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Abstract—In real world datasets of aerial images, the objects
of interest are often missing, hard to annotate and of varying
aspects. The framework of unsupervised Anomaly Detection (AD)
is highly relevant in this context, and Variational Autoencoders
(VAEs), a family of popular probabilistic models, are often used.
We develop on the literature of VAEs for AD in order to take
advantage of the particular textures that appear in natural
aerial images. More precisely we propose a new VAE model
with a Gaussian Random Field (GRF) prior (VAE-GRF), which
generalize the classical VAE model, and we provide the necessary
procedures and hypotheses required for the model to be tractable.
We show that, under some assumptions, the VAE-GRF largely
outperforms the traditional VAE and some other probabilistic
models developed for AD. Our results suggest that the VAE-
GRF could be used as a relevant VAE baseline in place of
the traditional VAE with very limited additional computational
cost. We provide competitive results on the MVTec dataset and
two other datasets dedicated to the task of unsupervised animal
detection in aerial images.

Index Terms—Variational autoencoders, anomaly detection,
Gaussian random fields, aerial images

I. INTRODUCTION

This article introduces a new deep probabilistic model
followed by its application to real world data. First, a new
model of Variational Autoencoders (VAEs) with a Gaussian
Random Field (GRF) prior is presented. This offers a relevant
way to model images with strong spatial correlations. Second,
the VAE-GRF is used in the context of Anomaly Detection
(AD). More precisely, we address the real world application
of unsupervised detection of animals in aerial images. Both of
these topics are now presented.

A. Variational Autoencoders and some extensions

Our work focuses on VAEs. They are generative probabilis-
tic models, widely used in the context of anomaly detection.
They are popular for several reasons. First, they are derived
from a sound probabilistic background and robust training
procedures have been developed for such models. VAEs are
also widely used in unsupervised settings such as ours. Finally,
since a VAE is a generative model, samples can be generated
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from the model for any kind of purpose once the model has
been trained.

In this article, we introduce the VAE-GRF model for images
which makes use of a prior in the form of a stationary bi-
dimensional GRF on the torus. Indeed, we construct a convo-
lutional latent space in which we assume that the model learns
a compressed representation of the input images. Therefore,
such an approach offers a refinement of the prior distribution
over the latent random variables as compared to the indepen-
dent and identically distributed standardized Gaussian prior
from the traditional VAE context. We study the advantages
of the VAE-GRF in terms of modeling. We also demonstrate
how the stationary and torus assumptions are used to develop
a model with efficient computations despite the full covariance
structure of the prior.

Over the last few years, several works have considered
more complex priors for VAEs to be able to propose a more
relevant modeling of the data. A recent review is available
in [9]. The closest works to ours are VAEs with Gaussian
Process priors, as explored in [6], [28] or in [17]. They
propose a Gaussian Process (one-dimensional GRF) over
the latent space. However the latent spaces they use are
one dimensional which differs from the convolutional latent
space we propose. Indeed, they aim at encoding inter-sample
correlations between hidden random variables while we aim
at encoding the spatial correlations in the latent space, for
each sample. Therefore, as opposed to these approaches, we
use a bi-dimensional GRF, which is more costly and requires
different hypotheses to maintain a tractable model (stationarity
and torus). In addition, since AD is not the focus of these
approaches and since it remains unclear how Gaussian Process
VAEs could be adapted for real-world image processing, we
will discard them from comparisons.

B. Anomaly Detection in aerial images

In this article, we address the problem of unsupervised
detection of animals in aerial images. Detecting, tracking
and counting animals are real-world applications that are
more and more studied in the literature, especially thanks to
the unprecedented availability of Unmanned Aerial Vehicles
(UAV) [1] [5] [24]. However, to the best of our knowledge,
very few works consider the unsupervised context, which does
not require the tedious and costly annotation step [3]. As
the number of data keeps increasing, it becomes a necessity
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to develop reliable unsupervised approaches which can solve
these tasks.

In the unsupervised context, we can not use any annotation
to learn a representation of the animals. Moreover, in the
context of animal detection with UAV, most of the captured
images are empty, i.e., they do not contain any animal. For
these reasons, in this article, we resort to the principles of
unsupervised AD in order to detect animals. AD is a vast
research field and several reviews have already been published
on the topic [31] [25]. An introduction to AD is proposed in
Sec. III-A. In the context of this article, the AD approaches
we will compare the VAE-GRF to are presented in Sec. III-C.

