
Detection of cyber-attacks in network
control planes using Hidden Markov Model

Löıc Desgeorges, Jean-Philippe Georges, Thierry Divoux

Université de Lorraine, CNRS, CRAN, F-54000 Nancy, France
(e-mail: firstname.name@univ-lorraine.fr).

Abstract: Software Defined Networking (SDN) is a networking architecture within the control
is centralized through a software-based controller. Like Cyber-Physical Systems manager, this
centralization eases the support of advanced application. Being a single point of attack makes
the controller a preferred target in case of attack. To enhance the control plane against cyber-
attacks, an observer is introduced and is in charge of the detection of cyber-attacks on the
nominal controller. In this objective, a detection of anomalies method in the activity of the
control is proposed. This activity is defined as the events at the interface of communication
between the controller and the network plant. In this paper, a non-deterministic control is
considered which means that the decisions are stochastic. Hence, a probabilistic approach is
proposed which aims to evaluate the deviation of the likelihood of the sequence of decisions
taken by the controller. The formalism used to determine the likelihood is the Hidden Markov
Model which permits to infer over the internal states of the controller through the observations.
This method is discussed on a network case study.

Keywords: Detection, Security, Software-Defined Networking, Hidden Markov Models

1. INTRODUCTION

During the last decade, a huge activity in networking has
on the Software-Defined Networking (SDN) architecture,
as presented in Farhady et al. (2015). Fundamentally, SDN
separates the control from the network devices. This con-
trol is then centralised through a software-based controller,
which takes all the decisions related to the network. As a
consequence, this architecture has several similarities with
Cyber-Physical Systems (CPS) as presented in Molina and
Jacob (2018) and in Fig. 1. However, from a security point
of view, the controller is a preferential target as resumed in
Kreutz et al. (2013). In case of an attack of the controller,
the attacker has access to the whole network and can
damage for example through a Denial of Service Attack
by flooding the tables of the switches or by modifying
the content of the commands sent by the controller as
developed in Lee et al. (2017).

The topic of this paper is the security of the network
control using a multi-controller architecture. Multi con-
troller is already widespread in the literature for several
reasons as presented in Li et al. (2017). One of these
reasons concerns the safety aspect because, a failure of
the controller inhibits the network service and a solution
is to provide a redundancy of the main controller like in
the work of Fonseca et al. (2012). Also, the use of a set
of controllers presents some benefits in terms of security.
First, there is the possibility to set up a decision-making
security architecture as in Qi et al. (2016): to determine
if rules coming from one controller are valid, a vote is
launched between all the other controllers which limits
the influence of a controller attack. Also, more recently,
Blockchain has also been considered as an option to secure

Fig. 1. SDN controller-based CPSs presented in Molina
and Jacob (2018)

the control layer as in Yang et al. (2020). From another
perspective, the use of the Moving Target Defense such
as in Hyder and Ismail (2021) with the introduction of
the notion of shadow controllers is also used to secure the
control layer. Indeed, if a probing traffic is detected then
a part of the shadow controllers are selected, randomly, in
order to response to the traffic.

Regarding the related literature, it has to be noted that
all approaches rely on communications between the con-
trollers (the East-West interface in SDN). These inter-
faces are a threat in terms of security, as described in
Kreutz et al. (2013). For instance, the decisions taken
by one controller depend on the information given by

other controllers which might be malicious. That is why
we proposed to develop a multi-controller architecture
without communication between the controllers. The pro-
posal consists of one observer which analyses the main
activity of the controller and detects anomalies through
this activity. In Desgeorges et al. (2021), the behaviour
of the controller is assumed deterministic. Thus, when a
decision is sent on the network, the observer expects the
same as the one observed previously. As a consequence, the
proposed algorithms cannot be used to detect anomalies
of non-deterministic control (especially when it is based
on machine learning or greedy algorithms). Therefore, the
aim of the paper is to propose a method to detect anoma-
lies for such non-deterministic control algorithm. In this
objective, attention has been paid to probabilistic models
as in Holgado et al. (2017), Shi et al. (2016) or Lefebvre
et al. (2020).

