N
N

N

HAL

open science

Segmentation-free Super-resolved 4D FLox MRI
Reconstruction Exploiting Navier-Stokes Equations and
Spatial Regularization

Sébastien Levilly, Said Moussaoui, Jean-Michel Serfaty

» To cite this version:

Sébastien Levilly, Said Moussaoui, Jean-Michel Serfaty. Segmentation-free Super-resolved 4D FLox
MRI Reconstruction Exploiting Navier-Stokes Equations and Spatial Regularization.

(International Conference on Image Processing), Oct 2022, Bordeaux, France. hal-03774878

HAL Id: hal-03774878
https://hal.science/hal-03774878

Submitted on 12 Sep 2022

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépot et a la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche francais ou étrangers, des laboratoires
publics ou privés.

IEEE ICIP


https://hal.science/hal-03774878
https://hal.archives-ouvertes.fr

SEGMENTATION-FREE SUPER-RESOLVED 4D FLOW MRI RECONSTRUCTION
EXPLOITING NAVIER-STOKES EQUATIONS AND SPATIAL REGULARIZATION

Sébastien LEVILLY*!

Said MOUSSAOUTI'

Jean-Michel SERFATY*

* Nantes Université, CHU Nantes, CNRS, INSERM, Institut du Thorax, 44000 Nantes, France
T Nantes Université, Ecole Centrale Nantes, CNRS, LS2N, 44321 Nantes Cedex 3, France

ABSTRACT

Interest in 4D blood flow MRI grows due to its ability to im-
age the anatomic shape and the three velocity components
within a volume along the cardiac cycle. However, some
biomarkers’ quantification from these data can be inaccurate
due to the low resolution of the images. The reference method
to improve the spatial resolution numerically is to run com-
putational fluid dynamic (CFD) simulations in order to de-
duce the associated images in a higher resolution grid. How-
ever, such approaches induce complex time-consuming steps
and require precise estimates of the vessel wall and the inlet
velocity. In this work, an original segmentation-free super-
resolution (SR) solution is proposed using an inverse prob-
lem resolution approach by the minimization of a compound
criterion involving three terms, a mechanical term based on
Navier-Stokes equations, and a velocity smoothness promot-
ing term, and a spatially weighted data fidelity term. The
proposed solution has been validated regarding estimation er-
ror and computation time on simulated data and experimental
acquisition from a phantom. Super-resolved velocity recon-
struction demonstrates promising performance, even without
segmentation knowledge, compared to state-of-the-art solu-
tions.

Index Terms— 4D Flow MRI, super-resolution, inverse
problems, segmentation-free, spatial regularization

1. INTRODUCTION

Flow observations in clinical cardiovascular imaging rou-
tine are mainly done with 2D Phase-Contrast MRI. 4D flow
MRI [1], which measures the anatomy and the three velocity
components within a 3D volume and along the cardiac cycle,
constitutes a promising tool for clinicians. Unfortunately, the
reconstructed image has a limited spatial resolution [1, 2] due
to the need to make a trade-off between the signal-to-noise
ratio and the acquisition time. Therefore, interpretation along
with biomarkers’ quantification turn into a complex problem
as demonstrated for the wall shear stress [3, 4]. Indeed, low
resolution acquisitions imply a coarse estimation of spatial
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derivatives and implicitly degrade the vessel wall localization.
Consequently, the low image resolution is the major source
of errors impacting all velocity dependent biomarkers’.

Nowadays, Computation Fluid Dynamics (CFD) simula-
tion is considered as the reference solution to quantify such
biomarkers thanks to its fluid mechanics conformity [5]. In
fact, it allows to improve numerically the spatial resolution
by exploiting the measured data in CFD simulations per-
formed on a finer sampling mesh. These simulations rely on
non-linear model based on Navier-Stokes equations whose
resolution requires a precise definition of the vessel wall
and inlet/outlet velocity fields. Outside of phantom appli-
cations [6], CFD simulation and 4D flow MRI matching is
complex and a non-applicable task in the clinical routine. To
manage this issue, previous contributions proposed machine
learning strategies embedding CFD simulation datasets [7, 8],
or used directly Navier-Stokes equations with computer vi-
sion approaches [9, 10] or adopted inverse problem solu-
tions [11, 12, 13, 14]. In the latter category, some data
assimilation methods minimize a data fidelity term under
the constraint of Navier-Stokes equations applied within a
pre-established segmentation [12, 13], which results in an
iterative estimation of the optimal inflow, and then multiple
CFD simulations. Rispoli et al. [11] proposed to embed the
data within a CFD solver called SIMPLER by the minimiza-
tion of a quadratic optimization problem with a data fidelity
term and a fluid mechanic term for convection-diffusion. Un-
fortunately, the mass conservation equation is set as a hard
constraint which requires a Poisson equation resolution for
the pressure estimation. Besides, super-resolution (SR) algo-
rithms mainly rely on Navier-Stokes equations solving within
a pre-defined fluid domain. The strict respect of fluid me-
chanics and the precise vessel wall definition requires long
computing time and expertise which limits SR applicability
in clinical routine.