C. Outline of the article

The outline of the article is the following. We first present
the new VAE-GRF model along with some theoretical
backgrounds motivating the work. We then briefly review
unsupervised AD and assess the new VAE-GRF on the
AD task on a standard public dataset. Finally, we use the
AD context to perform unsupervised animal detection in
aerial images from two datasets. In all the experiments, the
new model is compared with other state-of-the-art approaches.

Remark: The code of the VAE-GRF model to repro-
duce the experiments presented in this article is available at
https://github.com/HGangloff/vae_grf.

II. VARIATIONAL AUTOENCODERS WITH GAUSSIAN
RANDOM FIELD PRIOR

A. Gaussian Random Fields

1) Definition: The probability density function of a
GRF [30] with mean µµµ and covariance matrix Σ (forming
a set of parameters {µµµ,Σ}) is given by

p(xxx) = (2π)−
n
2 |Σ|− 1

2 exp

(
−1

2
(xxx−µµµ)TΣ−1(xxx−µµµ)

)
, (1)

where |·| refers to the determinant of a matrix and n is the
dimension of xxx. The GRF will be associated to the regular
graph defined by an image: a node is associated to each pixel
and nodes linked with each other in the graph are adjacent
pixels (we consider the 8-nearest neighbors for each pixel).
Then xxx = {x}s∈S where S is the set of nodes of the graph.

In the rest of the paper, we will consider GRFs with
stationary mean and stationary covariance matrix, i.e., the
mean is the same for each xs and the covariance between
two xs only depends on their distance (distance that will be
defined later).

2) Spectral properties: In this article, along with the sta-
tionarity assumption, we will formulate the torus assumption
on our images. In the torus assumption, the image borders
are supposed wrapped like on a torus. One can observe that
a stationary GRF defined on an image with torus assumption
will have a covariance matrix which is block-circulant with
circulant blocks [30]. Therefore, such a covariance matrix
does not need to be fully stored, it is entirely defined by a
smaller matrix called the base matrix. Indeed, for a matrix
of dimension lx × ly , its covariance matrix C has dimension

lxly×lxly . However, if both the stationarity and torus assump-
tions are made, the covariance matrix is block-circulant with
circulant blocks and is entirely defined by its base matrix,
base(C), with dimension lx × ly . All details about circulant
and block-circulant matrices can be found in [30]. Matrix
operations for block-circulant matrices with circulant blocks
are efficiently computed with the Fourier transforms and are
called the spectral properties1. The formulas we use in the
article are given in App. A.

B. VAE-GRF: model definition

1) Generative model architecture: Recall that VAEs are
generative probabilistic models which aim at modeling a
distribution over the observations pθθθ(xxx) with the help of
latent random variables zzz, such that, pθθθ(xxx) =

∫
pθθθ(xxx,zzz)dzzz =∫

pθθθ(xxx|zzz)pθθθ(zzz)dzzz. However, in VAEs, computing the posterior
pθθθ(zzz|xxx) = pθθθ(xxx,zzz)/pθθθ(xxx) = pθθθ(xxx,zzz)/

∫
pθθθ(xxx|zzz)pθθθ(zzz)dzzz is

intractable (the model likelihood, at the denominator, is, in
general, an intractable integral). In VAEs, we thus introduce
a variational distribution qφφφ(zzz|xxx) that aims at approximating
pθθθ(zzz|xxx) and whose parameters φφφ are learnt during the opti-
mization process.

The VAE-GRF model we propose is first composed of a
stochastic encoding network, with input xxx, which maps to a
convolutional latent space associated to the realizations of a
random variable zzz, following the ideas from [32] [11]. Thus,
zzz has dimension N = nx × ny × nz (width×height×depth).
The outputs of the encoder, L = diag(σ2

1 , . . . , σ
2
N ) and

mmm ∈ RN , parametrize a variational posterior distribution,
qφφφ(zzz|xxx), chosen as independent Gaussian random variables;
we then have qφφφ(zzz|xxx) = N (zzz;mmm,L). For a reason that
will be clarified later, we factorize on the depth dimension
such that qφφφ(zzz|xxx) =

∏nz

k=1 N (zzzk;mmmk, Lk), and then Lk =
diag((σ2

k)1, . . . , (σ
2
k)nxny

). The model is then composed of a
stochastic decoder network whose output λλλ = (λ1, . . . , λlxly )
parametrizes a product of independent Continuous Bernoulli
random variables [23], pθθθ(xxx|zzz) =

∏lxly
k=1 CB(xk, λk). A real-

ization of this stochastic decoder corresponds to a reconstruc-
tion, denoted x̂xx, of the input image xxx by the model.

