions of Theorem 2.4 are thus satisfied. This
concludes our proof.

Theorem 1 from the introduction now follows from Theorems 4.2 and 2.1. We now explain
how to deduce Corollary 2.

Proof of Corollary 2. The group Out(Wn) is of type F∞. Indeed, using [Geo08, Theorem 7.3.1],
this follows from the fact that it acts without cell inversions on the spine |Kn| of Outer space,
which is contractible, with finite stabilizers. Therefore, Lück’s approximation theorem [Lüc94]
applies.

5 Non-vanishing of the top-dimensional ℓ2-Betti number

Applying Gaboriau-Noûs’ trick [GN21], we will now establish the following theorem.

Theorem 5.1. For every n ≥ 3, one has β
(2)
n−2(Out(Wn)) > 0.

Proof. As was established by Krstić and Vogtmann in [KV93, Corollary 10.2], the virtual coho-
mological dimension of Out(Wn) is equal to n−2. In fact Out(Wn) acts properly and cocompactly
on the contractible simplicial complex |Kn|, which is of dimension n − 2. Therefore, combining
[GN21, Theorem 1.6 and Proposition 3.1], it is enough to find a subgroup of Out(Wn) isomorphic
to Hn−3 ⋊ F2, where H is a finitely generated free group (and Hn−3 is the direct product of
n− 3 copies of H).

Let {x1, . . . , xn} be a basis for Wn. Let H be a finite-index characteristic free subgroup of
W3. Consider the semi-direct product G = Hn−3 ⋊ Aut(W3), where Aut(W3) acts diagonally
on Hn−3. Then, after identifying W3 with 〈x1, x2, x3〉, the group G embeds into Aut(Wn), by
sending ((w4, . . . , wn), ϕ) to the automorphism Φ sending xi to ϕ(xi) for i ≤ 3, and sending xi

to w−1
i xiwi for i ≥ 4. Notice that whenever ϕ has nontrivial image in Out(W3), the resulting

automorphism Φ has nontrivial image in Out(Wn). Now choose a free subgroup F2 ⊆ Aut(W3)
which embeds through the quotient map Aut(W3) → Out(W3): this is done by lifting a rank 2
free subgroup of Out(W3). We thus obtain an embedding of Hn−3 ⋊ F2 inside Out(Wn), which
completes our proof.

Theorem 5.2. For every n ≥ 3, the complex |PB∗
n| has the homotopy type of a nontrivial bouquet

of spheres of dimension ⌊n
2 ⌋ − 1.

Proof. By Theorem 3.1 and Remark 3.2, it suffices to prove that |PB∗
n| is noncontractible. We

established in Proposition 4.1 that all cell stabilizers for the Out0(Wn)-action on |PB∗
n| have the

cheap β-rebuilding property for every β ∈ N. If |PB∗
n| were contractible, the argument from the

proof of Theorem 4.2 would show that Out(Wn) has the cheap β-rebuilding property for every
β ∈ N, in particular all its ℓ2-Betti numbers would vanish. This is forbidden by Theorem 5.1.
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