We proposed in [15], an efficient SR algorithm relying
on the inverse problem resolution methodology [16]. A Lo-
penalized formulation is used for convection-diffusion and
mass conservation instead of applying hard constraints. An
extension of this approach is proposed here in such way to im-
prove the segmentation-free velocity reconstruction. In that
respect, the optimized criterion, detailed in section 2, is made



of three parts: a spatially weighted data fidelity term, a penal-
ization term based on Navier-Stokes equations and a weighted
spatial smoothing term applied to the velocity so as to enclose
potential fluid areas. Section 3 presents 2D sections of syn-
thetic data and experimental 4D flow MRI measurements on
a phantom [17]. In section 4, SR reconstructions are evalu-
ated in terms of root-mean-square error of the velocity vector
in the fluid domain and the computation time, especially in
comparison to Rispoli et al. [11] solution and to our previous
contribution [15].

2. METHODS

Let’s denote the estimated super-resolved vector by X =
(ut, v, w', p*)t where the velocities components u, v, w
and the pressure field p are organized in the lexicographic or-
der. The proposed super-resolution solution relies on solving
the non-linear optimization problem:

X = argmin F(X,Y) + aNS(X) + BR(X) (1)
X ERN

where N is the unknown vector size, F is the data fidelity
term, VS is a regularization term based on the Navier-Stokes
equations, and R is a velocity smoothing term.

The data fidelity term uses a weighted least-squares crite-
rion:

F(X,Y) =Yy -HX|y )

where Y = (ul, v}, w})" is a vector containing the data ve-
locity components uq4, v4 and wq stacked in the lexicographic
order, W is a diagonal weight matrix of a priori velocity
variances [2], and H is the downsampling and filtering op-
erator [11, 12, 14]. For the sake of simplicity, the 4D flow
MRI point spread function (PSF) corresponding to the down-
sampling process is modeled by a mean filter. Besides, 4D
flow MRI phase measurements errors are not identically dis-
tributed and the spatially variant standard deviation [2] can be

written:
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where V¢, is the encoding velocity, and SNR; the signal-to-
noise ratio of the anatomical signal in the ¢-th voxel. Conse-
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quently, the weight matrix, W = diag {#}Z N where
Njy is the data size, reduces the data impact outside thed: poten-
tial fluid region of interest.

Blood is regularly assumed to be incompressible [5, 6]
and thus to have a constant fluid density p and dynamic vis-
cosity p. In such flows, the fluid velocity 7 = (u,v,w)* is
governed by the mass and momentum conservation equations,
also called the incompressible Navier-Stokes equations:

div(7) = )

&)

—

pgrad(?v) - v — p AU+ grad p =

where p denotes the pressure. Body forces and transient
velocity terms are considered negligible in both application
cases. The Navier-Stokes equations are applied on the whole
field-of-view (FOV) and Dirichlet conditions are used on its
borders, in which interpolated velocity is applied on the inlet
and the outlet while the no-slip condition is enforced on the
other walls. Finite-volume method is generally used to dis-
cretize fluid mechanics problems [11, 18, 6], and especially
to obtain a first order approximation. Akin to previous con-
tributions [12, 18], a velocity-pressure coupling formulation
enables the direct computation of all velocity components
which differ from a segregated algorithm used in Rispoli et
al. [11] solution. Thus, the regularization term N'S(X), based
on equations (4) and (5), is linearized in the vicinity of any X,
such as the quadratic norm of the fluid mechanic equations
becomes:

NS(X) = [ISx, X b3 (6)
where Sy, is the convection-diffusion matrix computed from
X, and b contains the boundary conditions.