2) GRF prior: Let us first be more specific about the
structure of the latent space with GRF prior. We consider the
zero-mean stationary and toroidal GRF prior on the nx × ny

2

dimension and we consider the components of zzz to remain
independent on the depth dimension nz . Hence pθθθ(zzz) =
N (zzz; 000,Σ) =

∏nz

k=1 N (zzzk; 000,Σk), where Σk are Symmetric
Positive Definite (SPD) matrices, and the computations can
still be done in a parallel manner on this dimension because the
computations fall back to nz parallel computations involving
bi-dimensional GRFs which share parameters. We go one
step further by sharing the parameters between these GRFs,
thus, pθθθ(zzz) =

∏nz

k=1 N (zzzk; 000,Σ). Note that such a parameter
sharing is also proposed in the one dimensional case of the

1For example a one-dimensional circular convolution of a M -length signal
has computational complexity O(M2). This reduces to O(M logM) thanks
to the Fast Fourier Transform algorithm [10].

2In all the following we consider that lx = ly and nx = ny : square input
images and square latent space images.
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Fig. 1: Illustration of some specific instances of Matern
correlation function. We have r = 2 for all curves.

factorized Gaussian Process VAEs of [17]. Note also that,
since the diagonal covariance matrix used in the standardized
Gaussian prior in the classical VAE model is comprised in the
set of the SPD matrices yielding a GRF, the VAE-GRF model
is a strict generalization of the classical VAE model.

We emphasize the fact that, even when it is not mentioned,
we never fully compute the full covariance matrix Σ but only
its base matrix. Then, note that the estimation of the covariance
matrix Σ needs to yield a SPD matrix. In our work, to ensure
this requirement, the covariance matrix Σ is assumed to be
generated by Matern correlation functions [21] which form
a class of correlation functions defined in R2 by the general
equation: ∀a ∈ R2,∀b ∈ R2,

ρν(a, b; r) =
21−ν

Γ(ν)

(√
2ν

∥a− b∥t
r

)ν

Kν

(√
2ν

∥a− b∥t
r

)
,

(2)
where Γ is the gamma function, Kν is the modified Bessel
function of the second kind, ν is a non-negative parameter, r
is the non-negative range parameter and ∥.∥t is the Euclidean
distance on an image (of dimensions lx × ly) with torus
assumption. For a = (a1, a2) ∈ R2, b = (b1, b2) ∈ R2, the
Euclidean distance on the torus is defined by

∥a− b∥t =
(
min(|a1 − b1|, lx − |a1 − b1|)2

+min(|a2 − b2|, ly − |a2 − b2|)2
) 1

2

.
(3)

In the rest of this article, we will work with two specific
Matern correlation functions. First, the Matern- 12 (Eq. (2) with
ν = 1

2 ) correlation function on the torus which reads

ρ1/2(a, b; r) = exp

(
−∥a− b∥t

r

)
. (4)

Second, the Matern-32 (Eq. (2) with ν = 3
2 ) correlation

function on the torus which reads

ρ3/2(a, b; r) =

(
∥a− b∥t

r
+ 1

)
exp

(
−∥a− b∥t

r

)
. (5)

These two instances of the Matern correlation function are
commonly used in spatial statistics [12] [21]. They differ in the
way they induce a decrease with the distance in the correlation
between the random variables. Fig. 1 illustrates three different
Matern correlation functions.

