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Abstract: Effective conservation assessments require detailed information of species’ 

ecological niches during the whole annual cycle. For seabirds, this implies investigating the at-

sea distribution and foraging behaviour during both the breeding and non-breeding periods. 

However, until recently, collecting information about small species has been precluded by the 

excessive size of the required devices. This lack of knowledge is exacerbated in the case of 

polytypic genera with species sharing very similar appearance and behaviour, such as the 

super-abundant prions (Pachyptila spp.). The present study investigates the year-round at-sea 

distribution and foraging ecology of the fairy prion (Pachyptila turtur) in south-eastern 

Australia. Miniaturized GPS loggers during the breeding season and geolocators (GLS) during 

the non-breeding period were used over 4 consecutive years (2017-2021), with results that 

highlight the importance of the continental shelf-edge waters for fairy prions throughout the 



year. In addition, contrary to previous assumptions, the GLS data revealed an unsuspected post-

breeding migration to the waters south of Australia, during which individuals likely undergo a 

rapid moult of flight feathers. Understanding the at-sea distribution and ecology of prions 

during the whole annual cycle will be fundamental to their conservation as it can reveal species- 

or population-specific threats that have been overlooked because of their status as abundant 

species.  
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Introduction 

Seabirds often forage in a patchy and dynamic environment, occupying a wide range of 

ecological niches [1, 2]. Among them, the Procellariiformes are one of the most endangered 

avian groups [3] owing to the numerous natural and anthropogenic threats faced throughout 

their distribution [4]. Effective conservation requires precise information of species’ ecological 

niches during the whole annual cycle, covering both the breeding and  non-breeding seasons 

[5]. However, while studies on large and easily accessible species (albatrosses, large petrels 

and shearwaters) have benefited from the development of animal-borne data loggers for more 

than three decades [6], knowledge of the ecology of smaller species has remained limited [7]. 

The absence of information on their at-sea distribution or foraging ecology has greatly 

impacted our ability to delineate proper conservation planning [8]. 

This knowledge bias is exemplified by the super-abundant prions (Pachyptila spp.), a 

group of 6-7 small (< 150 g) pelagic seabird species. Despite being the most abundant 

seabirds in the Southern Hemisphere (90 million individuals; [9, 10]), information on their at-

sea distribution is very limited. This is exacerbated by the difficulty of visually differentiating 

prion species at-sea due to similarity in appearance and behaviour [11]. More recently, 

advances in the production of small light level geolocators (GLS) has enabled the study of 

some of the largest prion species [12-17]. Although this technique provides valuable 

information about the year-round distribution of seabirds [18, 19], the low spatial resolution 

and temporal frequency of GLS data make it less appropriate to investigate at-sea movements 

during the breeding season [20]. The lack of precise knowledge regarding the at-sea 

distribution during the whole annual cycle is, therefore, a matter of conservation concern, 

especially for such ubiquitous polytypic species. 

The fairy prion (Pachyptila turtur) is the smallest (110-130 g) of the Pachyptila genus 

[9]. The majority of the species’ population breeds in New Zealand and south-eastern 



Australia, but fairy prions also occupy several subantarctic islands of the Atlantic and Indian 

oceans [9]. In south-eastern Australia and New Zealand, fairy prions are considered to forage 

year-round within a few hundred kilometres of their breeding site [21], feeding 

predominantly on the euphausiid coastal krill (Nyctiphanes australis; [22]). This euphausiid 

species plays a major role in the high abundance of marine wildlife in these regions, being an 

essential food source for fish [23], seabirds [24] and whales [25]. However, as a key 

zooplankton species [26], any variability in abundance or distribution is likely to affect the 

foraging ecology and fitness of marine predators.  

South-eastern Australia is among the most rapidly changing oceanic regions, 

characterised by strengthening currents, increasing storm frequency and warming sea surface 

temperature [27]. Particularly, the intensification of marine heatwaves (in frequency, duration 

and magnitude; [28]) greatly disrupts the zooplanktonic communities [29], potentially 

affecting a wide range of taxa [30]. By bottom-up controls, the important decrease in 

zooplankton abundance during events of extreme rise of sea temperatures is likely to induce 

changes in the foraging behaviour of seabirds [31]. In particular, the sensitivity of coastal 

krill to marine heatwaves [23, 32], and the predicted future increase in duration and 

frequency of such events in response to global change [28], may directly affect species such 

as fairy prions [33]. 

In south-eastern Australia, Bass Strait hosts nearly 60% of Australian seabirds, of 

which the great majority rely almost exclusively on coastal krill [22, 34]. In this rapidly 

changing environment, the threat of food shortage exposes fairy prions to an increased risk of 

intra- and inter-specific competition. Therefore, collecting information detailing the at-sea 

distribution and foraging ecology of this cryptic species is necessary to better understand and 

identify the fundamentals of fairy prion ecology. The objectives of this study were to describe 

the year-round at-sea movements of fairy prions in south-eastern Australia during: (1) the 



incubation and chick-rearing periods through GPS deployments; and (2) the non-breeding 

period using GLS tracking. In addition, these data were combined with stable isotope 

analyses to investigate the trophic niche of fairy prions during the breeding period (using 

whole blood) and during the non-breeding period (using body feathers). Finally, the moulting 

patterns of flight and body feathers were explored using GLS and stable isotope information, 

as these aspects are critical in the annual cycle of seabirds. 

