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ABSTRACT: We report the synthesis of iminosugar C,C-glycosides starting from 6-azido-ketopyranoses. Their Staudinger-
azaWittig-mediated cyclization provided bicyclic N,O-acetals which were stereoselectively opened with AllMgBr to afford b-
hydroxyazepanes with a quaternary carbon a to the nitrogen.  Their ring contraction via a b-aminoalcohol rearrangement produced 
the six-membered L-iminosugars with two functional handles at the pseudoanomeric position. Inversion of the free OH at the azepane 
level furnished the D-iminosugars. 

Naturally occurring six-membered 1-deoxyiminosugars1 
constitute one of the most promising class of glycomimetics as 
therapeutic candidates.2,3 They have been extensively used as 
non-covalent probes to decipher the mechanism of glycosidases 
by virtue of their mimicry of the oxocarbenium character of the 
enzyme transition state.4 Their potential has been translated into 
approved medicines to treat diabetes5 and rare diseases.6 In the 
search for other therapeutic candidates, mimicking the aglycon 
moiety of the enzymatic substrate with the introduction of a 
pseudo-anomeric substituent has been pursued, leading to a vast 
array of so-called iminosugar C-glycosides.7 Within this family, 
introduction of an extra carbon substituent at the 
pseudoanomeric position to yield iminosugar C,C-glycosides 
(Figure 1a) is worth investigating as it might lead to new potent 
and selective glycosidase inhibitors. The scarce examples 
reported in the literature emphasize the difficulty to predict the 
impact of the quaternarization of the carbon adjacent to the 
nitrogen in polyhydroxylated piperidines on their glycosidase 
inhibition profile. Indeed, this structural modification either 
abolished inhibition of the parent iminosugar8 or led to 
improved inhibitory potency.9,10 To the best of our knowledge, 
there are only two reports, respectively using a 
chemoenzymatic route (Wong)11 and an allylic azide 
rearrangement (Murphy),12 of six-membered iminosugars 
displaying a complete hydroxyl pattern (Figure 1a). In sharp 
contrast with the broad palette of methods allowing access to 
iminosugar C-glycosides,13 and sugar C,C-glycosides,14,15,16 
syntheses of iminosugar C,C-glycosides are scarce illustrating 

the challenging introduction of a quaternary carbon atom alpha 
to a nitrogen atom.17,18,19 Indeed, a vast array of so called C-
branched iminosugars has been reported20 in which a quaternary 
carbon at C-2, C-3 or C-4 positions  has been built. When the 
C-1 position is involved, the iminosugars usually lack one 
hydroxyl group of the parent sugar and/or display two identical 
pseudoanomeric appendages.10,21  
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Figure 1. A) General structures of a 1-deoxyiminosugar, 
iminosugar C-glycoside and iminosugar C,C-glycoside and  
iminosugar C,C-glycosides with a full sugar hydroxyl pattern in the 
literature; B) a) and b) Synthetic routes previously developed from 
6-azidolactols to iminosugar C-glycosides; C) Strategy explored 
herein to access iminosugar C,C-glycosides. 
  
In this context, we were interested in developing a robust route 
to original iminosugar C,C-glycosides that would enable the 
stereo-controlled introduction of two distinct substituents that 
could be further decorated independently after their installation 
on the iminosugar core. We hypothesized that, if these two 
substituents allow subsequent chemical diversification, such 
scaffold would constitute an attractive platform to target 
glycosyl transferases considering the ternary nature of their 
positively charged transition state,22,23 a feature that has been 
mimicked by bisubstrate inhibitors.24 Azidolactols have been 
useful precursors to access iminosugar C-glycosides either 
through a Staudinger-AzaWittig / Grignard (SAWG) 
sequence25,26 or through the reductive amination of a 6-
azidoketosugar (Figure 1B).27,28,29 We postulated that applying 
the SAWG sequence to a 6-azidoketosugar should give access 
to a seven-membered iminosugar C,C-glycoside, which upon b-
aminoalcohol rearrangement would furnish the corresponding 
piperidine (Figure 1C). We anticipated that the sequential 
introduction of the two pseudoanomeric substituents should 
take place with high stereocontrol according to previous results 
obtained during the synthesis of iminosugar C-glycosides.26 To 
examine the scope of this approach, known azidolactols with a 
respective D-gluco,30 D-manno31 and D-galacto32 configuration 
1a–c were synthesized in 5 to 6 steps following literature 
procedures and were further oxidized with Dess-Martin 
periodinane to furnish the corresponding 6-azidolactones 2a–c 
in good yields (73-87%). Their reaction with a range of 
commercially or easily available organolithium and Grignard 
reagents bearing diverse carbon chains (methyl, vinyl, allyl, 
homoallyl, alkyne, propargyl) or masked functions (silyl ether, 
methoxymethyl ether, ketal) yielded the corresponding 6-azido-
ketopyranoses 3a–k in moderate to excellent yields (41-98%) 
(Table 1). Regarding the anomeric configuration of 6-
azidoketopyranoses 3, the closely related C-5 benzyloxymethyl 
derivatives,33,34 have been reported to exist predominantly as a-
anomers (>90%). To elucidate the anomeric stereochemistry of 
compounds 3 (that does not impact their subsequent chemical 
transformation), we performed their indepth NMR analyses 
(HMBC, J resolved-HMBC, NOESY) and found that all 
compounds adopt predominantly an a-configuration except 
mannose derivative 3b for which we could not conclude about 
its anomeric configuration according to NMR experiments (see 
Supporting Information). 
 
