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Interest in 4D blood flow MRI grows due to its ability to image the anatomic shape and the three velocity components within a volume along the cardiac cycle. However, some biomarkers' quantification from these data can be inaccurate due to the low resolution of the images. The reference method to improve the spatial resolution numerically is to run computational fluid dynamic (CFD) simulations in order to deduce the associated images in a higher resolution grid. However, such approaches induce complex time-consuming steps and require precise estimates of the vessel wall and the inlet velocity. In this work, an original segmentation-free superresolution (SR) solution is proposed using an inverse problem resolution approach by the minimization of a compound criterion involving three terms, a mechanical term based on Navier-Stokes equations, and a velocity smoothness promoting term, and a spatially weighted data fidelity term. The proposed solution has been validated regarding estimation error and computation time on simulated data and experimental acquisition from a phantom. Super-resolved velocity reconstruction demonstrates promising performance, even without segmentation knowledge, compared to state-of-the-art solutions.

INTRODUCTION

Flow observations in clinical cardiovascular imaging routine are mainly done with 2D Phase-Contrast MRI. 4D flow MRI [START_REF] Markl | 4D Flow MRI[END_REF], which measures the anatomy and the three velocity components within a 3D volume and along the cardiac cycle, constitutes a promising tool for clinicians. Unfortunately, the reconstructed image has a limited spatial resolution [START_REF] Markl | 4D Flow MRI[END_REF][START_REF] Pelc | Encoding strategies for three-direction phasecontrast MR imaging of flow[END_REF] due to the need to make a trade-off between the signal-to-noise ratio and the acquisition time. Therefore, interpretation along with biomarkers' quantification turn into a complex problem as demonstrated for the wall shear stress [START_REF] Stalder | Quantitative 2D and 3D phase contrast MRI: Optimized analysis of blood flow and vessel wall parameters[END_REF][START_REF] Levilly | Towards quantitative evaluation of wall shear stress from 4D flow imaging[END_REF]. Indeed, low resolution acquisitions imply a coarse estimation of spatial This work has been funded by Philips company through the GIE grant.

derivatives and implicitly degrade the vessel wall localization. Consequently, the low image resolution is the major source of errors impacting all velocity dependent biomarkers'.

Nowadays, Computation Fluid Dynamics (CFD) simulation is considered as the reference solution to quantify such biomarkers thanks to its fluid mechanics conformity [START_REF] Boussel | Phase-contrast magnetic resonance imaging measurements in intracranial aneurysms in vivo of flow patterns, velocity fields, and wall shear stress: comparison with computational fluid dynamics[END_REF]. In fact, it allows to improve numerically the spatial resolution by exploiting the measured data in CFD simulations performed on a finer sampling mesh. These simulations rely on non-linear model based on Navier-Stokes equations whose resolution requires a precise definition of the vessel wall and inlet/outlet velocity fields. Outside of phantom applications [START_REF] Puiseux | Reconciling PC-MRI and CFD: An in-vitro study[END_REF], CFD simulation and 4D flow MRI matching is complex and a non-applicable task in the clinical routine. To manage this issue, previous contributions proposed machine learning strategies embedding CFD simulation datasets [START_REF] Gaidzik | Transient flow prediction in an idealized aneurysm geometry using data assimilation[END_REF][START_REF] Perez-Raya | Towards multi-modal data fusion for super-resolution and denoising of 4Dflow MRI[END_REF], or used directly Navier-Stokes equations with computer vision approaches [START_REF] De Hoon | 4D MRI flow coupled to physics-based fluid simulation for blood-flow visualization[END_REF][START_REF] Callaghan | Spatial resolution and velocity field improvement of 4D-flow MRI[END_REF] or adopted inverse problem solutions [START_REF] Rispoli | Computational fluid dynamics simulations of blood flow regularized by 3D phase contrast MRI[END_REF][START_REF] D'elia | A variational data assimilation procedure for the incompressible Navier-Stokes equations in hemodynamics[END_REF][START_REF] Funke | Variational data assimilation for transient blood flow simulations: Cerebral aneurysms as an illustrative example[END_REF][START_REF] Fathi | Superresolution and denoising of 4D-flow MRI using physicsinformed deep neural nets[END_REF]. In the latter category, some data assimilation methods minimize a data fidelity term under the constraint of Navier-Stokes equations applied within a pre-established segmentation [START_REF] D'elia | A variational data assimilation procedure for the incompressible Navier-Stokes equations in hemodynamics[END_REF][START_REF] Funke | Variational data assimilation for transient blood flow simulations: Cerebral aneurysms as an illustrative example[END_REF], which results in an iterative estimation of the optimal inflow, and then multiple CFD simulations. Rispoli et al. [START_REF] Rispoli | Computational fluid dynamics simulations of blood flow regularized by 3D phase contrast MRI[END_REF] proposed to embed the data within a CFD solver called SIMPLER by the minimization of a quadratic optimization problem with a data fidelity term and a fluid mechanic term for convection-diffusion. Unfortunately, the mass conservation equation is set as a hard constraint which requires a Poisson equation resolution for the pressure estimation. Besides, super-resolution (SR) algorithms mainly rely on Navier-Stokes equations solving within a pre-defined fluid domain. The strict respect of fluid mechanics and the precise vessel wall definition requires long computing time and expertise which limits SR applicability in clinical routine.