 

2. Methods 

2.1. Study site, animal handling and instrumentation 

The study was conducted during the incubation and chick-rearing periods of breeding 

(October-January) over four consecutive years (2017-2021), and the non-breeding period 

(February-October) over two consecutive years (2019-2020) at Kanowna Island (39º15’ S, 

146º30’ E) in northern Bass Strait, south-eastern Australia. Fairy prions breeding in this 

location displayed a synchronous onset of each breeding period (within a range of 11 days) 

over the four study years (laying: 14-24 October; hatching: 30 November-10 December; and 

fledging: 16-27 January) [33].  Seven seabird species breed on this island [35], including 

1000-4000 breeding pairs of fairy prion, which represent 1-4% of the Bass Strait population 

[36]. 

 To evaluate the at-sea movements of fairy prions during the breeding season, adult 

breeding birds (N individuals = 14 and n trips = 15 in incubation; N individuals = 31 and n 

trips = 58 in chick-rearing) were equipped with a miniaturized GPS logger (nanoFix-GEO, 

Pathtrack Ltd, Otley, United-Kingdom), attached to two central tail feathers using waterproof 

tape (Tesa 4651; Beiersdorf AG). Each individual was tracked either during the incubation or 

the chick-rearing period, but never during both periods within the same breeding season. The 

GPS loggers were programmed to record locations at 20 min and 10 min intervals during the 



incubation and chick-rearing periods, respectively. The total mass of logger attachments 

corresponded to 2.4 ± 0.2% of body mass (124 ± 10 g), which was unlikely to have impacted 

the foraging and breeding parameters of the equipped individuals [31]. Individuals were 

weighed (± 2 g; Pesola), and bill, tarsus (± 0.1 mm; Vernier callipers) and wing length (± 1 

mm; ruler) were measured. 

To determine the at-sea distribution of fairy prions during the non-breeding period, 

adult birds (N individuals = 21) were equipped with leg-mounted GLS (Migrate Technology, 

model C65, United Kingdom). The total mass of logger attachments corresponded to 1.2 ± 

0.1% of body mass of the equipped birds. Breeding individuals were equipped during the 

breeding season and were recaptured during the following breeding season (individuals were 

captured when attending their burrow). In addition, the timing of wing moult was inferred 

from information provided by the GLS on the daily proportion of time spent on the sea 

surface (wet and dry sensor; sampled every 30 s and summarized by 4 hour blocks). Since 

flight feather renewal directly affects flying ability [37], the peak of time spent on the water 

during the non-breeding period was used to identify the period when fairy prions moult their 

wing flight feathers. Finally, the dates of last and first burrow attendance, as well as the 

periods of burrow attendance during the non-breeding period, were determined by combining 

information from the GLS of activity (wet-dry) and movement data (presence of the bird in 

the breeding area) [38]. When a burrow attendance was detected during the non-breeding 

period, it was not possible to confirm that the individual had returned to the exact same 

breeding colony due to the low spatial accuracy of GLS [20]. However, fairy prions are 

highly philopatric at the colony level [39], and therefore, it was assumed that tracked 

individuals were attending burrows at their colony during the non-breeding season. 

When individuals were recaptured, six body feathers and blood (0.2 mL from the 

brachial vein) were collected for stable isotope analysis. Stable isotope ratios of carbon (δ13C) 



and nitrogen (δ15N) in whole blood and body feathers were used as proxies of foraging 

habitat and diet/trophic level, respectively. Specifically, isotopic values of whole blood 

(hereafter blood) reflect dietary integration of approximately two to four weeks, while body 

feathers reflect dietary intake when they were synthesized [40] from the end of the breeding 

season and throughout the non-breeding period [9]. Therefore, isotopic values of blood were 

used to determine the trophic ecology of the fairy prion throughout the breeding season 

(incubation and chick-rearing), while body feathers were used for the non-breeding period. 

One whole body feather per individual was analysed to determine the inter-annual variations. 

In addition, in 2018-2019, four whole body feathers per individual were analysed to 

investigate intra-individual variation. 

  

2.2. Data processing and analyses 

All data analyses were processed within the R statistical environment [41]. For GPS 

data, a speed filter with a threshold at 20 m·s-1 was applied to remove erroneous locations 

[42]. Because of poor satellite reception when the birds are feeding or sitting on the water, 

linear interpolation was applied to correct for unequal sampling frequencies between foraging 

and commuting. For each complete foraging trip (defined as the time spent at sea between the 

departure from, and the return to, the burrow), the following basic parameters were 

calculated: trip duration (h), total horizontal distance travelled (km), and maximum distance 

from the colony (km). Incomplete trips, where birds started to return towards the colony but 

the device stopped before the end of the trip, were only used to estimate maximum distance 

from the colony. During the chick-rearing period, trips were classified in two categories 

based on the data distribution of trip duration: short (≤ 2 d at sea) or long (> 2 d at sea). A 

dual foraging strategy (alternating short and long trips) is common in procellariiform species, 

including prions [43]. 



The expectation maximization binary clustering (EMBC) was used to infer fairy prion 

at-sea foraging behaviour (R package EMbC; [41, 44]). This method classifies four different 

movement types based on travel speed and turning angle between subsequent locations: 

travelling−commuting (high-speed low turn, HL), resting on the water (low-speed low turn, 

LL), and intensive (low-speed high turn, LH) and extensive searching (high-speed high turn, 

HH). This method has been shown to be well suited to interpreting ecologically meaningful 

behaviours from movement data for a range of procellariiform species [45-47]. 