Table 1. Synthesis of 6-azido ketopyranoses 3a–k  

 
Entry 2 R 3 yield (%) 
1 2a Methyl 3a 90 
2 2b Methyl 3b 68 
3 2c Methyl 3c 84 
4 2a Vinyl 3d 69 

6 2a propargyl TMS 3e 65 
7 2a allyl  3f 98 
9 2a homoallyl 3g 85 
10 2a CH2OMOM 3h 41 
11 2a (CH2)4OTBS 3i 85 
12 2a 

 
3j 92 

13 2b 
 

3k 70 

 

The SAW-mediated cyclisation of azidolactols 3a–k followed 
by the nucleophilic opening of the resulting bicyclic 
hemiaminal was then examined. The D-gluco configured 
ketopyranose 3a bearing an anomeric methyl group was used as 
a model compound and AllMgBr selected as the nucleophile of 
choice based on our previous experience with bicyclic 
hemiaminals26 and the possibility to convert the allyl group into 
other functional groups.35,36,37 Solvent and phosphine screening 
identified methanol and supported PPh3 as the best combination 
for the SAW step, providing the bicyclic hemiaminal 4a in 70% 
yield (see Table S1). Opening of 4a with AllMgBr afforded the 
a,a-disubstituted azepane 5a in 65% yield (45% yield over two 
steps). This transformation reached 58% yield when the 
hemiaminal 4a was not isolated. This two steps sequence was 
then applied to the D-manno- and D-galacto-configured 
azidolactols 3b and 3c to afford the azepanes 5b and 5c in 
satisfactory (50%) and low (25%) yield over two steps 
respectively (Scheme 1a). The poor yield obtained for 5c was 
tentatively attributed to a steric clash between the axial 4-OH 
and the 1,6 bridge of the bicyclic hemiaminal. Addition of other 
unsaturated organometallic reagents on hemiaminal 4a was also 
evaluated. Use of silylated propargyl magnesium bromide 
produced azepane 5d in modest 30% yield while treatment with 
vinyl magnesium bromide failed to provide the corresponding 
azepane 5e (Scheme 1b). This sequence, using AllMgBr as 
nucleophile, was then applied to ketopyranoses 3d–k bearing a 
functional group at the anomeric position. Compounds 3d and 
3e with a vinyl and propargyl aglycon moiety respectively 
failed to generate the corresponding bicyclic hemiaminals. The 
other ketopyranoses 3f–k were successfully converted to the 
corresponding a,a-disubstituted azepanes 5f–k in modest 
(15%) to good (56%) yields over two steps (Scheme 1c). 
Importantly, all compounds were obtained as single 
stereoisomers but the stereochemistry of the quaternarized 
centre could not be determined by NMR at this stage because 
of the inherent ring flexibility of the polyhydroxylated 
azepane.38 These seven-membered iminosugar C,C-glycosides 
are of interest not only as glycosidase inhibitors once 
deprotected but also because they can be used to access 
piperidines through ring contraction. Their ring contraction 
exploiting a b-aminoalcohol rearrangement,39 which requires 
installation of an electron donating group on the nitrogen, was 
scrutinized next (Scheme 2). N-benzylation was performed 
under phase transfer conditions (BnBr, KHCO3, KI, 
AcOEt/H2O) to provide the N-benzyl azepanes 6a–d and 6g–k 
(see Supporting Information) in moderate (41%) to very good 
(87%) yield depending on the steric hindrance caused by the 
two pseudoanomeric substituents. Their skeletal rearrangement 
was then achieved with trifluoroacetic anhydride (TFAA) and 
triethylamine in toluene at 120°C, producing a transient fused 
piperidine-aziridinium ion intermediate that was opened at the 

