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Abstract  247 

Background The evidence linking ambient air pollution to bladder cancer is limited and mixed.  248 

Methods We assessed the associations of bladder cancer incidence with residential exposure to fine 249 

particles (PM2.5), nitrogen dioxide (NO2), black carbon (BC), warm season ozone (O3) and eight PM2.5 250 

elemental components (copper, iron, potassium, nickel, sulfur, silicon, vanadium, and zinc) in a pooled 251 

cohort (N = 302,493). Exposures were primarily assessed based on 2010 measurements and back-252 

extrapolated to the baseline years. We applied Cox proportional hazard models adjusting for 253 

individual- and area-level potential confounders.  254 

Results During an average of 18.2 years follow-up, 967 bladder cancer cases occurred. We observed a 255 

positive though statistically non-significant association between PM2.5 and bladder cancer incidence. 256 

Hazard Ratios (HR) were 1.09 (95% confidence interval (CI): 0.93–1.27) per 5 µg/m3 for 2010 exposure 257 

and 1.06 (95% CI: 0.99–1.14) for baseline exposure. Effect estimates for NO2, BC and O3 were close to 258 

unity. A positive association was observed with PM2.5 zinc (HR 1.08; 95% CI: 1.00–1.16 per 10 ng/m3). 259 

Conclusions We found suggestive evidence of an association between long-term PM2.5 mass exposure 260 

and bladder cancer, strengthening the evidence from the few previous studies. The association with 261 

zinc in PM2.5 suggests the importance of industrial emissions.  262 

 263 

Keywords Air pollution, Particulate matter, Particle components, Long-term exposure, Bladder cancer  264 
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1. Introduction 265 

The International Agency for Research on Cancer (IARC) classified outdoor air pollution and particulate 266 

matter (PM) from outdoor air pollution as carcinogenic to humans (1). The classification was largely 267 

based on associations of outdoor air pollution and lung cancer, whereas some evidence for urinary 268 

bladder cancer was also noted. Bladder cancer is one of the most common cancers and among the 269 

leading causes of cancer death worldwide. According to the Global Burden of Disease Study (GBD) 270 

2019, bladder cancer accounted for 2.2%, 2.3% and 1.8% of the global neoplasm incident cases, deaths 271 

and disability-adjusted life-years (DALYs), respectively (2).  272 

Studies have associated air pollution and increased bladder cancer risks in occupational settings, 273 

where workers were exposed to high concentrations of, for example, polycyclic aromatic 274 

hydrocarbons (PAHs) and diesel exhaust (3-6). So far, few studies have investigated residential 275 

exposure to ambient air pollution in the general population in relation to bladder cancer, and the 276 

results are mixed. In the American Cancer Society (ACS) Cancer Prevention Study II (CPS-II) analyses, 277 

bladder cancer mortality was significantly positively associated with residential exposure to particulate 278 

mater with an aerodynamic diameter ≤ 2.5 µm (PM2.5), whereas weak, statistically non-significant 279 

associations were found with nitrogen dioxide (NO2) or ozone (O3) exposure (7). The National Health 280 

Interview Survey (NHIS) also reported a significantly positive association between residential PM2.5 281 

exposure and bladder cancer mortality (8). However, no association was found for incident bladder 282 

cancer risks with residential exposure to PM2.5 or NO2 in the Spanish Bladder cancer study (9) and the 283 

European Study of Cohorts for Air Pollution Effects (ESCAPE) study (10). 284 

As outdoor air pollution is a mixture of pollutants originating from multiple sources, studies also 285 

attempted to identify the most responsible air pollution sources for the potential bladder cancer risks. 286 

A limited number of studies have evaluated markers of traffic and industrial sources, with inconsistent 287 

findings. A statistically non-significant positive association between bladder cancer incidence and 288 

nitrogen oxide (NOx), as a proxy for traffic-related air pollution, was found in the Danish Diet Cancer 289 

and Health (DCH) cohort (11), as well as in a cohort of 9,816 coronary intervention patients in Israel 290 

(12). No clear evidence was found for an association between residence along main roads and bladder 291 

cancer incidence in Amsterdam, using traffic intensity as a surrogate exposure (13). In an earlier 292 

analysis within the Spanish Bladder cancer study, several surrogate indices of air pollution from 293 

industrial emissions were found to be positively associated with bladder cancer (14). Hydrogen sulfide 294 

(H2S) from a contaminated landfill site in Rome was associated with increased risk of bladder cancer 295 

mortality in females (15). However, the association was sensitive to the adjustment for other 296 
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pollutants. In ESCAPE, exposure to NOx, black carbon (BC), organic carbon (OC) and several elemental 297 

components were assessed to represent different air pollution sources (10), but none was associated 298 

with bladder cancer incidence. 299 

To add to the limited evidence on the associations between ambient air pollution and bladder cancer 300 

incidence in general population, we conducted analyses in a large pooled cohort within the Effects of 301 

Low-Level Air Pollution: A Study in Europe (ELAPSE) project (16). ELAPSE builds on the ESCAPE 302 

collaboration by pooling data from selected cohorts and extending the follow-up period. In addition, 303 

we strengthened exposure assessment which allowed better coverage of included cohorts in ELAPSE. 304 

In the present study, we assessed the associations between bladder cancer incidence and long-term 305 

exposure to PM2.5, NO2, BC and O3. We further explored potential bladder cancer risks with specific 306 

elemental components in PM2.5, in an attempt to identify the most responsible air pollution sources. 307 