Processing and calculations of GLS data were conducted using the GeoLight package 

in the R statistical environment [41, 48]. The device records the maximum light intensity for 

each 5 min interval, and the determination of morning and evening twilights enables 

longitude (timing of local midday and midnight) and latitude (duration of day and night) to be 

estimated, providing two positions per day with an average accuracy of 186 ± 114 km (mean 

± SD; [20]). Before spatial analyses were conducted, data for two weeks before and after the 

autumn and spring equinoxes were excluded because latitude estimations around these 

periods are unreliable [49]. The dates of last and first burrow attendance were determined by 

combining movement data (presence of the bird within 200 km from the breeding colony), 

information on activity (wet-dry: 100% dry for a period > 8 h) and/or light sensor (continuous 

darkness during day time). These data were then used to estimate the duration and the total 

distance travelled during the post-breeding migration. The moulting period of flight feathers 

was determined for each individual using the period of maximum proportion of time spent on 

the water (wet-dry sensor being wet > 90% per day; [37]). Wet-dry data were sampled every 

30 s with the number of samples wet and maximum conductivity recorded every 4 h.  

For both GPS and GLS data, filtered locations were used to generate kernel utilization 

distribution (UD) estimates. For GPS data, a smoothing parameter of h = 0.2 was used with a 

grid of 0.1° × 0.1° cells (to avoid over-fragmentation), while for GLS data a h of 1.8 was 



selected (corresponding to a search radius of ~ 200 km) with a 1º x 1º grid cell size (based on 

the mean accuracy of the device). The 50% (core foraging area) and 95% (home range) 

kernel UD contours were obtained. Spatial analyses were performed using the adehabitatHR 

R package [41, 50]. 

For stable isotope analyses, blood samples were freeze-dried, ground to powder and 

homogenized. Body feathers were cleaned of surface lipids and contaminants using a 2:1 

chloroform:methanol solution in a ultrasonic bath, followed by two successive methanol 

rinses and air dried 24 h at 50°C [51]. Each feather was then cut with scissors to produce a 

fine powder for homogenization before carbon and nitrogen isotope ratio determination using 

a continuous flow mass spectrometer (Delta V Plus or Delta V Advantage both with a Conflo 

IV interface, Thermo Scientific, Bremen, Germany) coupled to an elemental analyser (Flash 

2000 or Flash EA 1112, Thermo Scientific, Milan, Italy) at the LIENSs laboratory (La 

Rochelle Université, France). Stable isotope values were expressed in conventional notation 

(δX = [(Rsample/Rstandard) – 1]) where X is 13C or 15N and R represent the corresponding ratio 

15N/14N or 13C/12C. Rstandard values were based on Vienna Pee Dee Belemnite for 13C, and 

atmospheric nitrogen (N2) for 15N. Replicates of internal laboratory standards (Caffeine 

USGS-61 and USGS-62) indicate measurement errors < 0.10 ‰ for δ13C and 0.15 ‰ for 

δ15N.  

All statistical analyses were conducted in the R statistical environment [41]. Inter-

annual variations in trip parameters (trip duration, total distance travelled, maximum distance 

travelled, migration duration), behaviours (HH, HL, LH, LL) and isotopic values (whole 

blood and feathers) were tested using analyses of variance (ANOVA), and post-hoc tests 

were conducted using t-tests (parametric), or Kurskal-Wallis and Mann-Whitney U tests 

(non-parametric) depending on the data distributions. Spearman’s rank correlation was used 

to test whether there was a correlation between the maximum range and total distance 



travelled for GPS tracking data (incubation and chick-rearing). To investigate inter-annual 

variations in at-sea distribution during the breeding season (incubation, chick-rearing short 

and long trips), the percentage overlap in foraging distribution were estimated using 

Bhattacharyya’s Affinity (BA) index [52] using the adehabitatHR R package [50]. BA index 

(0 signifying no overlap in UDs, and 1 = complete overlap) is a statistical measure for the 

degree of similarity amongst UDs, and the amount of space-use shared among years. 

 

3. Results 

3.1. At-sea behaviour during the breeding season 

A total of 73 trips (15 during incubation and 58 during chick-rearing) from 45 birds 

were obtained. During the incubation period, trip duration was > 5 d (max. 9 d, n = 13) in all 

cases, except for two 1-day trips (Table 1). These short incubation trips were restricted to 

150-200 km from the colony whereas, during the majority of incubation trips, all individuals 

foraged outside Bass Strait (Fig. 1), travelling 300-900 km westward to the continental shelf 

edge and/or farther west to deep (depth >5 000 m) pelagic regions. Trip duration was strongly 

correlated with maximum range from the colony (Spearman test: rho = 0.87, P < 0.001) and 

total distance travelled (rho = 0.90, P < 0.001). 

During the chick-rearing period, individuals alternated between a period of multiple 

short trips (≤2 d) and one long trip (3-4 d) (Table 1). Short chick-rearing trips represented the 

majority of foraging trips (81%), and were all located within Bass Strait (50-200 km from the 

colony, depth <100 m; Fig. 1). During long foraging trips, individuals mainly foraged along 

the continental shelf-edge, 250-300 km west and south-west from the colony (Fig. 1).  