1a (glu)
1b (man)
1c (gal)

3a-k

O
N3

OH
BnO

O
N3

BnO
OH

R
O

N3

O
BnO

DMP,  
CH2Cl2

RM, THF, 
0°C to rt

see table 1
2a (87%)
2b (85%)
2c (73%)

Page 2 of 5

ACS Paragon Plus Environment

Submitted to Organic Letters

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60



 

methylene carbon by the released carboxylate, affording the 
corresponding six-membered L-iminosugars 7a–d and 7g–k in 
a stereo-retentive manner in moderate (33%) to good yields 
(70%) after ester hydrolysis.  
 
Scheme 1. Synthesis of a,a-disubstituted azepanes 5a–k 
 

  
 
The stereochemistry of the quaternary pseudoanomeric position 
in the piperidine derivatives was firmly established by extensive 
NMR analysis (See Supporting Information) and then deduced 
for the azepane precursors. In all compounds, the allyl group is 
pointing above the piperidine ring, suggesting an attack of the 
seven-membered imine by AllMgBr from the upper side of the 
azepane ring. A combination of stereoelectronic and torsional 
effects, observed for related monosubstituted seven-membered 
oxocarbenium ions and taking place at the seven-membered 
iminium level, could explain this stereochemical outcome.40 To 
rapidly illustrate the synthetic potential of an iminosugar 
bearing two functional handles at the pseudoanomeric position, 
the ring closing metathesis of piperidine 7g followed by 
hydrogenolysis was performed to afford the spirocyclohexyl 
iminosugar 7l in 71% yield, a type of scaffold scarce in the 
literature.41 
Importantly, epimerization of the free OH in azepane 5 
followed by ring contraction should pave the way to D-
iminosugars C,C-glycosides (Scheme 3). Accordingly, azepane 
5a was protected as its benzyl carbamate 8a (80% yield) and 
next submitted to Mitsunobu conditions followed by 
hydrogenolysis to remove the Cbz group that took place with 
concomitant reduction of the allylic moiety. The resulting 

azepane 9a was obtained in 51% yield over three steps and its 
structure was firmly established by X-ray crystallography, 
confirming the inversion of the free OH group and the 
stereochemistry at C-1 position. 
 
Scheme 2. A) Access to protected a,a-disubstituted six-
membered L-iminosugars 7a–d and 7g–k; B) Synthesis of 
spirocyclohexyl L-iminosugar 7l 
 

 
 
Ring contraction of compound 9a was achieved next via N-
benzylation followed by free OH activation with TFAA to 
afford the protected piperidine 10a in 36% over three steps. 
Final hydrogenolysis furnished the known a,a-methyl, propyl 
1-deoxynojirimycin 11a (quantitative yield), a compound that 
was obtained as a mixture of anomeric diastereoisomers by 
Murphy.12 To exemplify this route, the same sequence was 
applied to azepane 5b to furnish the D-manno-configured 
iminosugar 11b via the carbamate 8b (80%), the amine 9b 
(73%) and the piperidine 10b (35%).  
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In conclusion, we have disclosed the synthesis of six-membered 
L-iminosugars quaternarized at the pseudoanomeric position. 
The strategy developed herein, compatible with D-gluco and D-
manno-configured starting monosaccharides, allows the stereo-
controlled stepwise introduction of two pseudoanomeric 
substituents. The observed stereochemical outcome is 
rationalized on the basis of structural and stereoelectronic 
considerations that have been invoked for related seven-
membered oxocarbenium ions. Some of these substituents 
could be further derivatized to increase the structural diversity 
at the C-1 position as illustrated by the synthesis of spirocyclic 
compound 12. Finally, inversion of the free OH at the azepane 
level gives access to the epimeric D-iminosugar C,C-
glycosides.  
 
Scheme 3. Synthesis of a,a-disubstituted D-iminosugars 11a 
and 11b and X-ray structure of compound 9a 
 

 

Supporting Information 
Experimental procedures, characterization data for compounds 
1–11, copies of 1H, NOESY and 13C NMR spectra for 
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OBn

R1

Me

Bn
N

OH

Me

OBn

R1BnO

H
N

OH

Me

OH
HO

R2

5a R1 = OBn, R2 = H
5b R1 = H, R2 = OBn

R2

R2

10a (36%)
10b (35%)

11a (quant.)
11b (quant.)

R1
R2
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