
HAL Id: hal-03775162
https://hal.science/hal-03775162v1

Submitted on 12 Sep 2022

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Distributed under a Creative Commons Attribution - NonCommercial - ShareAlike 4.0 International
License

A low-Mach / Acoustic solver for fluid structure
interaction problems

C.-H. Phan, A. Beccantini, Christophe Eric Corre

To cite this version:
C.-H. Phan, A. Beccantini, Christophe Eric Corre. A low-Mach / Acoustic solver for fluid struc-
ture interaction problems. 14th WCCM - ECCOMAS Congress, Jan 2021, Virtual event, France.
�10.23967/wccm-eccomas.2020.024�. �hal-03775162�

https://hal.science/hal-03775162v1
http://creativecommons.org/licenses/by-nc-sa/4.0/
http://creativecommons.org/licenses/by-nc-sa/4.0/
http://creativecommons.org/licenses/by-nc-sa/4.0/
https://hal.archives-ouvertes.fr


14th World Congress on Computational Mechanics (WCCM)
ECCOMAS Congress 2020)

Virtual Congress: 11-–15 January 2021
F. Chinesta, R. Abgrall, O. Allix and M. Kaliske (Eds)

A LOW-MACH/ACOUSTIC SOLVER FOR FLUID STRUCTURE
INTERACTION PROBLEMS

Cong-Huan PHAN1,2, Alberto BECCANTINI1 AND Christophe CORRE2
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Abstract. An all-Mach correction is applied to the HLLC scheme for computing liquid flows described
by the Euler equations closed with the stiffened gas EoS. The accuracy provided by the corrected scheme
is assessed on a series of model problems : Gresho vortex, low-Mach shock tube and a piston problem
providing a simplified description of the bubble expansion occurring in some nuclear safety problems.

1 INTRODUCTION

The scenario of an Hypothetical Core Disruptive Accident (HCDA) for a liquid-sodium fast breeder
reactor supposes the reactor core has partially melted and the molten fuel chemically interacts with the
liquid sodium to produce a large quantity of gaseous components [1]. The explosive expansion of the
high-pressure gas bubble formed in the core centre yields significant loads on the reactor vessel, which
have been studied through a number of experimental programs. The MARA set of experiments was
carried out by CEA in the 1980s on a 1/30-scale model of the Superphenix reactor in order to provide
reference measurements (pressure at transducers, structure deformation) to be used for validation of the
codes applied to the HCDA fluid-structure interaction problem. In the experiments, water replaces the
liquid sodium cooling the reactor core and the cover gas below the reactor roof is air instead of argon;
the explosion is triggered by an explosive charge (see Fig.1).

Two speed scales are associated with the flow field evolution: the sound speed c and the flow speed
u = Mc with a local Mach number M which can be much lower than unity in some regions of the
computational domain. In the first stage of the bubble expansion, shock waves propagate in the liquid
phase and induce a low-Mach motion of the liquid. In a second stage the impact of the liquid on the
containment yields structural loads which must be accurately computed. The present work is focused on
numerical issues which arises when computing an HCDA-type bubble expansion problem with standard
compressible CFD codes based on conservative finite volume methods and Godunov-type numerical
fluxes. Such fluxes are robust enough to compute shock waves but become inaccurate for the computation
of low-Mach number flows. The predicted kinetic energy can be subjected to an excessive numerical
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Figure 1: Schematic view of the MARA 1/2 configuration taken from [2]. The charge creating the gas bubble is
located at the center of the liquid domain; the layer of air below the vessel cover is also visible.

dissipation, leading to a possible underestimation of the liquid impact on the structure. This accuracy
issue can be fixed by a centering of the pressure instead of upwinding in the numerical discretization.
The all-Mach number correction proposed in [3] for Godunov-type schemes is adapted in the present
work to deal with the stiffened gas model used to describe the liquid phase. Its performance is assessed
on models problems representative of the targeted HCDA application. Section 2 reviews the key features
of the numerical solvers : behavior of a standard upwind scheme in the low-Mach limit and strategy to
develop a corrected scheme. Section 3 describes the test problems used to assess the behavior of the
standard and corrected schemes and analyses typical results. Conclusions and perspectives are provided
in section 4.