For all foraging trips, during incubation and chick-rearing periods, trips were 

characterised by long commuting movements interrupted by active area-restricted search 

behaviour. Of the four behavioural categories determined with the EMBC methods, travelling 



(high speed, low turn; 48 ± 11%) and resting (low speed, low turn; 34 ± 12%) were 

proportionally the most dominant behaviours (Table 1), while intensive (low speed, high turn; 

11 ± 8%) and extensive searching (high speed, high turn; 6 ± 4%) represented a smaller 

proportion of at-sea behaviours. The proportion of time spent in intensive foraging was 

overall higher during the day than during the night (Fig. 2; Table S1; t-tests: t125.09 = 4.756, P 

< 0.001). Conversely, individuals spent proportionally more time travelling at night than 

during the day (t-tests: t112.8 = -5.863, P < 0.001). During both incubation and chick-rearing 

(short and long trips), individuals spent proportionally more time flying around sunrise (Fig. 

2). 

There was limited inter-annual variation in the at-sea distribution during the 

incubation period and the long trips of the chick-rearing period (Fig. 3). However, for these 

two groups, the low sample size precluded further statistical comparisons (Table S2). For 

short trips during the chick-rearing period, individuals displayed important variations 

between years, both in the at-sea distribution (BA index < 0.1) and trip parameters (Fig. 3; 

Table S2). During the two consecutive breeding seasons of 2018/19 and 2019/20, individuals 

foraged twice as far from the colony than in 2017/18 and 2020/21, which was associated with 

longer trip durations and total distance travelled per trip (Table S2). Similarly, individuals 

spent proportionally more time travelling and less time foraging in 2018/19 and 2019/20 than 

in 2017/18 and 2020/21 (Table S2). 

 

3.2. At-sea movements during the non-breeding season 

 A total of 35 GLS were deployed, of which 23 were retrieved (65.7% retrieval rate). 

Four GLS were excluded from the spatial analyses as they only recorded for a short period of 

time after deployment (< 3 months). After the end of the breeding period, all the individuals 

tracked with GLS devices migrated west or south-west of Bass Strait (Fig. 4). Post-breeding 



departure ranged from mid-November to early February, depending on the breeding success 

of the individuals (failed vs successful breeders). All successful breeders (62% of all 

equipped individuals) departed between 22 January and 03 February. Both failed and 

successful breeders travelled west 1 to 2 d after their last burrow attendance and moved 

rapidly 1500 - 2500 km from the colony (Fig. S1). The peak of maximum distance from the 

colony coincided with a higher daily proportion of time spent on the water (Fig. S1). 

After 2-3 months spent in the distal area of their post-breeding migration, individuals 

moved back towards Bass Strait, and returned to a burrow on average 125 ± 39 d after their 

last burrow attendance (Table 2; Fig. S1). Although failed breeders returned slightly earlier 

than successful breeders (114 ± 49 and 134 ± 31 d, respectively; Mann-Whitney U test: U = 

67, P = 0.153), both groups displayed important inter-individual variation with birds 

returning to the colony for the first time from late February to early July. Once individuals 

return to the colony, and for the rest of the non-breeding period, all individuals remained in 

closer proximity to the colony than during the post-breeding migration. The core distribution 

area (50% kernel UD) was restricted to the western part of Bass Strait and along the 

continental shelf-edge (Fig. 4). During this period, the daily proportion of time spent on the 

water by individuals decreased to under 50% (Fig. S1). 

 

3.3. Isotopic niche 

There was substantial variation in stable isotope values for both blood (incubation and 

chick-rearing periods) and feathers (non-breeding period) (Fig. 5). For blood samples, the 

large isotopic niche occupied by fairy prions was mostly explained by important inter-annual 

variation, for both δ13C and δ15N (Table 3). In particular, during chick-rearing, δ15N varied 

from 11.0 ± 0.7 ‰ in 2018-2019 to 13.5 ± 0.5 ‰ in 2017-2018 (Fig. S2). Conversely, stable 

isotope values in body feathers did not vary significantly between years (Table 3). Instead, 



within each year, the analysis of one body feather per individual resulted in substantial inter-

individual variation for both δ13C and δ15N. However, the analysis of four feathers per 

individual in 2018-2019 revealed large intra-individual variations in δ13C and δ15N, 

exceeding 1.7 and 6.7 ‰, respectively (Fig. S3).  

 

4. Discussion 

Using four years of GPS tracking, the present study provides the first detailed 

information of at-sea movements during the breeding season of a species from the genus 

Pachyptila, the fairy prion. In addition, while this species was not known to migrate during 

the non-breeding period [21], the analysis of winter distribution revealed a clear post-

breeding migration during the first 3-5 months of this period. This detailed information, 

combined with the data on their isotopic niche and moult patterns, provides crucial 

knowledge about a super-abundant but still under-studied genus. 

 

4.1. Breeding season 

During the breeding season, individuals foraged primarily along the continental shelf-

edge 200-300 km from the colony, but also used pelagic waters (500-900 km from the 

colony) and continental shelf areas (within Bass Strait). This distribution matches the at-sea 

observation of prions during boat surveys [55], with high concentrations of individuals found 

along the productive waters of north-west Tasmania [56]. This area is part of the Great South 

Australian Coastal Upwelling System [57], which is a key feature for several seabird species 

such as the shy albatross (Thalassarche cauta; [58]). 