Note that to form the covariance matrix, it remains to
multiply the correlation function with the GRF variance σ2,

leading to the following covariance between two random
variables (zk)s and (zk)s′ , ∀k ∈ {1, . . . , nz}:

Cov((zk)s, (zk)s′) = (Σ)s,s′ = σ2ρ(s, s′; r). (6)

We also note that that the variance parameter σ2 and the range
r are constants for the whole GRF to respect a stationary
covariance structure (and for all the nz GRFs). Since we
assume that the mean parameter µµµ = 000, the set of parameters
defining the GRF prior is {r, σ2}. In our approach, the prior
parameters will be learnt as additional parameters for the
network by log-likelihood maximization of the observed image
xxx over which we also assume the same GRF structure as
prior. This latter GRF has parameter θ̄θθ = {r̄, σ̄2}. Using the
estimation of θ̄θθ, we get the GRF over zzz parameter with the
assumed relations: {

rk = λr̄,

σ2 = σ̄2,
(7)

where λ is set to the ratio of the latent image size over the
input image size: λ = ⌊nx

lx
⌋ = ⌊ny

ly
⌋. The details about these

computations are given in Sec. II-C2.

Remark: Importantly, in the VAE-GRF, the encoder, the
latent space and the decoder of the model have exactly the
same number of parameters as the classical VAE and, overall,
the VAE-GRF does not make use of any additional module.
We only need to store two more scalar parameters in the VAE-
GRF model: the range and the variance of the prior. Indeed, we
propose a refinement in the prior modeling, yielding improved
results, thus with a very limited additional computational cost.

C. Training the model

Classically, VAEs are trained by maximizing a lower-bound
on the log-likelihood, called the Evidential Lower Bound
(ELBO), denoted Eθθθ,φφφ(xxx), which reads

log pθθθ(xxx) ≥ Eqφφφ(zzz|xxx)[log pθθθ(xxx|zzz)]−KL(qφφφ(zzz|xxx)||pθθθ(zzz))︸ ︷︷ ︸
Eθθθ,φφφ(xxx)

,

(8)
where KL denotes the Kullback-Leibler divergence between
two probability distributions.

For more flexibility in the training, we use the β-ELBO [16]
(with an additional stop gradient operator) which reads

Eθθθ,φφφ,β(xxx) = Eqφφφ(zzz|xxx)[log pθθθ(xxx|zzz)]− βKL(qφφφ(zzz|xxx)||sg[pθθθ(zzz)]),
(9)

where sg refers to the stop gradient operator. Then, the
VAE-GRF is trained by maximizing the β-ELBO (with stop
gradient) plus the log-likelihood prior over the observed image.
The final loss is then defined by:

Lθθθ,φφφ(xxx) = Eθθθ,φφφ,β(xxx) + log pθ̄θθ(xxx). (10)

The reason for this stop gradient operator is the following:
we want the prior parameters σ and r to be updated only
from the log-likelihood maximization term. Updating the prior
parameters through the KL term would drag Σ towards L,
i.e., it would drag the prior towards a Gaussian with diagonal
covariance matrix, which is the opposite of our purpose. The
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reason for introducing the β scalar is that we can modulate
how strong we want the posterior to fit to the prior, in other
words, how strong the GRF assumption is.

1) The ELBO term: The ELBO is composed of a first
term similar to a cross-entropy which favors reconstructions
similar to the input, it is called the reconstruction term and its
computation is the same as classically done in VAEs. The
Kullback-Leibler divergence term3 can be interpreted as a
regularization term which pushes the posterior to match the
prior during the training. We have by definition

KL(qφφφ(zzz|xxx)||pθθθ(zzz)) = Eqφφφ(zzz|xxx)

[
log

qφφφ(zzz|xxx)
pθθθ(zzz)

]
, (11)

and we can show that

KL(qφφφ(zzz|xxx)||pθθθ(zzz)) = KL(N (zzz;mmm,L)||N (zzz; 000,Σ)),

=
1

2

nk∑
k=1

(
− log|Lk| − nxny + log|Σ|

+ tr(Σ−1mmmkmmm
T
k ) + tr(Σ−1Lk)

)
,

(12)

where tr refers to the trace operator. In Sec. II-D, we explain
how the computations of Eq. (12) can remain cheap in our
VAE-GRF model, thanks to the stationary GRF prior on torus.

Remark: In the common case of a VAE with a standardized
Gaussian as prior [19], Eq. (12) falls back to

KL(qφφφ(zzz|xxx)||pθθθ(zzz)) = KL(N (zzz;mmm,L)||N (zzz; 000, I)),

=
1

2

N∑
i=1

(
− log σ2

i − 1 +m2
i + σ2

i

)
.