We proposed in [START_REF] Levilly | Navierstokes-based regularization for 4D flow MRI superresolution[END_REF], an efficient SR algorithm relying on the inverse problem resolution methodology [START_REF] Idier | Bayesian Approach to Inverse Problems[END_REF]. A L 2penalized formulation is used for convection-diffusion and mass conservation instead of applying hard constraints. An extension of this approach is proposed here in such way to improve the segmentation-free velocity reconstruction. In that respect, the optimized criterion, detailed in section 2, is made of three parts: a spatially weighted data fidelity term, a penalization term based on Navier-Stokes equations and a weighted spatial smoothing term applied to the velocity so as to enclose potential fluid areas. Section 3 presents 2D sections of synthetic data and experimental 4D flow MRI measurements on a phantom [START_REF] Castagna | An LDV based method to quantify the error of PC-MRI derived wall shear stress measurement[END_REF]. In section 4, SR reconstructions are evaluated in terms of root-mean-square error of the velocity vector in the fluid domain and the computation time, especially in comparison to Rispoli et al. [START_REF] Rispoli | Computational fluid dynamics simulations of blood flow regularized by 3D phase contrast MRI[END_REF] solution and to our previous contribution [START_REF] Levilly | Navierstokes-based regularization for 4D flow MRI superresolution[END_REF].

METHODS

Let's denote the estimated super-resolved vector by X = (u t , v t , w t , p t ) t where the velocities components u, v, w and the pressure field p are organized in the lexicographic order. The proposed super-resolution solution relies on solving the non-linear optimization problem:

X = arg min X ∈ R N F(X, Y) + α N S (X) + β R(X) (1) 
where N is the unknown vector size, F is the data fidelity term, N S is a regularization term based on the Navier-Stokes equations, and R is a velocity smoothing term. The data fidelity term uses a weighted least-squares criterion:

F(X, Y) = ∥Y -HX∥ 2 W (2) 
where Y = (u t d , v t d , w t d ) t is a vector containing the data velocity components u d , v d and w d stacked in the lexicographic order, W is a diagonal weight matrix of a priori velocity variances [START_REF] Pelc | Encoding strategies for three-direction phasecontrast MR imaging of flow[END_REF], and H is the downsampling and filtering operator [START_REF] Rispoli | Computational fluid dynamics simulations of blood flow regularized by 3D phase contrast MRI[END_REF][START_REF] D'elia | A variational data assimilation procedure for the incompressible Navier-Stokes equations in hemodynamics[END_REF][START_REF] Fathi | Superresolution and denoising of 4D-flow MRI using physicsinformed deep neural nets[END_REF]. For the sake of simplicity, the 4D flow MRI point spread function (PSF) corresponding to the downsampling process is modeled by a mean filter. Besides, 4D flow MRI phase measurements errors are not identically distributed and the spatially variant standard deviation [START_REF] Pelc | Encoding strategies for three-direction phasecontrast MR imaging of flow[END_REF] can be written:

σ v,i = √ 2 π V enc SNR i (3) 
where V enc is the encoding velocity, and SNR i the signal-tonoise ratio of the anatomical signal in the i-th voxel. Consequently, the weight matrix, W = diag

1 2σ 2 v i i=1•••Nd
where N d is the data size, reduces the data impact outside the potential fluid region of interest.