2 LOW-MACH/ACOUSTIC SOLVER

2.1 Behavior in the low Mach number limit

The compressible Euler equations closed by the stiffened gas Equation of State are solved to describe the
liquid phase. When applying an asymptotic analysis to analyze the flow problem in the low Mach limit,
the pressure behavior for the Euler system at the continuous level is known to be such that :

p = P(t)+ p′(x, t)︸ ︷︷ ︸
o(M2)

, p′(x, t)<< P(t)

At the discrete level, it has been established [4] that for standard upwind schemes applied in the low
Mach limit :

p = P(t)+ p′(x, t)︸ ︷︷ ︸
o(M)

, p′(x, t)≈ ρc∆u

which means the computed flow contains parasite waves of acoustic nature, wrongly scaled at o(M)
instead of o(M2).
The numerical flux for any standard X upwind scheme (X=HLLC, Godunov . . .) can be recast in the
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form:
FX

i j =
1
2
(Fi +Fj)−

1
2

DX · (U j−Ui)︸ ︷︷ ︸
numerical viscosity

, DX : upwinding matrix

If (*) indicates the solution of the (exact or approximate) Riemann problem at the cell interface, then :

FX
i j =

 ρ∗(v∗ ·n)
ρ∗(v∗ ·n)v∗+ p∗n
(ρ∗e∗t + p∗)(v∗ ·n)


i j

(1)

In the low-Mach regime, the pressure solution of the standard X scheme reduces to:

p∗i j =
1
2
(pi + p j)−

ρc
2
(u j−ui)︸ ︷︷ ︸

numerical viscosity

(2)

It is thus clearly observed a correction must be applied to the numerical flux so as to rescale the parasite
waves to O(M2).

2.2 Numerical flux and all-Mach correction

Dellacherie et al. have proposed in [3] an all-Mach correction which reads :

FAM,X
i j =

 ρ∗(v∗ ·n)
ρ∗(v∗ ·n)v∗+ p∗∗n
(ρ∗e∗t + p∗)(v∗ ·n)


i j

, p∗∗i j = θi j p∗i j +(1−θi j)
pi + p j

2
(3)

with θi j = min(Mi j,1) and Mi j =
|vi j|
ci j

. The corrected scheme (3) yields a more centered discretization
(with a reduced numerical viscosity) than the standard scheme in the low-Mach limit. In the supersonic
regime, θi j = 1 so that FAM,X

i j = FX
i j and the standard scheme is recovered. In the following computations,

this correction is applied to the HLLC scheme for the Euler equations closed with the stiffened gas EoS to
describe the liquid flow. Second-order accuracy is achieved through a MUSCL reconstruction (including
Barth-Jespersen slope limiter).

3 TEST PROBLEMS

3.1 Overview

The standard and corrected HLLC schemes described in the previous section are now applied to solve
the Euler equations for liquid (water) flows, with water described by the stiffened gas equation of state
(γ = 4.4, p∞ = 6× 108 Pa) and initial and boundary conditions successively defining the 3 following
test problems: i) a low-Mach number vortex problem is first computed on quadrangular and triangular
grids in order to also assess the influence of grid topology [5] on the schemes’ ability to compute low-
speed liquid motion; ii) a water shock tube is computed next, to assess the schemes’ ability to describe
wave propagation; iii) the schemes are eventually inserted in an ALE framework to compute a 2D piston
problem representative of the HCDA bubble expansion.
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3.2 Gresho vortex problem

The initial condition of the Gresho vortex problem is illustrated in Fig.2. The Gresho vortex is a slowly
rotating vortex corresponding to a steady solution of the incompressible Euler equations. The vortex
should be consequently preserved over time and the deviations observed in the evolution from its initial
state are directly produced by the discretization error of the applied numerical scheme. The ratio between
the rotational velocity and the speed of sound defines the characteristic Mach number of the flow; its
maximum value is Mmax = 5.0e−4. Note this problem has been previously used by other authors [6] [7]
[8] to assess the properties of numerical schemes in the low Mach regime for perfect gas simulations. In
the present work, the stiffened gas EoS is used to describe the water flow. Typical results obtained on
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Figure 2: Initial condition for the Gresho vortex problem. Left : velocity field (contours on top and cutline through
the vortex below). Right : pressure field (contours on top and cutline through the vortex below).