During this period, the maximum foraging distance of fairy prions from Kanowna 

Island appeared to be in the same range as other species of the genus Pachyptila elsewhere 

[12, 17]. This range is likely to be correlated to the threshold between finding a profitable 



foraging area without further extending the duration of the trip [43]. However, fairy prions 

from Poor Knights Islands (New Zealand) performed substantially shorter trips during 

incubation compared to those in the present study (2.4 d and 5.7 d, respectively; [21]). This 

corresponds to the presence of a more local foraging area in northern New Zealand compared 

to Kanowna Island, mirroring the differences in foraging behaviour observed between the 

populations of common diving petrels (Pelecanoides urinatrix) from these two breeding areas 

[31, 59]. 

During the chick-rearing period, individuals repeated short trips of 1-2 d and long 

trips of 3-5 d. Despite some inter-annual variations, short trips were exclusively performed 

within Bass Strait, west and south-west of the colony. During long trips, individuals travelled 

farther west, along the continental shelf-edge. Most procellariiform species use a similar 

bimodal foraging strategy when rearing chicks, alternating short trips close to the colony with 

longer foraging trips to greater distances [43]. Such a strategy appears to be a trade-off 

between provisioning chicks regularly and maintaining adult body condition throughout the 

breeding season. Net energy transfer to the chicks is higher with short trips but at the cost of 

the adult’s body reserves [43]. During long trips, adults restore their body condition by 

foraging in or towards highly productive areas such as frontal zones or shelf slopes [60, 61]. 

During both incubation and chick-rearing trips, individuals spent a greater proportion 

of time travelling around sunrise. Leaving the nest before the first light is characteristic of 

small burrowing petrels and is thought to be a strategy to minimise the risk of predation on 

land [21]. Although the proportion of intensive searching was higher during the day, this 

activity also persisted at night. Prions are visual predators [12] but, as surface feeders, they 

rely on the presence of their prey near the surface to access it. At night, despite the limited 

visibility, the vertical migration of euphausiids may make them more available to prions [62]. 

Similar activity patterns have been observed for Antarctic prions (P. desolata) and blue 



petrels (Halobaena caerulea) [12], for which increased feeding activity at night was related 

to their high visual acuity [63]. 

Results of stable isotope analysis in blood were characterised by substantial inter-

annual variations, especially during the chick-rearing period (present study; [22]). Although, 

such variations may reflect different foraging areas between years [64], this could also 

suggest modifications in the prey size or prey species consumed [65]. During the breeding 

periods 2018-2019 and 2019-2020, fairy prions exhibited significantly lower δ15N blood 

values than in 2017-2018, which also corresponded to longer foraging trip durations. A 

similar pattern was observed with the sympatric common diving petrel, which was explained 

by the cascading effects of marine heatwaves in south-eastern Australia [31]. During these 

two successive breeding seasons, the warmer sea surface temperature is likely to have 

disrupted the availability of their main prey, the coastal krill, significantly impacting the 

breeding success of both prion and diving petrel species [33]. The abnormally warm waters 

induced a shift of dominant zooplanktonic species from energetically rich large bodied cold-

water euphausiids (such as coastal krill) to lower quality smaller size subtropical copepods 

[29]. 

  However, in contrast to the sympatric common diving petrels, fairy prions appeared 

to buffer the variations in environmental conditions better, owing to their higher flight 

capacity and the production of stomach oil [33, 66]. Indeed, despite being smaller than 

common diving petrels, the lower wing load of fairy prions enable them to reach more distant 

foraging areas [12]. In addition, the production of stomach oil mediates the mass loss of the 

chick in between meals [67], allowing the adults to extend their foraging trips without 

detrimental effects to chick survival. 

 

4.2. Migration and wintering distribution 



After the breeding period, all the tracked fairy prions from Kanowna Island performed 

a clear migration 1500 - 3000 km west/south-west of the breeding colony in the vicinity of 

the sub-tropical front. Similar to broad-billed (P. vittata), MacGillivray’s (P. macgillivrayi) 

and thin-billed (P. belcheri) prions [14, 17], this migration was characterised by a rapid 

outward movement followed by a relatively stationary period of 2-3 months at the distal point 

of the migration before a rapid return movement towards the colony 3-5 months after 

departure. Previously, in contrast to all the other Pachyptila species, the fairy prion was 

considered to not migrate during the non-breeding period [9]. However, this assumption was 

based only on at-sea observations [21] which did not take into account the breeding status of 

the birds. In particular, as observed in the present study, adults that failed early during the 

breeding season returned from migration only a few weeks after the last successful breeders 

left the colony. This may result in a perceived continuous presence of the species at the 

colony and in the surrounding waters. These findings emphasise the importance of tracking 

data in understanding the distribution of seabird species, especially during the critical non-

breeding period. 

Soon after departure, all tracked prions exhibited a marked increase in time spent on 

the water coinciding with the distal point of their migration. As previously observed in other 

prion and small petrel species, this reduced flight activity is likely to be related to intense 

flight feather moult [17, 37, 38]. This is consistent with the observation at the colony, during 

the winter period, of birds with fully moulted flight feathers [9]. The occurrence of a flight 

feather moult period within few months after departure for all individuals, independent of 

their breeding output (failed or successful breeders), suggests that this moult may be triggered 

by the end of the individual’s reproductive duties. This is similar to the broad-billed prion 

[17] or the sympatric common diving petrel [38], that show spatial and inter-annual variation 

in the moult period related to the time of departure in migration. 