 308 

2. Methods  309 

2.1 Study population 310 

Within the ELAPSE collaboration, we pooled data from eight cohorts across six European countries. 311 

Cohorts were selected if they contributed to analysis of low-level air pollution, were recruited 312 

relatively recently and were able to share data for pooling. Detailed information of each individual 313 

cohort was described previously (17, 18). Of these eight cohorts, six contained information on bladder 314 

cancer incidence and the most important potential confounders. These six cohorts are: the 315 

Cardiovascular Effects of Air Pollution and Noise in Stockholm (CEANS) cohort in Sweden (19-22), the 316 

Diet, Cancer and Health cohort (DCH) in Denmark (23), the Danish Nurse Cohort (DNC) in Denmark (24), 317 

the European Prospective Investigation into Cancer and Nutrition-Netherlands (EPIC-NL) cohort in the 318 

Netherlands (25), the Etude Epidémiologique auprès de femmes de la Mutuelle Générale de l’Education 319 

Nationale (E3N) in France (26), and the Vorarlberg Health Monitoring and Prevention Programme 320 

(VHM&PP) in Austria (27) (Table 1). Except for the DNC, all other subcohorts were part of ESCAPE. All 321 

included cohort studies were approved by the medical ethics committees in their respective countries. 322 

Each individual cohort prepared data according to a joint ELAPSE codebook and then transferred the 323 

data to Utrecht University. Data were pooled after careful checking and stored on a secure server. 324 

2.2 Exposure assessment 325 
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We investigated exposure to PM2.5, NO2, BC, warm season O3 (hereafter referred to as O3) and eight a 326 

priori selected PM2.5 elemental components in the present study. The eight components were selected 327 

in the ESCAPE study to represent major pollution sources in Europe: copper (Cu), iron (Fe) representing 328 

non-tailpipe traffic emissions; zinc (Zn) representing industrial emissions primarily; sulfur (S) 329 

representing long-range transport of secondary inorganic aerosols; nickel (Ni) and vanadium (V) 330 

representing mixed oil burning/industry; silicon (Si) representing crustal material; and potassium (K) 331 

representing biomass burning (28, 29). 332 

We assessed 2010 annual average air pollution exposures with Europe-wide hybrid LUR models (30, 333 

31), which incorporated ground-based measurements, satellite-derived estimates, chemical transport 334 

model estimates, land-use, road and population density data. The modeling of PM2.5, NO2 and O3 335 

exposures was based on the European Environmental Agency AirBase routine monitoring data (30), 336 

whereas the modeling of BC (30) and elemental composition exposures (31) was based on the 337 

standardized ESCAPE monitoring data. The hybrid LUR models were developed using supervised linear 338 

regression (SLR) and validated with five-fold hold-out validation. The models explained a moderate to 339 

large fraction of the measured concentration variation at the European scale (i.e., 66% for PM2.5, 58% 340 

for NO2, 51% for BC, 60% for O3 and 41% to 79% across elemental components). Exposure models for 341 

PM2.5 elemental composition were also developed with the Random Forest (RF) algorithm. The RF 342 

models consistently outperformed the SLR models at the European scale, whereas the SLR and RF 343 

models explained within-area variability similarly (31). In the present study, we primarily exploited 344 

within-cohort exposure contrasts and thus interpreted the SLR and RF models equally. The exposure 345 

models were applied to create 100 x 100 m grids of the predicted air pollution concentrations covering 346 

the entire study area. Exposure to air pollution was assigned to participants’ baseline residential 347 

addresses. We truncated negative elemental composition exposure predictions to zero, and a few 348 

unrealistically high exposure predictions to a maximum modeled concentration for each element (31). 349 

Truncation was performed for SLR-modeled exposures (mostly to negative predictions): 12.9% for Cu, 350 

0.6% for Fe, 14.1% for Ni, 16.8% for V and 3.4% for Zn. No truncation was needed for RF-modeled 351 

exposures. 352 

We selected 2010 as the primary year of exposure modelling because 2009-2010 was the period of 353 

ESCAPE monitoring, which we used to develop BC and PM2.5 composition models (30, 31). For PM2.5, 354 

this was the earliest year of a sufficiently wide coverage of PM2.5 monitoring across Europe (30). For 355 

consistency, we used year 2010 for NO2 and O3 as well. This analysis assumes that the spatial contrast 356 
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of the relevant pollution concentrations remained reasonably stable from the baseline period (years 357 

1985–2005, Table 1) to 2010 (30).  358 

For PM2.5, NO2, BC and O3, we also estimated exposures at each individual’s baseline year using back-359 

extrapolation. Back-extrapolation was performed by using estimated concentrations from the Danish 360 

Eulerian Hemispheric Model (DEHM) (32). DEHM modeled predictions of monthly average 361 

concentrations across Europe at 26 x 26 km spatial resolution back to at least 1990 were obtained. We 362 

compared temporal patterns of DEHM-modeled concentrations and ground-based measurements for 363 

countries with monitoring data (30). To allow different spatial trends within Europe, we calculated 364 

population weighted average concentrations at the Nomenclature of territorial units for statistics 365 