The first part aims to introduce some preliminaries about
the problem in section 2. Then, the detection problem and
the proposals are developed in section 3. Then, the method
is illustrated on a case study in section 4 and finally, a
conclusion presenting the perspectives concludes the work.

2. PRELIMINARIES

2.1 Architecture SDN

The proposed multi-controller architecture is represented
in Fig. 2. Without East-West interface, the detection
method will not be based on the information from the
other controller but on the capture of its activity (the
messages exchange with the network infrastructure) and
some a priori knowledge of the control logic.

sw1 sw2

sw3

Device 1 Device 2

Controllers

(a) Classical mutli controller ar-
chitecture

sw1 sw2

sw3

Device 1 Device 2

Ctrl
Manager

Obs

(b) The proposed multi con-
troller architecture

Fig. 2. Differences between the classical multi controller
architecture and our proposal

2.2 Formalisation of the language of the control

The exchanged packets between the controller and the set
of switches, noted N , are sent through the Southbound
interface. This interface is normalized by the Openflow
protocol ONF (June, 2012).

These messages are: the requests from the switches to the
controller, the commands of the controller for the switches,
the port status and the statistics from the switches. From
the observer point of view then the set of events, Σ are:
Σ = ΣIn ∪ ΣOut ∪ ΣPs ∪ ΣStats.

Firstly, ΣIn, corresponds to the ”Packet In” messages,
named pin, which are the request from a switch to the
controller. ∀pin ∈ ΣIn there is pin = (p, S, src, dst) with:

• p ∈ N: the source port of the packet.
• S ∈ N : the switch at the origin of the request.
• src: the IP source address of the packet.
• dst: the IP destination address of the packet.

The second type of events is related to the commands sent
by the controller. These ”Flow Mod” events, noted fmod,
are actions transmitted to the switch by the controller.
They are stored by the switch in its flow table during a
duration fixed by the controller. Also, as we will focus on
routing application an action act ordered by the controller
corresponds to the port of transmission of the flow. Thus:
∀fmod ∈ ΣOut, fmod = (act, S, src, dst, idle, typefmod):

• act ∈ N: the port on which the packet is transmitted.
• S ∈ N : the switch destination of the packet.
• src: the IP source address of the packet.
• dst: the IP destination address of the packet.
• idle ∈ R+: the storage duration of the order by the
switch.

• typefmod ∈ {Add,Delete,Modify}: the type of the
instruction.

Then, ”Port Status”, noted ps, is a notification from the
switches about the state of their ports. This means that
there is an evolution of the network topology (at the data
plane level). Then ∀ps ∈ ΣPs, ps = (reason, p, S):

• reason ∈ {Add,Delete,Modify}: the reason of the
message: Add to notify the port was added, Delete if
the port was removed and Modify for a modification
of the port state.

• p ∈ N: the considered port.
• S ∈ N : the switch source of the packet.

Finally, ”MultiPart”, noted mp, are statistics of the
switches sent to the controller. These statistics are sent
in response to requests of the controller through ”Multi-
PartRequest” noted stat. According to ONF (June, 2012)
there are several kinds of statistics given by the switch and
in this work, we will only consider the statistics related to
the flow. Then ∀stat ∈ ΣStats, stat = (byte, S, src, dst):

• byte ∈ R+: the number of bytes transmitted for the
flow.

• S ∈ N : the switch source of the packet.
• src: the source of the flow.
• dst: the destination of the flow.