Further investigations revealed the importance of segmen-
tation guidance at the risk of fluid domain velocities estima-
tion being degraded by the ones outside this domain, espe-
cially close to the vessel wall. In order to limit outer velocities
impact, the regularization term R relies on weighted spatial
smoothing applied on each velocity components, and is de-
fined as:

R(X) = |G X3 + Gy X35 + |G, X% = X*'MX  (7)

with M = GiWG, + GyWG, + G,WG, where Gy, Gy and
G, are the spatial derivative matrices, and W is a diagonal
matrix filled with the a priori variances. The standard devi-
ation is computed from the linearly interpolated magnetiza-
tion and equation (3). Thus, outer velocities are significantly
smoothed while the fluid domain velocities are mainly reg-
ularized by Navier-Stokes equations and softened to a lesser
extent by R(X).

The non-linear optimization problem (1) is solved by
dealing with the following weighted least-squares minimiza-
tion problem for successive X}:

min ||V — HX|[§ + o [[Sx, X = b[l3 + BXMX  (8)

X eRN
whose solution X’ is obtained by solving the following linear
system:

(H'WH + oS%, Sx, + BM) X = (H'WY + oS, b)

€))
using a preconditioned linear conjugate gradient algorithm.
This iterative scheme efficiency is also the result of the con-
struction of dedicated operators instead of large sparse matri-
ces for H, Sx,, M and W. The algorithm is assumed to be
converged once the normalized solution difference between
two iterations reaches a tolerance threshold (10~%). This non-
linear optimization solving is summarized in the Algorithm 1.



Algorithm 1: SFSR Algorithm

Data: ) + (uf,v§, wf)*

Result: X (@', 9", @', p")*

W is computed with equation (3) ;

b contains the velocity domain information ;

k< 1;e4 1;knux < 100;tol + 1076

Xy < 4D flow MRI velocity linear interpolation ;

while k < k,,,, and £ > tol do
Convection-diffusion matrix Sy, , computation ;
Linear problem (9) solving with a tolerance of

10~? and 1000 as maximum of iteration ;

€ I\??r??k_l\li/u)ek,lng ;
k+—k+1

end

3. VALIDATION

The proposed solution, called segmentation-free-SR (SFSR),
has been validated on a 2D synthetic dataset and a 2D sec-
tion of 4D flow MRI acquisition [17]. Figure 1 illustrates the
magnetization and u-component of these 2D datasets. The
synthetic dataset FOV is set to 15 x 8.63 cm? and divided
on two regions: a non-fluid area with a low magnetization in
opposition to an other area of fluid circulation. The latter is
defined as a straight tilted cylinder with a radius of 1.5 cm
leading to a parabolic velocity field, called Poiseuille in non-
pulsatile flow, and with a maximum of 0.75 m/s. The fluid
model uses a dynamic viscosity p of 0.0032 Pa.s and a fluid
density p of 1060 Kg/m?3. The synthetic 4D flow MRI dataset
is obtained by computing the Poiseuille flow on a thinner grid
set to an isotropic (ISO) spatial resolution of 1 mm. The latter
is then filtered with a 2 x 2 mean kernel introducing partial
volume effect and leading to a spatial resolution of 2 mm. Fi-
nally, a spatially variant zero-mean Gaussian noise is added to
the filtered velocity with a o, conform to equation (3) and the
filtered magnetization. This standard deviation is set to 5 %
of the V¢ in the fluid domain and limited by the V., which
is defined as 120 % of the maximum theoretical velocity.

The phantom 4D flow MRI dataset used in this study re-
lies on the steady case presented in [17]. The fluid flows
through a straight square pipe with a section of 25 x 25 mm?.
An MRI-compatible gear pump (CardioFlow 5000, Shelley
Medical Technology) maintains a steady flow of 98.7 mL/s
reaching a maximal velocity of 28 cm/s. Only a 2D section of
the acquired dataset, placed along the pipe axis, was used with
a spatial resolution of 2.2 x 2.2 mm?. The reference veloc-
ity field has been computed by CFD simulation (Star CCM+,
Siemens), with a finite-volume method on a Cartesian mesh
of 1,725,000 0.5 mm-size cubic elements [17].