(NUTS-1) spatial scale for application to the national cohorts. NUTS-1 reflects major socio-economic 366 

regions (e.g., four regions in the Netherlands and 14 regions in France). For smaller study areas, we 367 

calculated population weighted average concentrations within the study area. We back-extrapolated 368 

concentrations using both a difference and a ratio method with 2010 as the baseline. With the 369 

difference method, the concentration difference between a year and 2010 from the DEHM model is 370 

added to all cohort exposures for that year. With the ratio method, the concentration ratio between 371 

a year and 2010 from the DEHM model is used to multiply all cohort exposure for that year. We were 372 

not able to estimate exposures to PM2.5 elemental components at baseline years, because we had 373 

insufficient information on the elemental composition concentration in Europe over time. 374 

2.3 Outcome 375 

For all cohorts, except E3N, cancer diagnosis data were obtained from national cancer registries. In 376 

E3N, cancer was identified by self-reports from biannual questionnaires, which were confirmed 377 

through pathological reports and reviewed by an oncologist, or from death certificates. Bladder cancer 378 

incidence was defined as the first primary diagnosis during the follow-up, according to the 379 

International Classification of Diseases, Ninth Revision (ICD-9) code 188 and the International 380 

Statistical Classification of Diseases and Related Health Problems, Tenth Revision (ICD-10) code C67. 381 

Participants with any cancer diagnoses (except non-melanoma skin cancer) before baseline were 382 

excluded.  383 

2.4 Statistical analyses 384 

2.4.1 Main analyses 385 
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We applied Cox proportional hazards models to estimate associations between long-term air pollution 386 

exposures and bladder cancer incidence, following the common ELAPSE analytical framework (33, 34). 387 

In the Cox models, we stratified by subcohorts because the assumption of proportional hazards did 388 

not hold for subcohorts. Using strata to account for between-cohort heterogeneity implies that we 389 

mostly evaluate within-cohort exposure contrasts. Each air pollutant was included as a linear term in 390 

the Cox models. Hazard ratios (HRs) and 95% CIs were calculated with a fixed increment for each 391 

pollutant following the increments selected in previous ESCAPE and ELAPSE publications (17, 18, 35): 392 

PM2.5 – 5 µg/m3, NO2 – 10 µg/m3, BC – 0.5*10-5/m, O3 – 10 µg/m3, PM2.5 Cu – 5 ng/m3, PM2.5 Fe – 100 393 

ng/m3, PM2.5 K – 50 ng/m3, PM2.5 Ni – 1 ng/m3, PM2.5 S – 200 ng/m3, PM2.5 Si – 100 ng/m3, PM2.5 V – 2 394 

ng/m3, PM2.5 Zn – 10 ng/m3. Censoring occurred at the time of any cancer other than bladder cancer 395 

diagnosis (except non-melanoma skin cancer), death, emigration, loss to follow-up or end of follow-396 

up, whichever came first. We specified three confounder models with increasing adjustment for 397 

individual- and area-level covariates: Model 1 included age (as the time axis), subcohort (as strata), 398 

sex (as strata), and year of enrollment (as a continuous variable); Model 2 further adjusted for 399 

individual-level covariates, including marital status (married/cohabiting, divorced/separated, single, 400 

widowed), smoking status (never, former, current), smoking duration (years of smoking) and smoking 401 

intensity (cigarettes/day) for current smokers, squared smoking intensity, body mass index (BMI) in 402 

categories (<18.5, 18.5–24.9, 25–29.9, and ≥30 kg/m2), and employment status (employed vs. 403 

unemployed); Model 3 (main model) further adjusted for area-level mean income in 2001 (as a 404 

continuous variable). The spatial scale of area varied from smaller neighborhoods and city districts 405 

(CEANS, EPIC-NL, E3N) to municipalities (DCH, DNC, VHM&PP). Participants with missing exposure or 406 

incomplete information on Model 3 covariates were excluded from all analyses to ensure 407 

comparability among the model results. 408 

Two-pollutant models were specified for all combinations of PM2.5, NO2, BC and O3 to assess the 409 

robustness of effect estimates for one pollutant to inclusion of another. Two-pollutant models for 410 

elemental composition were analyzed with PM2.5 or NO2 as the second pollutant. We adjusted for 411 

PM2.5 to investigate whether the association with individual elemental components remained after 412 

adjustment for generic PM2.5 mass (36); we adjusted for NO2 in an attempt to disentangle the 413 

individual component effect from traffic exhaust emission for which NO2 is used as a marker. 414 

2.4.2 Additional analyses 415 

Given the fact that cancer development is usually a long process, the choice of the exposure period 416 

may be critical and is often discussed in air pollution and cancer research (37). We therefore applied 417 
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exposures back-extrapolated to baseline years as described above to assess the sensitivity of our 418 

findings to using the 2010 exposures. To assess the sensitivity of our findings to potential residual 419 

confounding, we further adjusted for smoking in former smokers, education level, occupational status 420 

and alcohol assumption in cohorts that had such information. To assess the impact of individual 421 

cohorts on the effect estimates, we assessed the effect estimates by excluding one cohort at a time. 422 

We also assessed the associations between the four main pollutants and bladder cancer incidence in 423 

individual cohorts, acknowledging that the low number of cases in most cohorts may result in 424 

imprecise effect estimates. To evaluate the potential bias introduced by excluding participants with 425 

missing information on Model 3 covariates, we fitted Model 1 and Model 2 with participants with 426 

complete information on model 1 and model 2 covariates respectively. 427 

We assessed the shape of the concentration-response functions (CRFs) for air pollution exposure and 428 

bladder cancer incidence with natural cubic splines with three degrees of freedom. We performed 429 

subset analyses for PM2.5, NO2, BC and O3 exposures by restricting the main Model 3 analyses to 430 

participants with exposure level below certain cut-off values. 431 

We evaluated effect modification by age at baseline (<65 vs. ≥65 years), sex and smoking status. For 432 

age categories and smoking status, we introduced an interaction term with air pollution into the model; 433 

for sex, we replaced the strata term by an interaction term with air pollution. We performed the Wald 434 

test to examine the differences in HRs between groups. 435 

For elemental composition, we performed analyses with exposures estimated with SLR and RF models 436 

and interpreted results of the two exposure methods equally. We presented most elemental 437 

composition analyses with the SLR-modeled exposures in the main text because PM2.5, NO2, BC and 438 