Given the alphabet Σ, the set of all possible words of length
n ≥ 1 is noted Σn and defined as:

Σn = {σ1, σ2 . . . σn|∀i ∈ [1, n]σi ∈ Σ} (1)

For n = 0, Σ0 = ϵ with ϵ the empty string. Hence, all the
possible words are noted Σ∗ and defined as:

Σ∗ =
⋃
n≥0

Σn (2)

All these packets are used by the controller in order to set
up the data plane in a graph G ∈ {N ,N 2} composed of
the set of nodes (N) and the set of links between the nodes
(N 2). Basically, a data plane P is a set of routes. There is
one route by traffic demand, the total number of demand
is noted |demand|. A route R is formalised as a set of

decisions R = {D1 . . . Dn}. With ∀i ∈ [1, n]Di ∈ ΣOut: the
set of decisions taken by the controller which corresponds
to the transmission port for a switch of the path to reach
the next hop (i.e. the fmod events). Then:

P = R|demand| ∈ (Σn
Out)

|demand| ⊂ Σ∗ (3)

This data plane is set up by the controller and the first step
for the observer is to verify that this data plane satisfies a
necessary condition in order to be considered as consistent
(Desgeorges et al. (2021)) such that each routes which
compose the plan has to fulfil three properties: no loop,
no dead node and the destination is reached.

To ease the readability, in what follows when we will refer
to the decisions of the controller we will consider the
consistent data plane P instead of the concatenation of
the fmod events which leads to the data plane.

3. DESIGN OF THE OBSERVER

The satisfaction for each route of the three properties
defined above is necessary to evaluate the decisions but
not sufficient. Indeed, an attacker may set up consistent,
according to the three rules introduced, data plane which
degrade the performance of the network. This section aims
to present the detection method of the observer.

3.1 Detection Problem

A part of Σ∗ corresponds to the language of the controller,
noted LCtrl. Basically, it corresponds to the decisions
taken in case of a nominal control (i.e. unfaulty) and LAtt

is introduced as the decisions taken in case of attack. In
this work, we do not consider the possibility to train the
model under attack/faulty situations contrary to other
works as Sampath et al. (1996) or Li et al. (2020). Then
the words in case of attack are all the other words:

Σ∗ = LCtrl ∪ LAtt (4)

Also, it is assumed that a cyber-attack which leads to
a nominal behaviour of the control is not a problem
regarding the control activity and so:

LCtrl ∩ LAtt = ∅ (5)

The aim of our detection problem is, given a trace of the
activity of the command T ∈ Σ∗, to determine whether
T ∈ LCtrl or T ∈ LAtt. As an example the trace might
be a request from a switch for a flow 1, pinflow1, and
the reaction of the controller which is the data plane, P:
T = {pinflow1,P}. Another example, in case of a proactive
controller where the routes are installed whatever the
intents, this trace might be a sequence of data plane set
up by the controller: T = {P1, . . .Pn}.
Moreover, a non-deterministic control algorithm is con-
sidered which means that the decisions of the control
are stochastic. Even if techniques such as the residual
approach proposed in Roth et al. (2011) are not directly
applicable, the principle proposed in this paper shares the
same base: evaluate the deviation between the observed

behavior to a model of the activity of the command as
defined in Isermann and Balle (1997).

During a learning phase the activity of the control, LLearn,
is observed. It corresponds to the nominal behavior of the
control: LLearn ⊂ LCtrl. Then, the question is: given a
trace of the activity of the control T , what is the deviation
between T and LLearn, i.e. are the decisions sent over the
network likely compared to the activity learned?

To measure this gap, as the trace T has a length n it
is necessary to consider the learned words with length
n also. The learned language of length n is denoted as
Ln
Learn = {σ ∈ Σn|σ ∈ LLearn} = Σn ∩ LLearn with Σn

the set of words of length n.

Finally, a trace of the activity of the observed control T
is part of LCtrl if and only if there is a word learned of a
similar length n, Wn, for which Wn ≡ T . This operator ≡
is defined here after and detailed in the next section.

T ∈ LCtrl ⇔ ∃Wn ∈ Ln
Learn|T ≡ Wn (6)

At the observation of a trace T , this trace is part of the
language of the controller (and so considered as consistent)
iff there is a sequence Wn observed during the learning
which is equivalent to this trace.