The proposed approach SF'SR, Rispoli et al. [11] named
SbSR. for SIMPLER based-SR, and the previous solution [15]
called Penalized-SR (PSR) are evaluated in terms of Root-
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Fig. 1. Synthetic and Phantom datasets (velocity in m/s).

Mean-Square Error (RMSE) and computation time (CT). The
SR estimation is compared to the corresponding theoretical or
numerical reference velocity field. The RMSE, restricted to
the fluid domain, is defined as the percentage of the data noise
level such as:

RMSE(r) = 1/RMSE, X \/Ziti(ri=7)%/n  (10)

where T contains the super-resolved reference velocity field,

RMSE; is equal to \/N%, Zi\’:dl = yi)Q, and Y is for the
low resolution unfiltered reference velocity field.

4. RESULTS & DISCUSSION

The evaluation of the SR algorithms, SFSR and SbSR, have
been done on the synthetic and phantom datasets illustrated
in Fig. 1. Optimal regularization parameters, « and 3, are
set such as they minimize the RMSE on their associated
datasets as depicted by Fig. 2(a) and Fig.2(b). One can ob-
serve in Fig. 2(c) the problem (1) criterion minimization on
both datasets with their optimal set of parameters. The result-
ing SR velocity grids are shown in Fig. 3 for both datasets and
algorithms. Regions are distinctly observable on each dataset
and method.

Synthetic dataset Phantom dataset
RMSE [%] | CT[s] | RMSE [%] | CT [s]
SFSR 352 34 53.9 21
PSR 30.3 14 39.2 7
PSR* 44.2-55.9 813 72.6-93.3 482
SbSR 59.9 437 89.2 205

Table 1. Performance indicators in application to the syn-
thetic and phantom datasets.

In terms of performance, Table 1 presents the RMSE and
CT of the SR solutions by a factor 2 by dimension on both
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synthetic and phantom datasets. SFSR presents a RMSE
60 % smaller than the SbSR one for each dataset while PSR
RMSE is even smaller. PSR solution exploits the segmen-
tation meanwhile PSR* problem is equivalent to the SFSR
approach with 5 = 0. SFSR solution clearly benefits from
smoothing term in comparison with the unstable results of
PSR*. Observation of 2D error maps, in Fig. 4, revealed that
the quantification error is significantly higher in the vicinity of
the inlet and outlet of the FOV for SbSR in contrast to SFSR
solution. Then, SbSR has interesting performance in the cen-
ter of the FOV while SFSR is more uniform in term of quan-
tification. Besides, SbSR. presents higher error magnitudes
which lie mostly on the fluid domain borders as observed in
Fig. 4(a) and Fig. 4(c). Although SFSR estimation is less pre-
cise outside the fluid domain, its impact on the inner veloci-
ties remains admissible. The implementation has been done
on MATLAB (R2021b) on a workstation with an Intel Core
i9-11950H (2.60GHz) and 64Gb of RAM. SFSR algorithm
is 10 times faster than the SbSR solution on both datasets.
SbSR. performance is mainly limited due to the divergence-
free constraint and its Poisson equation solving in comparison
with the penalized formulation of PSR and SFSR.

Despite the promising quantification performance, SFSR
presents residual error mostly close to the vessel wall which
are proned to degrade wall-related biomarkers. That error
might be induced by a velocity plateau outside the fluid do-
main (see Fig.4(d)). Consequently, perspectives concern the
use of a sparsity promoting term or adding a Ly-norm on ve-
locity components to pull outer velocities close to zero.
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Fig. 3. Super-resolved velocity u-component [m/s].
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5. CONCLUSION

This paper introduced a new segmentation-free algorithm to
compute efficiently a super-resolved solution of velocity vec-
tors from 4D flow MRI data. The proposed SFSR. solution,
based on inverse problem theory, relies on two additional
prior: one term using the Navier-Stokes equations ensuring
realistic fluid flow reconstruction and one term smoothing the
velocity outside the potential fluid domain enabling a reliable
segmentation-free approach. Using penalization in contrast
to hard constraint on the Navier-Stokes equations provides a
computationally efficient solution which is also demonstrated
by satisfying RMSE performance.

Future investigations will be conducted on datasets over
the cardiac cycle in order to observe the pulsatile effect on the
proposed solution.
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