O3 exposures assigned to the cohorts were only estimated with SLR models (30). In a subsequent 439 

analysis, we documented that, for PM2.5 and NO2 separately, SLR and RF models performed similarly, 440 

and had highly correlated predictions at randomly selected external validation sites (PM2.5: Pearson r 441 

= 0.89; NO2: r = 0.93) (38). The SLR models are further more comparable to the LUR models used in 442 

the ESCAPE study (10). 443 

All analyses were performed in R version 3.4.0 using packages: survival, coxme, Matrix, foreach, 444 

glmnet, multcomp, survey, splines, Hmisc, mfp, VIM, ggplot2, frailtySurv, survsim, eha, stamod, 445 

metafor. Statistical significance was based on a 95% confidence interval of effect estimate not 446 

including unity. 447 

 448 
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3. Results  449 

After excluding 17.7% of the total population, the pooled study consisted of 302,493 individuals, of 450 

whom 967 developed bladder cancers during 5,505,372 person-years of follow-up (Table 1). The 451 

exclusions were due to fail in logical checks (e.g. date of death before date of cancer diagnosis; 0.9%), 452 

cancer diagnosis before baseline (2.9%), missing exposure (0.5%), missing individual-level covariates 453 

(12.5%) or area-level mean income (0.9%). Most of the cohorts started in the 1990s and had follow-454 

up untill 2011–2015. The largest subcohort was VHM&PP, which contributed more than half of the 455 

total person-years. Mean age of the participants at baseline ranged from 41.7 years to 72.5 years. Four 456 

subcohorts included female participants only and the pooled cohort comprised 66% women. Current 457 

smoker prevalence at baseline ranged from 13% to 37% with mean smoking duration ranging from 458 

13.4 years to 43.2 years across subcohorts. 459 

Figure 1 and Table S1 show the SLR-modeled air pollution exposure distribution in each subcohort. 460 

The exposure concentrations were generally lower in the North European cohorts than in more 461 

Southern cohorts. The within-cohort exposure contrast was substantial for NO2, BC, Cu, Fe, Si and 462 

more limited for PM2.5, O3, K, Ni, S, V and Zn. Exposure distribution for elemental composition 463 

estimated with RF models is presented in Figure S1. We observed similar north-south concentration 464 

gradient for RF-modeled exposures. For most elements, the within-cohort exposure contrasts were 465 

smaller for RF- than SLR-modeled exposures. For PM2.5, NO2, BC and O3, exposures back-extrapolated 466 

to baseline years are shown in Figure S2. The baseline PM2.5 exposures were higher and more variable 467 

than the 2010-exposure, whereas the baseline exposures to NO2, BC and O3 were similar or mildly 468 

higher than the 2010-exposure. 469 

In most subcohorts, exposure to PM2.5 was moderately correlated with exposure to BC and NO2 (Table 470 

S2). The correlations between NO2 and BC were high in most subcohorts. O3 exposures were negatively 471 

correlated with PM2.5, NO2 or BC. Correlations of elemental composition with PM2.5 were mostly low 472 

to moderate (Table S3). Correlations with NO2 were mostly high for Cu and Fe in subcohorts (Table S4). 473 

Correlations between air pollutants differed substantially in magnitude across cohorts, reflecting 474 

differences in study area size and presence of major sources. We focused on within-cohort correlations 475 

as the epidemiological analysis exploited mostly within-cohort exposure contrasts. 476 

 477 

Associations between air pollution and bladder cancer 478 
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In the linear models, air pollution effect estimates were generally higher in the minimally adjusted 479 

models (Model 1, Table S5). HRs were mildly attenuated after adjusting for individual-level covariates 480 

(Model 2), and remained stable with further adjustment for area-level income (Model 3). The effect 481 

estimates were generally similar in Model 1 and Model 2, comparing the population with complete 482 

information on the corresponding model covariates and the population with complete data on Model 483 

3 covariates, respectively, suggesting little selection bias was introduced by excluding participants with 484 

missing covariates (Table S5). In the fully adjusted models, we observed a positive but statistically 485 

nonsignificant association between PM2.5 exposure and bladder cancer incidence (Table 2). The HRs 486 

for PM2.5 remained stable in two-pollutant models with adjustment for NO2, BC or O3, with wider CIs. 487 

No association was evident for NO2, BC or O3. For elemental composition estimated with SLR models, 488 

we observed positive associations for K, S, Si and Zn, which was only statistically significant for Zn 489 

(Table 3). The HRs for K and Zn remained stable in two-pollutant models after adjusting for PM2.5 or 490 

NO2, with slightly wider CIs. The HRs for S and Si attenuated to unity after adjustment for PM2.5. For 491 