quadrilateral (QUAD) grids using the standard second-order HLLC scheme are displayed in Fig.3. After
only 10% of a complete vortex revolution, with an initial condition corresponding to Mmax = 5× 10−4,
the expected excessive diffusion of the standard scheme is clearly observed while the corrected scheme
yields a properly scaled diffusion in the low-Mach limit and well preserves the initial condition.

Computations are also performed on triangular (TRI) grids and it is observed the observations made
by [5] are also well recovered for the present stiffened gas calculation : TRI grids allow to prevent
excessive numerical diffusion of velocity for the standard scheme but do not fully correct the occurrence
of pressure oscillations (see Table 1). In the perspective of HCDA calculation, the proper conservation of
the liquid kinetic energy must be ensured so as to preserve the correct assessment of the structural loads.
Fig.4 displays the time evolution of kinetic energy for the Gresho vortex when the standard scheme is
applied on a QUAD or a TRI grid and when the corrected scheme is applied on a QUAD grid. Ideally,
the kinetic energy normalized by its initial level should remain equal to unity. It is thus evidenced the
corrected scheme does a very good job of preserving the kinetic energy of the vortex. Meanwhile, the
standard scheme quickly dissipates this kinetic energy when applied on QUAD grids. Using TRI grids
significantly improves the behavior of the standard scheme in the low Mach regime, even though this
numerical strategy remains less accurate than the corrected scheme.
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Figure 3: Gresho vortex problem. Contours of velocity after 10% of complete revolution from the initial state
(Mmax = 5×10−4). QUAD grid calculation. Left : standard scheme. Right : corrected scheme.

Scheme Water Gresho vortex test case
QUAD TRI

Density Velocity Pressure Density Velocity Pressure
Standard X × × X X ×
Corrected X X X X X X

Table 1: Computation of the Gresho vortex on QUAD and TRI grids using the standard and corrected HLLC
scheme. Numerical issues are identified as ×: excessive numerical diffusion. ×: oscillation.
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Figure 4: Gresho vortex problem. Evolution of kinetic energy over time.

3.3 1D low-Mach shock tube problem

The initial right (low pressure) state for water (still described using the stiffened gas EoS) is set as:
ρ0

R = 1000kg/m3

p0
R = 105 Pa

u0
R = 0m/s
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while the initial left (high pressure) state is computed as:
ρ0

L = (1+2Mre f )×ρ0
R

p0
L = p0

R +Mre f ×2ρ0
R(c

0
R)

2

u0
L = u0

R

with cR
0 =

√
γ

pR
0 + p∞

ρ0
R

. The Mach number Mre f can be varied in order to assess the behaviour of the

schemes in the low Mach limit.
The shock tube problem is first computed with Mre f = 10−1. As expected, no problems are observed
with the standard schemes. Fig.5 displays the solution computed using the corrected HLLC scheme at
t f in = 4×10−4 s. Oscillations appear near the shock on the QUAD grid; they are damped on the TRI grid.
The 1D low-Mach shock tube problem is computed next with Mre f = 10−3 using the corrected scheme.

Figure 5: Low-Mach shock tube problem with Mre f = 10−1. Density distribution computed using the corrected
scheme. Left : QUAD mesh: 400x1. Right : TRI mesh: 4x(400x1).

Shock and rarefaction are similar acoustic waves in this low-Mach regime. Symmetric oscillations with
respect to the contact discontinuity are observed on QUAD grid (see Fig. 6) because of the centered
pressure discretization. These oscillations are damped on the TRI grid.