Blood is regularly assumed to be incompressible [START_REF] Boussel | Phase-contrast magnetic resonance imaging measurements in intracranial aneurysms in vivo of flow patterns, velocity fields, and wall shear stress: comparison with computational fluid dynamics[END_REF][START_REF] Puiseux | Reconciling PC-MRI and CFD: An in-vitro study[END_REF] and thus to have a constant fluid density ρ and dynamic viscosity µ. In such flows, the fluid velocity ⃗ v = (u, v, w) t is governed by the mass and momentum conservation equations, also called the incompressible Navier-Stokes equations:

div(⃗ v) = 0 (4) ρ grad(⃗ v) • ⃗ v -µ ∆⃗ v + grad p = ⃗ 0 (5) 
where p denotes the pressure. Body forces and transient velocity terms are considered negligible in both application cases. The Navier-Stokes equations are applied on the whole field-of-view (FOV) and Dirichlet conditions are used on its borders, in which interpolated velocity is applied on the inlet and the outlet while the no-slip condition is enforced on the other walls. Finite-volume method is generally used to discretize fluid mechanics problems [START_REF] Rispoli | Computational fluid dynamics simulations of blood flow regularized by 3D phase contrast MRI[END_REF][START_REF] Mazhar | Fully Implicit, Coupled Procedures in Computational Fluid Dynamics[END_REF][START_REF] Puiseux | Reconciling PC-MRI and CFD: An in-vitro study[END_REF], and especially to obtain a first order approximation. Akin to previous contributions [START_REF] D'elia | A variational data assimilation procedure for the incompressible Navier-Stokes equations in hemodynamics[END_REF][START_REF] Mazhar | Fully Implicit, Coupled Procedures in Computational Fluid Dynamics[END_REF], a velocity-pressure coupling formulation enables the direct computation of all velocity components which differ from a segregated algorithm used in Rispoli et al. [START_REF] Rispoli | Computational fluid dynamics simulations of blood flow regularized by 3D phase contrast MRI[END_REF] solution. Thus, the regularization term N S (X), based on equations ( 4) and ( 5), is linearized in the vicinity of any X k such as the quadratic norm of the fluid mechanic equations becomes:

N S k (X) = ∥S X k X -b∥ 2 2 (6)
where S X k is the convection-diffusion matrix computed from X k and b contains the boundary conditions. Further investigations revealed the importance of segmentation guidance at the risk of fluid domain velocities estimation being degraded by the ones outside this domain, especially close to the vessel wall. In order to limit outer velocities impact, the regularization term R relies on weighted spatial smoothing applied on each velocity components, and is defined as:

R(X) = ∥G x X∥ 2 W + ∥G y X∥ 2 W + ∥G z X∥ 2 W = X t MX (7) with M = G t
x WG x + G t y WG y + G t z WG z where G x , G y and G z are the spatial derivative matrices, and W is a diagonal matrix filled with the a priori variances. The standard deviation is computed from the linearly interpolated magnetization and equation (3). Thus, outer velocities are significantly smoothed while the fluid domain velocities are mainly regularized by Navier-Stokes equations and softened to a lesser extent by R(X).

The non-linear optimization problem (1) is solved by dealing with the following weighted least-squares minimization problem for successive X k :

min X ∈ R N ∥Y -HX∥ 2 W + α ∥S X k X -b∥ 2 2 + β X t MX (8)
whose solution X is obtained by solving the following linear system:

H t WH + α S t X k S X k + β M X = H t WY + α S t X k b (9 
) using a preconditioned linear conjugate gradient algorithm. This iterative scheme efficiency is also the result of the construction of dedicated operators instead of large sparse matrices for H, S X k , M and W. The algorithm is assumed to be converged once the normalized solution difference between two iterations reaches a tolerance threshold (10 -6 ). This nonlinear optimization solving is summarized in the Algorithm 1. Linear problem (9) solving with a tolerance of 10 -5 and 1000 as maximum of iteration ;