RF-modeled elemental composition, we observed similar patterns for HRs for K, S, Si and Zn, except 492 

that HR for Si remained stable after adjusting for PM2.5 (Table S6). Effect estimates were larger for 493 

elemental exposures estimated with RF models compared to SLR models, probably because of the 494 

generally smaller exposure contrasts for RF predictions. In two-pollutant models with adjustment for 495 

elemental composition, HRs for PM2.5 remained stable after adjusting for S or Si, whereas the HRs 496 

attenuated after adjusting for K and Zn (Table S7). HRs for PM2.5 in two-pollutant models with Zn were 497 

close to unity.  498 

The sensitivity analyses did not alter the main findings. HRs for PM2.5 back-extrapolated to baseline 499 

years attenuated mildly with narrower CIs compared to 2010 exposures (Table 4). The increased 500 

precision in HR was especially evident for back-extrapolated exposure using ratio method, as the 501 

exposure contrasts increased. For NO2, BC and O3, effect estimates with baseline exposure were 502 

essentially unity. The effect estimates were stable with additional adjustment for smoking intensity 503 

and duration in former smokers, education, occupational status and alcohol assumption in cohorts 504 

that had such information (Table S8). The effect estimates were generally stable in analyses where we 505 

excluded one cohort at a time (Figure S3). The 95% CIs widen after excluding the large VHM&PP cohort, 506 

which contributed more than half of the person-years. For some pollutants, the HR point estimates 507 

increased or decreased when dropping the VHM&PP with the 95% CIs including unity. The uncertainty 508 

of HRs in most individual cohorts is large because of the small number of cases (Figure S4). 509 
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We generally observed a linear increase in the exposure-response function in the lower end of the 510 

exposure distribution (Figure S5). For some pollutants, the CRFs showed a decreasing trend with wide 511 

CIs at the end of the curve, where observations were few and shapes therefore were difficult to 512 

interpret. A positive association was found at low levels of NO2, decreasing at levels where the density 513 

of data was still sizable, which was difficult to interpret. Subset analyses showed increased risks for 514 

bladder cancer incidence when restricting to PM2.5 concentrations below 15 ug/m3 exposures with 515 

wider CIs as the cancer cases became fewer (Table S9). For NO2, positive associations were found when 516 

excluding the highest NO2 exposures, consistent with the CRF. There was no clear evidence for effect 517 

modification by age group or smoking status. Effect estimates tended to be higher in participants with 518 

baseline age < 65 y and current smokers, but the differences were not statistically significant (Table 519 

S10). HRs for PM2.5 were significantly higher for male than female, which could be due to residual 520 

confounding by smoking. 521 
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4. Discussions 522 

We observed a positive though statistically non-significant association between long-term PM2.5 523 

exposure and bladder cancer incidence in a pooled cohort of more than 300,000 participants across 524 

Europe. In particular, zinc in PM2.5 was statistically positively associated with bladder cancer 525 

incidence. The associations were robust to adjustment for other pollutants and several sensitivity 526 

analyses. 527 

Two previous cohort studies reported significantly positive associations between PM2.5 exposure 528 

and bladder cancer mortality in the United States. Translating to a 5 µg/m3 increase in PM2.5 (the 529 

exposure contrast used in our analyses), HRs of 1.15 (95% CI: 1.04–1.27) and 1.22 (95% CI: 1.00–530 

1.48) were reported in the ACS CPS-II and the NHIS studies (7, 8). We observed a lower HR (1.09, 531 

95% CI: 0.93–1.27) for incident bladder cancer in the present study compared to the US studies. The 532 

HRs for bladder cancer mortality and incidence may not be directly comparable because cancer 533 

mortality reflects both disease incidence and survival following diagnosis. The 5-year survival rate 534 

for people diagnosed with bladder cancer is relatively high (i.e., average of 77% for bladder cancer 535 

cases diagnosed during 2010 through 2016 in the U.S.) (39). In a Hong Kong study where mortality 536 

from both kidney and bladder cancers were evaluated together, a null association (HR: 0.98, 95% CI: 537 

0.58–1.64 per 10 µg/m3 of PM2.5) was reported (40). The Spanish Bladder Cancer Study reported an 538 

OR of 1.06 (95% CI: 0.71–1.60) for the association between bladder cancer incidence and a 5.9 µg/m3 539 

increase in PM2.5, using a case-control study design (9). In the ESCAPE study, a negative association 540 

with PM2.5 was reported with a wide CI (HR per 5 µg/m3 = 0.86, 95% CI: 0.63, 1.18)(10). We did not 541 

attach too much importance to the negative point estimate given the wide CI. Built on the ESCAPE 542 

cohorts, the present study observed a narrower CI for PM2.5 effect estimate, which may relate to 543 

the longer follow-up and the conduct of a pooled analysis. The differences in effect estimates 544 

reported in ESCAPE and ELAPSE could also be explained by the somewhat different cohorts included. 545 

However, low heterogeneity across cohorts was observed in ESCAPE (10) and our results remained 546 

stable in sensitivity analysis when dropping one cohort at a time. All of the above mentioned studies 547 

adjusted for tobacco smoking in the statistical analyses, as smoking is the primary risk factor for 548 

bladder cancer (41). There was no clear evidence of effect modification by smoking status in the 549 