Body feathers, however, appeared to be renewed throughout a longer period, likely 

including the late breeding period and most of the non-breeding period. Indeed, results of 

stable isotope analyses in feathers indicated substantial intra-individual variations. Large 

differences among body feathers of the same bird suggest that the individual was in different 

areas when they were synthesised [64]. In the present study, isotopic signatures ranged from 

coastal to oceanic environments, which is consistent with their migration pattern and the 

observation of adults starting to moult body feathers before the end of the breeding season 

and throughout winter [9]. Thin-billed and Antarctic prions display a similar protracted moult 

of their body feathers throughout several months [37, 68]. A continuous moult of the body 

feathers allows individuals to progressively renew their plumage while maintaining its key 

aspects of waterproofness and thermoregulation [69]. 

After returning from migration (in late February to June), individuals stayed within 

the general area of the colony (< 1000 km) until the start of the next breeding season. During 

this period, the at-sea distribution was mostly restricted to western Bass Strait and along the 

continental shelf edge, matching at-sea survey observations [55]. The large up-welling 

systems in this area [70] are likely to contribute to the high availability of coastal krill 

throughout this period [71]. In autumn, this region is known to host large populations of 

marine predators feeding predominantly on coastal krill, such as short-tailed shearwaters 

(Ardenna tenuirostris; [72]) and blue whales (Balaenoptera musculus; [25]). 

During this period and throughout winter, individuals returned to a burrow several 

times for a duration of one night to three consecutive days. Like other prion species, this 

behaviour could be considered as pre-breeding attendance [73]. However, in the present 

study, such a scenario seems unlikely as the behaviour occurred up to seven months before 

the start of the next breeding season. Interestingly, the common diving petrel breeding in the 

same colony exhibits a very similar pattern, coming back to the colony after a short migration 



to Antarctic waters, and attending a burrow several times throughout the non-breeding period 

[38]. When present at the colony during the non-breeding period, both species exhibit regular 

high rates of vocalization at night (Fromant et al. unpublished data), which may be linked to 

territorial behaviour [74]. The potential inter- and/or intra-specific competition for nesting 

habitat on this island could induce a greater amount of time being spent in the colony during 

the non-breeding period. Indeed, in south-eastern Australia and New Zealand, fairy prions 

and common diving petrels are potentially direct rivals for nesting habitat and have been 

regularly observed fighting in burrows [74].  

 

4.3. Conclusion 

The present study highlighted important aspects of fairy prion at-sea distribution and 

foraging ecology. In particular, the deployment of light sensor geolocators revealed an 

unsuspected post-breeding migration to the south of Australia, during which individuals 

likely undergo a rapid moult of flight feathers. In addition to this critical post-breeding 

migration, the tracking data of fairy prions from Kanowna Island highlighted the importance 

of the continental shelf-edge waters throughout the year, during both the breeding and non-

breeding periods. Topographically driven upwellings are stable features resulting in a 

spatially and temporally reliable food source, and the several upwelling systems occurring off 

south-eastern Australia [70] are essential to support the large avian biomass in this area [58]. 

However, the recent successive marine heatwaves in the region induced substantial effects on 

the phenology and breeding success of fairy prions in the region [33], and it is uncertain how 

upwelling mechanisms and marine heatwaves are related. This is particularly concerning as 

the frequency and intensity of such extreme events are predicted to increase in the near future 

[28]. In addition, although recent studies showed that fairy prions are able to maintain a 



relatively good breeding success even during poor years [33, 66], the long-term consequences 

of marine heatwaves on juveniles and adults survival remain totally unknown. 
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Table 1: Trip parameters of GPS tracking (mean ± SD) of fairy prion during the 

incubation and chick-rearing periods at Kanowna Island, south-eastern Australia. The 

proportion of the different behaviours were determined using the expectation maximization 

binary clustering (EMBC) method. LL: low-speed low turn; LH: low-speed high turn; HL: 

high-speed low turn; HH: high-speed high turn. See Table S2 for inter-annual comparisons. 

 

  Incubation Short trips Long trips 

(N individuals; n trips) N = 14; n = 15 N = 27; n = 47 N = 11; n = 11 

Trip duration (h) 137 ± 57 27 ± 13 89 ± 10 

Total distance travelled (km) 1506 ± 715 273 ± 148 1082 ± 306 

Maximum distance from 

colony (km) 
545 ± 252 108 ± 55 333 ± 124 

Behaviours 

Proportion (%) 

HH 3.4 ± 2.1 6.5 ± 4.4 9.1 ± 5.1 

HL 47.3 ± 9.0 46.7 ± 12.0 54.6 ± 10.5 

LH 5.3 ± 3.2 13.1 ± 7.9 12.1 ± 6.2 

LL 44.0 ± 11.5 33.7 ± 9.9 24.3 ± 10.7 

 

 



Table 2: Trip parameters of GLS tracking (mean ± SD) of fairy prion during the non-

breeding periods at Kanowna Island, south-eastern Australia.  

 

 2018-2019 2019-2020 

 N individuals N = 14 N = 7 

Post-breeding migration duration (d) 139 ± 38 94 ± 18 

Total distance travelled (km) 67 522 ± 10 988 63 164 ± 23 312 

Maximum distance from colony (km) 1 745 ± 334 2 010 ± 408 

 



Table 3:  Whole blood and body feather δ13C and δ15N values (means ± SD) of fairy 

prions from Kanowna Island, south-eastern Australia. Significantly different values 

(Mann-Whitney U test: P < 0.05) are indicated by different superscript letters/symbols, for 

comparison between years (row; difference between stages of the annual cycle; *, # or &), 

and between incubation and chick-rearing for whole blood values (columns; inter-annual 

variation; a or b).  