(13)

2) The log-likelihood term: The second term of the loss
function is the log-likelihood of the observed image upon
which we assume a stationary GRF prior on the torus. With
θ̄θθ defined as before, we have

log pθ̄θθ(xxx) = − lxly
2

log 2π − 1

2
log|Σ̄| − 1

2
xxxT Σ̄−1xxx, (14)

where Σ̄ is the covariance matrix generated from the selected
correlation function and the parameter θ̄θθ. Again, the spectral
properties are usable, and the details for the computation of
Eq. (14) are given in Sec. II-D.

D. Computational efficiency

Recall that the stationarity of the GRF and the torus
assumption make the properties detailed in Sec. II-A2 usable.
The latter are a critical element in our approach. We now detail
how the loss function (Eq. (10)) can be efficiently computed
both in terms of time and memory complexity. We review
each of the terms that are found in Eqs. (12) and (14). A
naive computation of these terms would be impossible because
they would lead to excessive memory allocations for standard
GPUs. Thus, in the VAE-GRF:

3In this section, we ignore the stop gradient operator whose role has been
clarified in the previous section.

• All determinants can be computed directly with Eq. (19).
• All matrix inversions can be computed with Eq. (17).
• The term tr(Σ−1mmmmmmT ) can be computed by first com-

puting Σ−1mmm. We then multiply this result element-by-
element with mmmT and sum the resulting vector.

• The term tr(Σ−1L) is equivalent to multiplying each
element of the diagonal matrix L = diag(σ2

1 , . . . , σ
2
n)

by the element at position (0, 0) of matrix Σ−1 and then
summing the resulting matrix.

Note that all the operations involve the base matrices of the
full covariance matrices and thus, no matrix with greater
dimension than nx × ny is stored or allocated. Moreover, an
increase in time efficiency is also due to the use of Fourier
transforms in the spectral properties. This way, all these
operations can be implemented on GPU, differentiated and
computed in a batched manner thanks to the Pytorch [27]
library.

Example: Let us consider, for example, the naive com-
putation of Σ−1mmmk (with a non stationary Σ−1). In such
case Σ−1 has dimension 1024× 1024 and we would need to
allocate batches of size 1024× 1024× 256. Consider a batch
size of 16 and 32-bit float precision, the latent space alone
would require 16× 1024× 1024× 256× 32bits ≈ 16GBytes
without our specific hypothesis. This represents allocations for
the computation of the KL term only and thus illustrates that
the procedure we develop is crucial for the VAE-GRF to be
implemented on standard GPUs.

III. UNSUPERVISED ANOMALY DETECTION

A. Principle

Anomaly Detection (AD) refers to the task of detecting
observations that deviate from some underlying concept of
normality [14]. It is an popular research topic with a vast
literature [29] but recently, it has been revolutionized by deep
learning approaches which have yielded new state-of-the-art
results thanks to the unprecedented possibilities of capturing
and modeling the normality [31]. The most popular family
of approaches to AD is composed of the reconstruction-based
methods, in which distances (ℓ-2 distance, SSIM distance [34],
etc.) are computed between the inputs and the reconstructions
in order to locate the anomalies. The summary works of [2]
and [35] illustrate these approaches upon which we base our
work.

The principle of unsupervised AD is the following.
A representation of the normality is learnt thanks to a
deep model which is trained on normal samples devoid of
anomalies. Then, at testing time, metrics can be used to
detect a change in behaviour of the model when the latter
is presented an anomalous sample. VAEs and VQ-VAEs are
popular models for this unsupervised task. The former models
have appeared first [2] [35] [20] [8] while the latter models
have been explored very recently [33] [11].

Remark: Strictly speaking, in the setting of this article,
the approach should be called weakly supervised since some
supervision is needed to make sure the training is done
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only on images without anomalies. However, in this context,
unsupervised and weakly supervised are found interchangeably
in the literature.

B. VAE-GRF for Anomaly Detection

We now precisely describe VAE-GRF model for AD. The
model is classically trained on a dataset of normal samples to
learn a representation of the normality. Then, we propose to
detect the anomalies at testing time from an original metric
defined on the latent space coupled with a reconstruction based
metric.