Spanish Bladder Cancer Study (9) and the ACS CPS-II (7), whereas the NHIS reported significantly 550 

higher bladder cancer risks associated with PM2.5 among current smokers (8). We observed a 551 

stronger though statistically non-significant association with PM2.5 among current smokers 552 

compared to never smokers, suggesting there might be some residual confounding by smoking even 553 
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after adjustment for smoking status, duration and intensity in the present study. The small 554 

difference in HRs between models adjusted for smoking and other lifestyle factors with age-sex 555 

adjusted models, suggests confounding by smoking was likely limited. 556 

Ambient air pollution may promote bladder cancer through generic mechanisms such as 557 

inflammation and oxidative stress (1). Besides that, air pollution also contains PAHs, dioxins and 558 

sulfur-containing compounds, which are known mutagens and/or carcinogens and could cause 559 

bladder cancers (42, 43). Studies have linked occupational exposure to PAHs with higher risks of 560 

bladder cancers (5). Higher bladder cancer risks have also been related to occupational exposure to 561 

high concentrations of diesel-engine exhaust (4, 44). The IARC concluded ‘sufficient evidence’ for 562 

the carcinogenicity of diesel-engine exhaust in humans (45). Diesel engines are used for on-road and 563 

non-road transport and (heavy) equipment in various industrial sectors. Over the past decades, 564 

diesel-engine exhaust from on-road vehicles has decreased substantially in North America and 565 

Europe because of the adoption of tight emission standards. However, emissions from non-road 566 

applications (e.g., industries) are still largely uncontrolled. In Western Europe, increased risks of 567 

bladder cancer were found for metal workers and machinists (5). Associations in general 568 

populations are less clear. 569 

In the present study, we found no evidence of associations between traffic-related air pollution and 570 

bladder cancer incidence, reflected by effect estimates close to unity for proxies of tailpipe emission 571 

(BC and NO2) and non-tailpipe emission such as brake, tyre and road abrasions (Cu and Fe in PM2.5). 572 

We also did not find evidence that traffic-related air pollution was associated with lung cancer in 573 

the same study (18, 34). Analyses in the Spanish Bladder cancer study, the ACS CPS-II and the ESCAPE 574 

also showed no associations between NO2 exposure and bladder cancer risks (7, 9, 10). The ESCAPE 575 

further documented null associations with bladder cancer incidence for NOx, BC, traffic density, and 576 

Cu and Fe in PM (10). In an earlier study conducted in Amsterdam, no evidence for an association 577 

between residential traffic density and bladder cancer incidence was found (13). In the DCH cohort, 578 

which is a subcohort included in the current pooled analysis, a 100 ug/m3 increase in NOx was 579 

associated with an HR of 1.32 (95% CI: 0.80, 2.19) for bladder cancer incidence (11). Analyses in an 580 

Israeli cohort of 9816 coronary intervention patients reported a similar magnitude of effect estimate 581 

with a much wider CI for bladder cancer incidence: an HR of 1.07 (0.83, 1.37) per 10-ppb increase in 582 

NOx, translating to an HR of 1.40 (0.39, 4.83) per 100 ug/m3 increase in NOx (12). We found positive 583 

associations between NO2 and bladder cancer incidence only at low concentrations, decreasing at 584 
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high NO2 concentrations. The non-linear CRF was difficult to interpret and could be related to 585 

competing risks for other diseases that were not accounted for in the present study. 586 

We found robust associations between bladder cancer incidence and Zn exposure in the present 587 

study. Zn was primarily related to industrial emissions in our exposure models, reflected by the large 588 

proportion of variation in measurements explained by predictors representing industrial Zn 589 

emission (31). The observed associations could be due to Zn exposures per se, or other correlated 590 

components from industrial emissions. We did not observe consistently positive associations 591 

between bladder cancer incidence and exposure to Ni or V in the present study, which were selected 592 

to represent emission from mixed oil burning/industry (28, 29). Both Ni and V are suggested to 593 

derived mainly from shipping emission in Europe (46), whereas Zn was considered as a source 594 

identifier for metals industry (47). This is supported by ports from land-use being important 595 

predictors for our Ni and V models (31). The correlations between Zn and Ni as well as Zn and V 596 

exposures were low to moderate in the present study (average of cohort-specific Spearman 597 

correlation coefficients ranged from 0.19 to 0.75)(17). The earlier Spanish Bladder Cancer Study 598 

reported positive associations with bladder cancer for several indices of air pollution from industrial 599 

emissions (14). The limitation of using exposure indices, such as proximity to industries, is that the 600 

air pollution concentrations cannot be quantitatively estimated. In an analysis within population 601 

residing in proximity of a coal-oil-fired thermal power plant in Italy, an increased risk of bladder 602 

cancer was related to higher exposure to benzene and NO2 in women aged ≥ 75 y (48). 603 

The main strength of this study is that we were able to pool data from six European cohorts with 604 

detailed individual- and area-level covariate information, including smoking. The pooling of data 605 

allowed for high statistical power to examine the association between air pollution exposure and 606 

the incidence of a rare cancer. Another strength is the application of centrally developed Europe-607 

wide air pollution exposure models. Applying consistent exposure estimates for such a large 608 

international study facilitates the correct interpretation of results. Compared to ESCAPE, the 609 