3.2 Evaluation of the likelihood

Since the decisions of the control cannot be predicted
exactly (this is a stochastic process); the likelihood of the
observed sequence is analysed. And so, we will assume that
two sequences of decisions T and Wn are equivalent if and
only if the ratio between the two likelihoods, L (T) and
L (Wn), is less than a limit TD.

T ≡ Wn ⇔ L (T)

L (Wn)
< TD (7)

There are several possibilities to determine the likelihood
of a word W , L (W), which depends on the considered
control. However, there is a constant: the decisions taken
by the controller depend on the intern variables of the
controller. Here, in the SDN proposed architecture there
is no East-West interface with the controller in order to
do not consider malicious information in case of attack.
As a consequence, the observer do not have access to
the evolution of the intern variables of the command
algorithm. It just has access to the observation of the
activity of the command, i.e. the events resulting of the
evolution of the intern variables, which corresponds to the
words defined in Σ∗. The process is represented in Fig. 3.

We assumed that the evolution of the intern variables
of the controller follows a Markov Process. In fact, the
decisions of the control depend on the previous state of the
network which is the result of the previous decision. Thus,
the Hidden Markov Model (HMM) formalism introduced
in Baum and Petrie (1966) is used. This formalism has
already been used in the context of the security of the
SDN controller in Wang et al. (2018) for example or more
generally in cyber security as in Keroglou and Hadjicostis
(2016) or Holgado et al. (2017). The objective is to re-
estimate the interns variables of the controller based on the

Fig. 3. Inference process

observation. To subsequently, determine the likelihood of
an observation by inference over the internal states using
the probabilistic theory such as the Bayes’ theorem.

3.3 Definition of HMM

A Hidden Markov Models (HMM) is characterized ac-
cording to Rabiner (1989) by the following:

• N : the number of states
• S = {s1, . . . sN}: the set of states.
• M : the number of observations
• O = {o1, . . . oM} = Σ: the set of observations.
• A ∈ MN,N : the state transition probability distribu-
tion,
A = (ai,j = p(qt = sj |qt−1 = si)): represents the
probability of moving from state si to state sj
∀i : ΣN

j=1ai,j = 1
• B ∈ MN,M : observation probability matrix,
B = (bi,j = p(o = oi|s = sj)): each expressing the
probability of an observation oi being generated from
a state sj
∀i : ΣN

j=1bi,j = 1
• π ∈ M1,N : an initial probability distribution over
states

Therefore, a HMM is defined by 3-tuple HMM =
(π,A,B), which depends on the parameters defined
above..

Here, the HMM is from the observer point of view and
so the set of observations WObs ∈ On corresponds to a
sequence of events of the activity of the control: WObs ∈
Σ∗.

HMM introduced three problems presented in Rabiner
(1989) and resumed as follows:

(1) Given a HMM λ = (π,A,B) and an observation
sequence WObs, determine the likelihood P (WObs|λ).

(2) Given an observation sequence WObs and an HMM
λ = (π,A,B), determine the best hidden state se-
quence Q∗ = argmaxQp(Q|WObs, λ)

(3) Given an observation sequence WObs, the set of states
S, determine the HMM parameters π, A, B and
λ∗ = argmaxλp(WObs|λ)

To solve these issues there are well-known algorithms
proposed in the literature, as resumed in Ramage (2007):

(1) Forward-Backward algorithm: determines the likeli-
hood of a sequence of observation.

(2) Viterbi algorithm: determines the best hidden state
sequence given an observation sequence.

(3) Baum-Welch algorithm: determines the HMM param-
eters given an observation sequence.

Hence, to determine the likelihood of a sequence of ob-
servation the forward backward will be used during the
running phase while the Baum-Welch algorithm is used
for the learning phase to initialise the model as presented
in Ramage (2007). Hence, the learning and the running
phases are built on different sequence of data planes and
independent.

4. CASE STUDY

Then, in this section the proposition is applied on a
case study. First, the scenario is introduced and then the
method is applied.