 

  
Inter-breeding 

(feathers) 

Incubation 

(blood) 

Chick-rearing 

(blood) 

δ13C 

(‰) 

2017-2018 -18.0 ± 0.8* (n = 18) - -20.9 ± 0.3* (n = 17) 

2018-2019 -18.1 ± 0.9* (n = 20) -19.8 ± 0.1a* (n = 10) -20.6 ± 0.4b# (n = 12) 

2019-2020 -17.7 ± 0.6* (n = 15) -18.9 ± 0.8a# (n = 18) -19.3 ± 0.5a& (n = 13) 

δ15N 

(‰) 

2017-2018 12.2 ± 1.9* (n = 18) - 13.5 ± 0.5a* (n = 17) 

2018-2019 12.0 ± 2.3* (n = 20) 11.9 ± 0.7a* (n = 10) 11.0 ± 0.7b# (n = 12) 

2019-2020 12.6 ± 2.3* (n = 15) 12.6 ± 1.1a* (n = 18) 12.9 ± 1.0a* (n = 13) 



Figure 1: Foraging kernel density distribution estimated from GPS locations of fairy 

prions in incubation (upper left) and chick-rearing (upper right and lower right) from 

Kanowna Island, south-eastern Australia. The lower left panel shows the distribution 

density of total trip duration for incubation (red) and chick-rearing trips (long = blue; 

short = green). Dark and faded kernel areas show the 50 and 95% of the kernel utilization 

distribution, respectively (core area and home range, respectively). Yellow dots indicate 

when the birds were in intensive foraging (low speed, high turn). 



 

Figure 2: Hourly proportion of the different behaviours of fairy prions during the 

incubation and chick-rearing trips (short and long trips). LL: low-speed low turn; LH: 

low-speed high turn; HL: high-speed low turn; HH: high-speed high turn. The dark blue area 

at the bottom of each panel corresponds to night time (from after last lights to before first 

lights). 

 



 

Figure 3: Inter-annual variation of foraging distribution of fairy prions in incubation 

and chick-rearing (short and long trips) from Kanowna Island, south-eastern Australia. 

Each panel shows the foraging kernel density distribution estimated from GPS locations. 

Dark and faded kernel areas correspond to the 50% (core area) and 95% (home range) of the 

kernel utilization distribution, respectively. 



 

Figure 4: Kernel density distribution estimated from GLS locations during the non-

breeding period of fairy prions from Kanowna Island, south-eastern Australia. A: post-

breeding migration (from last burrow attendance to first burrow attendance; December-June); 

B: non-breeding period from the first burrow attendance to the start of the following breeding 

season (February-October). STF = Subtropical Front [53].



 

Figure 5: Whole blood and body feather δ13C and δ15N values of fairy prion from 

Kanowna Island during the incubation (red dots), chick-rearing (blue squares) and 

post-breeding periods (yellow triangles). Full lines correspond to the 40% ellipse, and 

dashed lines to the 100% total convex hull. In order to allow statistical comparisons between 

blood and feathers, isotopic values of feathers were corrected using mean corrections factors 

from [54].



Table S1: Diurnal and nocturnal proportion of the different behaviours (mean ± SD) of 

fairy prions during the incubation and chick-rearing periods at Kanowna Island, south-

eastern Australia. LL: low-speed low turn; LH: low-speed high turn; HL: high-speed low 

turn; HH: high-speed high turn. 

 

  Incubation Short trips Long trips 

% per 

day 

(hours) 

HH 
3.6 ± 2.6 

(41 ± 35) 

6.5 ± 4.4 

(16 ± 13) 

9.7 ± 5.5 

(69 ± 34) 

HL 
45.5 ± 10.8 

(536 ± 265) 

42.1 ± 13.1 

(104 ± 59) 

53.8 ± 9.9 

(395 ± 103) 

LH 
5.8 ± 3.7 

(57 ± 42) 

14.7 ± 8.9 

(34 ± 21) 

12.4 ± 6.1 

(88 ± 36) 

LL 
45.1 ± 12.5 

(482 ± 216) 

36.7 ± 11.3 

(87 ± 40) 

24.1 ± 10.9 

(174 ± 78) 

% per 

night 

(hours) 

HH 
2.9 ± 1.8 

(14 ± 11) 

7.4 ± 7.8 

(4 ± 3) 

7.7 ± 4.7 

(26 ± 15) 

HL 
55.4 ± 21.6 

(264 ± 143) 

64.4 ± 21.5 

(46 ± 27) 

56.4 ± 13.9 

(195 ± 64) 

LH 
3.8 ± 3.5 

(23 ± 19) 

6.5 ± 6.3 

(6 ± 8) 

11.3 ± 7.0 

(37 ± 23) 

LL 
37.9 ± 21.8 

(230 ± 134) 

21.7 ± 20.8 

(24 ± 35) 

24.6 ± 13.3 

(80 ± 36) 



Table S2: Inter-annual variations of trip parameters (GPS) and proportion of the 

different behaviours (mean ± SD) of fairy prion during the incubation and chick-rearing 

periods at Kanowna Island, south-eastern Australia. LL: low-speed low turn; LH: low-

speed high turn; HL: high-speed low turn; HH: high-speed high turn. 
  Incubation Short trips Long trips 

Trip duration (h) 

2017/18 - 
23 ± 8a 

(N =12; n = 13) 

90 ± 11a 

(N = 5; n = 5) 