Europe-wide exposure models were improved by additionally incorporating outputs from chemical 610 

transport models and satellite data representing the regional background concentrations for 611 

emissions from specific sources (30, 31, 49). Thus the model specificity was increased, which helped 612 

to identify the health effects associated with specific air pollutants. 613 

One limitation is that the exposure assessments were based on 2010 measurements whereas most 614 

included subcohorts started in the mid-1990s. We assumed that the spatial contrast of air pollution 615 

remained stable over the past decades, which was confirmed by several studies in Europe for NO2 616 
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(50-52), suggesting little bias was introduced. Importantly, we observed robust associations when 617 

applying back-extrapolated exposures for PM2.5, NO2, BC and O3. Unfortunately, we were not able 618 

to assess associations with back-extrapolated exposures for PM2.5 elemental components because 619 

of the insufficient information of trends over time. We cannot rule out the possibility that spatial 620 

contrast for these air pollutants may have been less stable. Moreover, the generally moderate 621 

performance of the elemental models may limit our ability to detect a potential association. As the 622 

measurement errors introduced are likely nondifferential, the effect estimates are more likely to be 623 

biased toward null. Another limitation is that we were unable to account for residential mobility 624 

during follow-up and only have information on lifestyle factors at baseline, whereas the study 625 

population may move or change their smoking and other habits over time. We further cannot rule 626 

out the possibility of residual confounding by other missing covariates of potential interest, such as 627 

occupational exposures. We, however, observed robust results in sensitivity analyses with 628 

additional adjustment for occupational status or educational level in subsets of the pooled cohort. 629 

 630 

5. Conclusions 631 

This study showed suggestive evidence of an association between long-term exposure to PM2.5 and 632 

bladder cancer incidence, strengthening the evidence from the few previous studies on PM2.5. We 633 

also found associations with zinc in PM2.5, which is primarily associated with industrial emissions. 634 

We found no association between traffic-related air pollution and bladder cancer.  635 
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Table 1. Characteristics of the study population at baseline 784 

Subcohorta 
Population 

sizeb 

N persons in 

model 3 (%) 

Baseline 

period 

Follow-

up 

Average 

years of 

follow-up  

Bladder 

cancer 

cases, N 

Age at 

baseline 

(mean ± SD) 

Percent 

female 

Percent 

current 

smokers 

No. of 

cigarettes/dayc 

(mean ± SD) 

Years of 

smokingc 

(mean ± SD) 

Pooled cohort 367,404 302,493 (82.3) - - 18.2 967 48.2 ± 13.4 66 24 15.1 ± 8.9 25.2 ± 13.1 

CEANS-SDPP 7,835 7,305 (93.2) 1992–1998 2011 15.3 21 47.0 ± 4.9 59 26 13.6 ± 7.4 27.8 ± 8.6 

CEANS-SIXTY 4,180 3,660 (87.6) 1997–1999 2014 12.0 27 60.0 ± 0.0 50 21 13.3 ± 7.7 36.2 ± 10.1 

CEANS-SALT 6,724 5,625 (83.7) 1998–2003 2011 9.9 26 57.3 ± 10.4 53 21 12.7 ± 8.1 37.6 ± 9.1 

CEANS-SNACK 3,248 2,359 (72.6) 2001–2004 2011 7.0 12 72.5 ± 10.4 62 15 11.7 ± 8.3 43.2 ± 13.5 

DCH 56,308 52,779 (93.7) 1993–1997 2015 16.9 301 56.7 ± 4.4 53 36 16.5 ± 9.0 36.3 ± 7.7 

DNC-1993 19,664 15,556 (79.1) 1993 2013 16.9 50 56.0 ± 8.3 100 37 13.8 ± 8.1 31.4 ± 9.9 

DNC-1999 8,769 7,430 (84.7) 1999 2013 13.0 2 47.9 ± 4.1 100 28 13.3 ± 7.4 27.1 ± 7.1 

EPIC-NL-Morgen 20,711 17,792 (85.9) 1993–1997 2013 16.4 46 42.7 ± 11.2 54 35 15.7 ± 8.6 24.5 ± 10.6 

EPIC-NL-Prospect 16,194 13,640 (84.2) 1993–1997 2013 15.7 33 57.6 ± 6.0 100 23 13.6 ± 8.7 36.7 ± 7.7 

E3N 53,521 36,258 (67.7) 1989-1991 2011 15.9 52 52.8 ± 6.7 100 13 11.3 ± 9.1 28.5 ± 7.6 

VHM&PP 170,250 140,089 (82.3) 1985-2005 2014 21.0 397 41.7 ± 14.9 56 20 15.6 ± 8.9 13.4 ± 8.2 

a The Cardiovascular Effects of Air Pollution and Noise in Stockholm (CEANS) cohort (consisting four subcohorts: the Stockholm Diabetes Prevention Program (SDPP)(19), the 785 
Stockholm Cohort of 60-year-olds (SIXTY) (22), the Stockholm Screening Across the Lifespan Twin study (SALT) (21) and the Swedish National Study on Aging and Care in Kungsholmen 786 
(SNAC-K) (20)) is in Sweden; the Diet, Cancer and Health cohort (DCH) is in Denmark; the Danish Nurse Cohort (DNC) (consisting of two surveys conducted in 1993 and 1999) is in 787 
Denmark; the European Prospective Investigation into Cancer and Nutrition-Netherlands (EPIC-NL) cohort is in the Netherlands (including the Monitoring Project on Risk Factors and 788 
Chronic Diseases in the Netherlands (MORGEN) and Prospect ); the Etude Epidémiologique auprès de femmes de la Mutuelle Générale de l’Education Nationale (E3N) is in France; the 789 
Vorarlberg Health Monitoring and Prevention Programme (VHM&PP) is in Austria. 790 
b Population size is the number of subjects for which information was transferred to Utrecht University for construction of the pooled cohort 791 
c For current smokers 792 
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Table 2. Associations between main air pollutants and bladder cancer incidence in single- and two-793 

pollutant models 794 

Exposure Single pollutant HR 
Two-pollutant model 

HR adjusted for PM2.5 HR adjusted for NO2 HR adjusted for BC HR adjusted for O3 

PM2.5 1.09 (0.93, 1.27) - 1.13 (0.93, 1.37) 1.16 (0.94, 1.41) 1.12 (0.93, 1.34) 