ε ← ∥ Xk -Xk-1 ∥ 2 2/∥ Xk-1 ∥ 2 2 ; k ← k + 1 end

VALIDATION

The proposed solution, called segmentation-free-SR (SFSR), has been validated on a 2D synthetic dataset and a 2D section of 4D flow MRI acquisition [START_REF] Castagna | An LDV based method to quantify the error of PC-MRI derived wall shear stress measurement[END_REF]. Figure 1 illustrates the magnetization and u-component of these 2D datasets. The synthetic dataset FOV is set to 15 × 8.63 cm 2 and divided on two regions: a non-fluid area with a low magnetization in opposition to an other area of fluid circulation. The latter is defined as a straight tilted cylinder with a radius of 1.5 cm leading to a parabolic velocity field, called Poiseuille in nonpulsatile flow, and with a maximum of 0.75 m/s. The fluid model uses a dynamic viscosity µ of 0.0032 Pa.s and a fluid density ρ of 1060 Kg/m 3 . The synthetic 4D flow MRI dataset is obtained by computing the Poiseuille flow on a thinner grid set to an isotropic spatial resolution of 1 mm. The latter is then filtered with a 2 × 2 mean kernel introducing partial volume effect and leading to a spatial resolution of 2 mm. Finally, a spatially variant zero-mean Gaussian noise is added to the filtered velocity with a σ v conform to equation ( 3) and the filtered magnetization. This standard deviation is set to 5 % of the V enc in the fluid domain and limited by the V enc , which is defined as 120 % of the maximum theoretical velocity.

The phantom 4D flow MRI dataset used in this study relies on the steady case presented in [START_REF] Castagna | An LDV based method to quantify the error of PC-MRI derived wall shear stress measurement[END_REF]. The fluid flows through a straight square pipe with a section of 25 × 25 mm 2 . An MRI-compatible gear pump (CardioFlow 5000, Shelley Medical Technology) maintains a steady flow of 98.7 mL/s reaching a maximal velocity of 28 cm/s. Only a 2D section of the acquired dataset, placed along the pipe axis, was used with a spatial resolution of 2.2 × 2.2 mm 2 . The reference velocity field has been computed by CFD simulation (Star CCM+, Siemens), with a finite-volume method on a Cartesian mesh of 1,725,000 0.5 mm-size cubic elements [START_REF] Castagna | An LDV based method to quantify the error of PC-MRI derived wall shear stress measurement[END_REF].

The proposed approach SFSR, Rispoli et al. [START_REF] Rispoli | Computational fluid dynamics simulations of blood flow regularized by 3D phase contrast MRI[END_REF] named SbSR for SIMPLER based-SR, and the previous solution [START_REF] Levilly | Navierstokes-based regularization for 4D flow MRI superresolution[END_REF] called Penalized-SR (PSR) are evaluated in terms of Root- Mean-Square Error (RMSE) and computation time (CT). The SR estimation is compared to the corresponding theoretical or numerical reference velocity field. The RMSE, restricted to the fluid domain, is defined as the percentage of the data noise level such as:

RMSE(r) = 1 /RMSEd × Σ N i=1 (ri-ri) 2 /N (10) 
where r contains the super-resolved reference velocity field,

RMSE d is equal to 1 Nd Nd i=1 Y i -Y i 2
, and Y is for the low resolution unfiltered reference velocity field.

RESULTS & DISCUSSION

The evaluation of the SR algorithms, SFSR and SbSR, have been done on the synthetic and phantom datasets illustrated in Fig. 1. Optimal regularization parameters, α and β, are set such as they minimize the RMSE on their associated datasets as depicted by Fig. 2(a) and Fig. 2(b). One can observe in Fig. 2(c) the problem (1) criterion minimization on both datasets with their optimal set of parameters. The resulting SR velocity grids are shown in Fig. 3 Future investigations will be conducted on datasets over the cardiac cycle in order to observe the pulsatile effect on the proposed solution.

Algorithm 1 :

 1 SFSR Algorithm Data: Y ← (u t d , v t d , w t d ) t Result: X ← ( ût , vt , ŵt , pt ) t W iscomputed with equation (3) ; b contains the velocity domain information ; k ← 1 ; ε ← 1 ; k max ← 100 ; tol ← 10 -6 ; X 0 ← 4D flow MRI velocity linear interpolation ; while k ≤ k max and ε ≥ tol do Convection-diffusion matrix S X k-1 computation ;

Fig. 1 .

 1 Fig. 1. Synthetic and Phantom datasets (velocity in m/s).

Fig. 2 .

 2 Fig. 2. SFSR hyper-parameters and criterion optimization on both datasets.

Fig. 3 .Fig. 4 .

 34 Fig. 3. Super-resolved velocity u-component [m/s].

Table 1 .

 1 for both datasets and algorithms. Regions are distinctly observable on each dataset and method. Performance indicators in application to the synthetic and phantom datasets.In terms of performance, Table1presents the RMSE and CT of the SR solutions by a factor 2 by dimension on both

		Synthetic dataset	Phantom dataset
		RMSE [%] CT [s] RMSE [%] CT [s]
	SFSR	35.2	34	53.9	21
	PSR	30.3	14	39.2	7
	PSR *	44.2-55.9	813	72.6-93.3	482
	SbSR	59.9	437	89.2	205