4.1 Scenario

The considered topology is the one of the network GEANT
(with 23 nodes) which is the European data network for
the research and educational community. The topology
with 23 nodes and 37 links is considered and is represented
in Fig. 4. The GÉANT topology is built and deployed in
Mininet 1 .

Link Capacities

10 Gbps

2.55 Gbps

155 Mbps

s1

s2 s3

s4 s5

s6

s7

s8

s9

s10 s11

s12

s13

s14

s15

s16

s17 s18

s19

s20

s21

s22

s23

Fig. 4. Topology of the network GEANT with 23 nodes.

The considered traffic is the dataset TOTEM 2 which
provides intra-domain traffic matrices for the GÉANT
topology. The controller considered is the one proposed
in Casas-Velasco et al. (2020) which is a multi-objective
proactive routing through reinforcement learning tech-
nique. The metrics used are delay, packet loss and the
available link bandwidth. This control is pro active, which
means that periodically a new data plane is set up.

The aim of the considered attack is to do a degradation of
the service by setting up malicious data plane as developed
in Lee et al. (2017). To take control of the controller, the
Kali Linux tools have been used.

4.2 Analysis of the results using HMM

The HMM proposition is evaluated depending on the
depth of the considered sequence (i.e. the number of
elements in a sequence).

1 http://mininet.org/
2 https://totem.info.ucl.ac.be/dataset.html

For what follows, we assume that no failure of a link at the
level of the switches and no evolution of the traffic demand
such that the context does not evolve ΣOut = Σ.

First, let us describe the learning phase. A sequence of
2500 planes (which corresponds to one day of run) is
used to determine LLearn. The Baum-Welch algorithm
to determine the parameters of the HMM. The number
of internal states is set to N = 3. An id is associated
to each data plane then an observation corresponds to a
data plane. Here, 14 different data planes are observed:
ΣOut = {1, 2 . . . 14}.
Now, the controller is observed during one hour (which
corresponds to a sequence of 125 planes) to constitute
the nominal sequence. To simulate the attacker, for one
hour, the data plane setting up is drawn randomly among
Σ using a uniform distribution. According to the first
problem of HMM, the likelihood of each observed sequence
is determined using the Forward algorithm in order to
determine whether it is consistent or not according to
the equation 7. This equation can be reformulated more
simply using the worst likelihood LWC observe in LLearn

as follows:

T ∈ LCtrl ⇔ L (T) < TD × LWC (8)

Assuming : TD = −1 (as the log-likelihood is considered,
it corresponds to a ratio of 10−1). Then, the limit LTD =
TD×LWC depends on the depth considered and the values
are reported in the table. 5.

Depth LTD
1 -3
2 -5
3 -6.5
4 -8.5

Fig. 5. The used thresholds

For one nominal sequence and one attack sequence the log-
likelihood is represented depending on the depth of the
considered observation on Fig. 7. The alarms raised are
represented by a point. If the depth = 1, the likelihood
of the observed plan (without considering the last ones)
is determined. Thus, each plane is considered consistent
as far as it has already been observed them. Indeed, even
if it is rare, it is possible. This means that this is not an
issue to observe it again once, therefore it is important to
consider deeper sequences. This is the reason why there is
no alarm raised on Fig. 7a.

Considering greater depth makes the analysis more accu-
rate. Even if the observed plan is consistent and one of the
most frequently seen, the sequence does not correspond to
the expected distribution. And so, the likelihood decreases
significantly when a sequence of at least 2 observations is
considered. Hence, deeper sequence permits to distinguish
the abnormal sequence from the nominal ones as it can
be observed by comparison on Fig. 7b, Fig. 7c and Fig.
7d: the number of false negative decreases when the depth
increases and so the accuracy increases. Nevertheless, since
depth = 2 the cyber-attack is detected.