NO2 1.01 (0.91, 1.12) 0.96 (0.84, 1.10) - 1.06 (0.84, 1.34)a 1.01 (0.89, 1.16) 

BC 1.00 (0.90, 1.11) 0.94 (0.82, 1.07) 0.94 (0.74, 1.20)a - 0.99 (0.87, 1.13) 

O3 1.00 (0.87, 1.14) 1.05 (0.89, 1.23) 1.01 (0.84, 1.21) 0.99 (0.83, 1.18) - 

Population size = 302,493; person-years at risk = 5,505,372; number of incident bladder cancer = 967; Hazard Ratio (95% 795 
confidence interval) presented for the following increments: PM2.5 – 5 µg/m3, NO2 – 10 µg/m3, BC – 0.5*10-5/m, O3 – 10 796 
µg/m3; main model adjusted for subcohort (strata), age (time axis), sex (strata), year of baseline visit, smoking (status, 797 
duration, intensity, intensity2), BMI, marital status, employment status and 2001 area-level mean income 798 
a Two-pollutant models of BC and NO2 are difficult to interpret because of high correlation (average of cohort-specific 799 
spearman correlation coefficients of 0.81) between BC and NO2 (Table S2) 800 
  801 
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Table 3. Associations between PM2.5 composition and bladder cancer incidence in single- and two-802 

pollutant models 803 

Exposure Single pollutant HR 
Two-pollutant model 

HR adjusted for PM2.5 HR adjusted for NO2 

PM2.5 Cu 0.99 (0.84, 1.17) 0.89 (0.71, 1.11) 0.94 (0.71, 1.26) 

PM2.5 Fe 0.98 (0.81, 1.17) 0.88 (0.70, 1.10) 0.86 (0.60, 1.22) 

PM2.5 K 1.06 (0.96, 1.16) 1.04 (0.92, 1.17) 1.06 (0.96, 1.17) 

PM2.5 Ni 0.93 (0.81, 1.06) 0.88 (0.76, 1.03) 0.89 (0.75, 1.05) 

PM2.5 S 1.06 (0.88, 1.27) 0.97 (0.75, 1.27) 1.07 (0.85, 1.35) 

PM2.5 Si 1.10 (0.77, 1.55) 1.02 (0.69, 1.49) 1.15 (0.70, 1.90) 

PM2.5 V 0.97 (0.87, 1.09) 0.95 (0.84, 1.07) 0.96 (0.85, 1.08) 

PM2.5 Zn 1.08 (1.00, 1.16) 1.07 (0.98, 1.17) 1.09 (1.00, 1.19) 

Population size = 302,493; person-years at risk = 5,505,372; number of incident bladder cancer = 967; Hazard Ratio (95% 804 

confidence interval) presented for the following increments: PM2.5 Cu – 5 ng/m3, PM2.5 Fe – 100 ng/m3, PM2.5 K – 50 805 

ng/m3, PM2.5 Ni – 1 ng/m3, PM2.5 S – 200 ng/m3, PM2.5 Si – 100 ng/m3, PM2.5 V – 2 ng/m3, PM2.5 Zn – 10 ng/m3; main 806 

model adjusted for subcohort (strata), age (time axis), sex (strata), year of baseline visit, smoking (status, duration, 807 

intensity, intensity2), BMI, marital status, employment status and 2001 area-level mean income 808 

Exposures were estimated with supervised linear regression; effect estimates for elemental composition exposures 809 

estimated with random forest are shown in Table S6; Effect estimates for PM2.5 and NO2 in two-pollutant models are 810 

shown in Table S7.  811 
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Table 4. Associations between air pollutants and bladder cancer incidence using baseline exposures 812 

Exposure 2010 exposure Baseline (ratio)a Baseline (difference)a 

PM2.5 1.09 (0.93, 1.27) 1.06 (0.99, 1.14) 1.08 (0.97, 1.20) 

NO2 1.01 (0.91, 1.12) 1.02 (0.95, 1.09) 1.02 (0.92, 1.12) 

BC 1.00 (0.90, 1.11) 1.01 (0.94, 1.09) 1.01 (0.92, 1.12) 

O3 1.00 (0.87, 1.14) 0.97 (0.86, 1.09) 0.97 (0.86, 1.10) 

Population size = 302,472; person-years at risk = 5,505,372; number of incident bladder cancer = 967; Hazard Ratio (95% 813 

confidence interval) presented for the following increments: PM2.5 – 5 µg/m3, NO2 – 10 µg/m3, BC – 0.5*10-5/m, O3 – 10 814 

µg/m3; main model adjusted for subcohort (strata), age (time axis), sex (strata), year of baseline visit, smoking (status, 815 

duration, intensity, intensity2), BMI, marital status, employment status and 2001 area-level mean income 816 

a Exposure back-extrapolated to baseline years using ratio and difference methods respectively817 
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Figure 1. Exposure distribution (corresponding values shown in Table S1) 818 

The boundary of the box closest to zero indicates P25; furthest from zero – P75; bold vertical line inside the box – P50; 819 

whiskers indicate P5 and P95 820 

Subcohorts are shown from north to south 821 

Exposures were estimated with supervised linear regression. Elemental composition exposure estimated with random 822 

forest are shown in Figure S1. 823 