3.4 2D cylindrical axisymmetric piston problem

The piston problem described in Fig.7 is representative of the bubble expansion characterizing the HCDA
application. The piston pushes water, with a characteristic Mach number Mp defined as the ratio between
the piston velocity and the initial soundspeed. The initial domain is such that R0 = 0.1m, Rext = 1m and
is filled with water (described again using the stiffened gas EoS). A reference solution can be obtained
using 1D cylindrical coordinates. The standard and corrected schemes are inserted within an Arbitrary
Lagrangian Eulerian (ALE) formulation to deal with the inner moving wall and the 2D numerical so-
lutions obtained for Mp = 0.006 are compared with the reference 1D solution. An unstructured quasi-
isotropic mesh is used for the 2D computations. Figure 8 displays the flow computed using the standard
HLLC scheme, at t = 5×10−4 s i.e. before the first wave-reflection on the outer (fixed) wall takes place.
The 2D solution provided by the standard scheme compares well with the 1D reference solution. The
flow computed using the standard HLLC, at t = 9.95×10−3 s i.e. after about 20 reflections on the fixed
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Figure 6: Low-Mach shock tube problem with Mre f = 10−3. Density distribution computed using the corrected
scheme. Left : QUAD mesh: 400x1. Right : TRI mesh: 4x(400x1).

Piston

Rext

bR0

Shock front

Low pressure

High pressure

Figure 7: Schematic view of the 2D cylindrical axisymmetric piston problem.

outer wall, is displayed in Fig. 9 and compared with the 1D reference solution. The under-estimation
of the pressure and velocity peaks, diffused for this long-time observation, is clearly evidenced. For
this piston problem, it is therefore observed that no numerical low-Mach problem is appearing. A grid
convergence analysis shows that the convergence rate does not deteriorate as the piston Mach number
decreases : second-order accuracy of the standard HLLC scheme with MUSCL reconstruction is well
preserved. As expected, the acoustic wave is (numerically) dissipated in long time but the parasite waves
remain negligible beyond the physical compression wave.

4 CONCLUSIONS

The accuracy problem associated with the application of standard compressible solvers making use of
approximate Riemann solvers (such as the HLLC scheme) in the low-Mach regime is investigated for
low-Mach liquid flows with water described using the stiffened gas EoS. For the Gresho vortex, providing
a focus on the velocity scale u, it is found an exceedingly dissipated solution is obtained with the standard
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Figure 8: Piston problem (Mp = 0.006, t = 5× 10−4 s. Standard scheme calculation. Left: pressure contours.
Right: pressure distribution (black line) along the line θ =−45◦.
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Figure 9: Piston problem (Mp = 0.006, t = 9.95× 10−3 s. Standard scheme calculation. Flow field distribution
along θ =−45◦. Left: pressure. Right: velocity.

scheme used on a QUAD grid. The underestimated kinetic energy would thus lead to a poor estimation of
the loads applied on the containment. Meanwhile, the kinetic energy of the vortex is very well preserved,
on the same QUAD grid, when the corrected scheme is applied. For the 1D low-Mach shock tube,
providing a focus on the acoustic scale c, oscillating solutions are observed when using the corrected
schemes on QUAD mesh. However the oscillations are reduced when turning to a TRI mesh. For the
piston problem, where the focus is again on the acoustic scale c, no accuracy problem is identified with
the standard scheme. It can be concluded from these experiments that when both u and c scales coexist in
the flow, optimal accuracy is obtained with the low-Mach corrected scheme applied on triangular meshes.
If the corrected schemes brings the expected accuracy improvement (on TRI grids), the efficiency of the
compressible simulation remains nonetheless poor in the low-Mach regime. Note the correct capture of
the acoustic waves is not needed to ensure a conservative estimate of the structural loads for HCDA as
those are mostly induced by liquid motion. Consequently, an efficiency improvement is expected from a
new physical model based on artificial compressibility and currently under development.
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for the Compressible Low-Mach Number Regime of Ideal Fluid Dynamics. Journal of Scientific
Computing (2017) 72:623–646.

[8] Bruel, P., Delmas, S., Jung, J. and Perrier, V. A low Mach correction able to deal with low Mach
acoustics. Journal of Computational Physics (2019) 378:723–759.

9