To verify this phenomenon, let us study the function
f(Σ, depth), which evaluates the distribution between the

nominal sequences and the inconsistent ones according to
the depth of the sequence analysed, defined in equation. 9.

f(Σ, depth) =
|Ldepth

Ctrl |
|Ldepth

Att |
=

|Ldepth
Ctrl |

|Σdepth| − |Ldepth
Ctrl |

(9)

Here: |Σdepth| = |Σ|depth and |Ldepth
Ctrl | is determined exper-

imentally. Regarding our experiment the evolution of the
function f is given in Fig. 6 for depth > 1.

Fig. 6. Evolution of the function f depending on the depth.

For depth = 1, Σ1 = L1
Ctrl which means that all the

observed plan is considered consistent as soon as they have
already been observed as already mentioned.

Then, increasing the length of the sequence permits to
reduce the proportion of the consistent sequences in the
set of observable sequences as it can be observed in the
decrease of the points of Fig. 6. Hence, the greater the
depth of the sequence considered by the observer, the
more complicated it will be for an attacker to set up a
sequence of data plane that could damage the network
without being considered as inconsistent. This explains
the increasing of the gap of the offsets on Fig. 7. Else,
even if the controller is under attack but the activity of
the command is still correct then there is no problem from
the observer point of view.

It has to be mentioned that the complexity of the algo-
rithm used to determine the likelihood (named forward
algorithm) is O(NT) with N the number of states and T
the depth of the sequence. As a consequence, the choice
of the depth has to be a compromise between the time
computation (which impacts the reactivity of detection)
and the accuracy needed.

To conclude, the abnormal sequences, which corresponds
to a cyber-attack, are detected for depth > 2 and the
number of false negative decreases when the depth in-
creases. This is due to the impact of the depth on the
distribution between the nominal and abnormal sequence
as represented by the evolution of the function f defined
in the equation 9. Hence, depth = 4 is the more accurate
solution.

5. CONCLUSION

As a conclusion, this work presents a technique to detect
cyber-attacks in a control of network architecture. It relies
on an observer checking the activity of the controller
without communicating directly to the main controller to
avoid the threats of the East-West interface. We proposed

(a) Depth = 1 (b) Depth = 2

(c) Depth = 3 (d) Depth = 4

Fig. 7. Log-likelihood of a nominal sequence compared to an attacking one.

to analyse the deviation between the observed sequence
and the nominal sequences. The approach is based on the
likelihood of the sequence and the Hidden Markov Model
formalism has been used to determine such likelihood.
Even if no formal conclusion can be provided, a case study
shows the ability of the methods to detect the cyber-
attacks of the control events and also the limits of the
proposed method.

In future works, we aim at extending the detection algo-
rithm, firstly, by comparing the results with other pro-
posals also detecting cyber-attacks and the performance
of HMM to other formalism such as Probabilistic Finite
Automaton and Recurrent Neural Network. Also, new
techniques to detect anomalies in the context of an en-
crypted communication between the controller and the
switches is part of the perspectives.

ACKNOWLEDGEMENTS

This work was supported partly by the French PIA project
“Lorraine Université d’Excellence”, reference ANR-15-
IDEX-04-LUE.

REFERENCES

Baum, L.E. and Petrie, T. (1966). Statistical inference for
probabilistic functions of finite state markov chains. The
annals of mathematical statistics, 37(6), 1554–1563.

Casas-Velasco, D.M., Rendon, O.M.C., and da Fonseca,
N.L. (2020). Intelligent routing based on reinforcement
learning for software-defined networking. IEEE Trans-
actions on Network and Service Management, 18(1).

Desgeorges, L., Georges, J.P., and Divoux, T. (2021). A
technique to monitor threats in sdn data plane compu-

tation. In 2021 IEEE 22nd International Conference on
High Performance Switching and Routing (HPSR).

Farhady, H., Lee, H., and Nakao, A. (2015). Software-
defined networking: A survey. Computer Networks, 81,
79–95.