2018/19 
147 ± 54 

(N = 8; n = 9)a 

41 ± 13b 

(N =6; n = 14) 

72 

(N = 1; n = 1) 

2019/20 
149 ± 34 

(N = 3; n = 3)a 

26 ± 14a 

(N = 2; n = 3) 
- 

2020/21 
79 ± 88 

(N = 2; n = 2) 

20 ± 2a 

(N = 6; n = 16) 

93 ± 2a 

(N = 3; n = 3) 

Total distance 

travelled (km) 

2017/18 - 
197 ± 144a 

(N = 12; n = 13) 

1178 ± 233a 

(N = 5; n = 5) 

2018/19 
1756 ± 647 

(N = 8; n = 9)a 

431 ± 76b 

(N = 6; n = 14) 

567 

(N = 1; n = 1) 

2019/20 
1343 ± 610 

(N = 3; n = 3)a 

322 ± 178bc 

(N = 2; n = 3) 
- 

2020/21 
626 ± 603 

(N=2; n = 2) 

188 ± 61ac 

(N = 6; n = 16) 

1093 ± 332a 

(N = 3; n = 3) 

Maximum distance 

from colony (km) 

2017/18 - 
72 ± 59a 

(N =12; n = 13) 

366 ± 132a 

(N = 5; n = 5) 

2018/19 
635 ± 233 

(N = 9; n = 10)a 

164 ± 12b 

(N = 6; n = 14) 

189 

(N = 1; n = 1) 

2019/20 
475 ± 141 

(N = 3; n = 3)a 

129 ± 50bc 

(N = 3; n = 4) 
- 

2020/21 
199 ± 153 

(N = 2; n = 2) 

82 ± 32ac 

(N = 6; n = 16) 

328 ± 120a 

(N =5; n = 5) 

HH 

2017/18 - 
10.6 ± 5.1a 

(N =12; n = 13) 

13.0 ± 5.4a 

(N = 5; n = 5) 

2018/19 
4.6 ± 2.6 

(N = 8; n = 9)a 

5.0 ± 3.0b 

(N =6; n = 14) 

5.6 

(N = 1; n = 1) 

2019/20 
1.0 ± 0.8 

(N = 3; n = 3)b 

9.2 ± 2.7a 

(N = 2; n = 3) 
- 

2020/21 
3.2 ± 0.3 

(N=2; n = 2) 

4.0 ± 2.0b 

(N = 6; n = 16) 

5.6 ± 1.5a 

(N = 3; n = 3) 

HL 

2017/18 - 
32.6 ± 7.8a 

(N =12; n = 13) 

52.8 ± 7.4a 

(N = 5; n = 5) 

2018/19 
50.8 ± 8.9 

(N = 8; n = 9)a 

50.7 ± 10.4b 

(N =6; n = 14) 

44.8 

(N = 1; n = 1) 

2019/20 
37.9 ± 8.9 

(N = 3; n = 3)a 

54.9 ± 12.2b 

(N = 2; n = 3) 
- 

2020/21 
33.4 ± 0.3 

(N=2; n = 2) 

39.8 ± 13.0a 

(N = 6; n = 16) 

58.4 ± 14.5a 

(N = 3; n = 3) 

 2017/18 - 
23.0 ± 10.8a 

(N =12; n = 13) 

15.4 ± 6.5a 

(N = 5; n = 5) 

LH 

2018/19 
7.04 ± 3.1 

(N = 8; n = 9)a 

9.4 ± 3.7b 

(N =6; n = 14) 

11.1 

(N = 1; n = 1) 

2019/20 
0.7 ± 0.6 

(N = 3; n = 3)b 

12.5 ± 7.8ab 

(N = 2; n = 3) 
- 

2020/21 
7.6 ± 0.2 

(N=2; n = 2) 

13.1 ± 5.8b 

(N = 6; n = 16) 

7.9 ± 3.2a 

(N = 3; n = 3) 

 2017/18 - 
33.8 ± 11.5a 

(N =12; n = 13) 

18.8 ± 8.9a 

(N = 5; n = 5) 

 2018/19 
37.6 ± 7.0 

(N = 8; n = 9)a 

34.9 ± 10.2a 

(N =6; n = 14) 

38.5 

(N = 1; n = 1) 

LL 2019/20 
60.4 ± 10.2 

(N = 3; n = 3)b 

23.5 ± 3.07a 

(N = 2; n = 3) 
- 

 
2020/21 

56.0 ± 0.3 

(N=2; n = 2) 

43.2 ± 9.8b 

(N = 6; n = 16) 

28.1 ± 10.8a 

(N = 3; n = 3) 



 

Figure S1: Distance from the colony (upper panel) and proportion of time spent on the 

water per day (lower panel) during the post-breeding migration of fairy prion from 

Kanowna Island. Data were fitted with a generalized additive mixed models (GAMMs).  



 

 

Figure S2: Inter-annual variation of whole blood and body feather δ13C and δ15N values 

of fairy prion from Kanowna Island during the incubation (dots), chick-rearing (squares) 

and post-breeding periods (triangles). Yellow = 2017-2018; red = 2018-2019; blue = 2019-

2020. In order to allow statistical comparisons between blood and feathers, isotopic values of 

feathers were corrected using mean corrections factors from Cherel et al. (2014). 



 

Figure S3: Intra-individual variation of body feather δ13C and δ15N values (means ± SD) 

of fairy prion from Kanowna Island (2018-2019). For each individual, four body feathers 

were analyzed. 

 