We show that the VAE-GRF is a robust approach, com-
petitive with comparable approaches from the state-of-the-art
provided that some assumptions hold on the datasets. Indeed,
we will show that the new metric defined on the latent space
requires, as expected, that the stationary and torus assumptions
made for the GRF hold. This is the case for some textures
images as we illustrate in Sec. III-E, and also for some aerial
images in remote sensing as we present in Sec. IV.

Let us now introduce our new metric for AD that will be
used in all the following experiments. Let MAD (from Mean
Absolute Deviation) be the nx×ny anomaly map that we com-
pute from the latent space. Each of the pixel of the anomaly
map is computed as the mean absolute deviation from the
mean of the same location of the output of the convolutional
encoder zzz, i.e., ∀x ∈ {1, . . . , nx},∀y ∈ {1, . . . , ny},

MADx,y =
1

nz

nz∑
k=1

∣∣∣∣∣zx,y,k − 1

nz

nz∑
k=1

zx,y,k

∣∣∣∣∣ . (15)

Then, the MAD anomaly map is upsampled to the dimension
of the original image and AD can be performed.

Let us also define a reconstruction-based anomaly map,
called SM , which uses the Structural Similarity Index Mea-
sure (SSIM) [34]. For each pixel i, we have:

SM(xi) = SSIM(pppi, qqqi) =
(2µpppµqqq + c1)(2σpqpqpq + c2)

(µ2
ppp + µ2

qqq + c1)(σ2
ppp + σ2

qqq + c2)
,

(16)
where pppi (resp. qqqi) is a patch around pixel i of xxx (resp. x̂xx).
µp, σp and σpq represent, respectively, the mean, the standard
deviation and the covariance of the patches. The scalars are
set to c1 = 0.01 and c2 = 0.03 [34].

From the two previous anomaly maps we form a new
original anomaly map using an element-wise multiplication,
which is denoted MAD⊙SM . The two anomaly maps MAD
and MAD ⊙ SM are at the core of our contribution for
improved AD, along with the GRF prior. These anomaly maps
will then be compared with state-of-the-art models presented
in the next section.

For completeness, Fig. 2 graphically illustrates the model
and MAD anomaly map. The encoder-decoder structure is,
however, identical to that of a traditional VAE. This is re-
markable since the improvements we propose are based only
on an original refinement of the probabilistic model.

C. Related work

To date, most of the best performing methods are based on
feature extraction [7] [22]. The latter always perform slightly
better than VAE-based approaches. However, generative mod-
els offer other possibilities to work with aspects related to
the probabilistic framework, sample generation or latent space
interpretability [33] [17].

Such aspects are also crucial to our study, thus we will
compare the VAE-GRF with generative models from the
literature: comparable generative models are be based on a
baseline VAE and also rely on a modelization refinement.
Moreover, we favor related works with no additional modules
attached (e.g. discriminator modules [32]). In such setting, we
are able to fully evaluate the gain offered by the GRF prior
and the new AD metrics.

We now list the most notable comparable approaches:

• We compare our MAD and MAD⊙SM metrics to the
already existing ℓ-2 and SM metrics introduced in [4].

• An interesting idea quite similar to us is the Visually Ex-
plained Variational Autoencoder (VEVAE) [20]. However
the code is not available and we were not able to replicate
their study. Hence we compare the VAE-GRF to the VE-
VAE on the MVTec experiment only in Sec. III-E.

• AD metrics similar to ours have also been introduced
in [35]. The magnitude of the gradient of the loss
|Eθθθ,φφφ(xxx)| is used as a metric to localize anomalies and
it can be multiplied by another anomaly map. Hence we
also straightforwardly test the metric |Eθθθ,φφφ(xxx)| ⊙ SM .

• We also test the iterative procedure proposed by [8].
It consists in a refinement of the VAE reconstruction.
We limit this approach to 15 iterations of projection
because it is very slow and empirically performed best.
The refinement is performed before computing the SM
anomaly map: we refer to this approach as SM grad.

Thus, except for VEVAE, all the comparable approaches
are from our reimplementations because the code were un-
available. All these reimplementations have the same classic
VAE baseline described in Sec. III-D (except for the VEVAE).

D. Network architecture

All the inputs are resized to the size 256× 256 (lx = ly =
256). Then:

• The encoder consists in the first three layers of the
ResNet18 neural network [15], followed by a 1×1 convo-
lutional layer setting the depth dimension to 2∗256 = 512
(kernel size 1, stride 1 and padding 0).