Fonseca, P., Bennesby, R., Mota, E., and Passito, A.
(2012). A replication component for resilient openflow-
based networking. In 2012 IEEE Network operations
and management symposium, 933–939. IEEE.

Holgado, P., Villagrá, V.A., and Vazquez, L. (2017).
Real-time multistep attack prediction based on hidden
markov models. IEEE Transactions on Dependable and
Secure Computing, 17(1), 134–147.

Hyder, M.F. and Ismail, M.A. (2021). Securing con-
trol and data planes from reconnaissance attacks using
distributed shadow controllers, reactive and proactive
approaches. IEEE Access, 9, 21881–21894.

Isermann, R. and Balle, P. (1997). Trends in the appli-
cation of model-based fault detection and diagnosis of
technical processes. Control engineering practice, 5(5),
709–719.

Keroglou, C. and Hadjicostis, C.N. (2016). Probabilistic
system opacity in discrete event systems. In 2016
13th International Workshop on Discrete Event Systems
(WODES), 379–384. IEEE.

Kreutz, D., Ramos, F.M., and Verissimo, P. (2013). To-
wards secure and dependable software-defined networks.
In Proceedings of the second ACM SIGCOMM workshop
on Hot topics in software defined networking, 55–60.

Lee, S., Yoon, C., Lee, C., Shin, S., Yegneswaran, V.,
and Porras, P.A. (2017). Delta: A security assessment
framework for software-defined networks. In NDSS.

Lefebvre, D., Seatzu, C., Hadjicostis, C., and Giua, A.
(2020). Probabilistic verification of attack detection

using logical observer. 15th IFAC Workshop on Discrete
Event Systems, WODES 2020, 53(4), 95–100.

Li, D., Wang, S., Zhu, K., and Xia, S. (2017). A survey of
network update in sdn. Frontiers of Computer Science,
11(1), 4–12.

Li, Y., Tong, Y., and Giua, A. (2020). Detection and pre-
vention of cyber-attacks in networked control systems.
IFAC-PapersOnLine, 53(4), 7–13.

Molina, E. and Jacob, E. (2018). Software-defined net-
working in cyber-physical systems: A survey. Computers
& electrical engineering, 66, 407–419.

ONF (June, 2012). OpenFlow Specifica-
tion v1.3 https://opennetworking.org/wp-
content/uploads/2014/10/openflow-spec-v1.3.0.pdf,
last visited the 14/09/2021.

Qi, C., Wu, J., Hu, H., Cheng, G., Liu, W., Ai, J., and
Yang, C. (2016). An intensive security architecture
with multi-controller for sdn. In 2016 IEEE Conference
on Computer Communications Workshops (INFOCOM
WKSHPS), 401–402. IEEE.

Rabiner, L.R. (1989). A tutorial on hidden markov
models and selected applications in speech recognition.
Proceedings of the IEEE, 77(2), 257–286.

Ramage, D. (2007). Hidden markov models fundamentals.
CS229 Section Notes, 1.

Roth, M., Lesage, J.J., and Litz, L. (2011). The concept of
residuals for fault localization in discrete event systems.
Control Engineering Practice, 19(9), 978–988.

Sampath, M., Sengupta, R., Lafortune, S., Sinnamohideen,
K., and Teneketzis, D.C. (1996). Failure diagnosis using
discrete-event models. IEEE transactions on control
systems technology, 4(2), 105–124.

Shi, D., Elliott, R.J., and Chen, T. (2016). Event-based
state estimation of discrete-state hidden markov models.
Automatica, 65, 12–26.

Wang, W., Ke, X., and Wang, L. (2018). A hmm-
r approach to detect l-ddos attack adaptively on sdn
controller. Future Internet, 10(9), 83.

Yang, H., Liang, Y., Yuan, J., Yao, Q., Yu, A., and
Zhang, J. (2020). Distributed blockchain-based trusted
multidomain collaboration for mobile edge computing
in 5g and beyond. IEEE Transactions on Industrial
Informatics, 16(11), 7094–7104.