• The latent space image has width and height 32 (nx =
ny = 32) and depth nz = 256.

• The decoder is first composed of a deconvolutional layer
with input dimension 256 and output 128 (kernel size
1, stride 1, and padding 0). It is then stacked with
three deconvolutional layers (kernel size 4, stride 2 and
padding 1), each followed by a ReLU activation and
Batch Normalization.

This architecture originates from ideas found in [20] or [11].
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Input xxx
Encoder

pθθθ(zzz) = N (zzz,000, I)

Classic VAE

pθθθ(zzz) = N (zzz,000,Σ)

VAE-GRF

Decoder
Reconstruction x̂xx

Fig. 2: The classic VAE and VAE-GRF architectures. We illustrate the pixel-wise MAD metric (Eq. 15) computed from the
latent space in both cases. The interpretability and improved results of the metric can be seen in the case of the VAE-GRF as
opposed to VAE with classical standardized Gaussian prior.

E. Effects of the GRF prior: experiments on MVTec textures
1) Presentation: In this section we experimentally inves-

tigate the role of the prior in the VAE-GRF model. This
experiment is based on the textures images from the MVTec
dataset [4] which is the standard dataset for AD. The dataset
provides normal and abnormal (defective) RGB images of
industrial goods from 15 different categories.

2) Results: Tab. I and II summarize the results in terms
of pixel-wise area under the receiver operating characteristic
curve (ROCAUC), computed with the final anomaly map and
the ground truth. This is the classical score used for AD.
Compared to the traditional VAE model (Tab. I), on the images
which respect the most the stationary GRF assumption, i.e.
texture images, the VAE-GRF performs better, especially when
it comes to the new metrics we introduced (up to 8 points
of improvement on the tile texture). On images where the
hypothesis of a stationary GRF clearly does not hold, the
MAD metric becomes useless and both the VAE and VAE-
GRF perform similarly with the MAD ⊙ SM metric. This
result could be expected: indeed the VAE-GRF model is a
strict generalization of the classical VAE model as stated
before. We then can see the interest of the refinement in the
VAE modeling and its limitations when the stationary GRF
prior assumption is violated. That is why we only focus our
analysis on MVTec texture images. Similar conclusions can
be made when we compare to the other approaches in the
literature (Tab. II). The VAE-GRF is always on par or better
than the state-of-the-art results. The best gains coming from
the texture images.

Fig. 3 illustrates the evolution of β-ELBO, Eθθθ,φφφ,β , in
function of the epochs. We conclude that despite the fact that
the VAE-GRF results are always better or equivalent, the β-
ELBO values for the VAE-GRF and VAE seem unpredictable.
We suppose that this result can be linked with the known fact
that a theoretically worse lower bound can lead to better final
results when the modelization is more relevant (see, e.g., [18],
Sec. 5.2).

Note also that, globally, both our VAE and GRF-VAE
are competitive against state-of-the-art approaches which
also suggests that the proposed architecture and training

procedures are highly relevant and optimized (see Sec. III-D).
Finally, Fig. 4 illustrates the experiment on some images of
the MVTec database.

Remark: The choice of the correlation function as well as
the choice of the hyperparameter β is empirically made in our
study. Further research on the correlation function type and its
generalization is out of scope of this paper.

IV. UNSUPERVISED ANIMAL DETECTION IN AERIAL
IMAGES WITH VAES-GRF

In this section we present how the VAE-GRF model can be
used to solve the real world problem of detection in aerial
images, where the landscape can be assumed to be well
modeled by a stationary texture. We focus on the task of
unsupervised animal detection on two different datasets. The
context of AD described previously is used here. Indeed, many
images are empty in our datasets and we can consider animals
as anomalies.

In the following experiments, we show that the VAE-GRF
model and the associated metrics are relevant and provide
competitive results against state-of-the-art approaches.

A. Livestock dataset

1) Presentation: The open Livestock dataset [13] regroups
aerial images of livestock over grassland in which animals
have been annotated. We again wish to perform an unsu-
pervised detection of the animals using an AD approach.
It is possible since we have a total of 3430 empty images
to perform training and 890 images containing at least one
animal.

2) Experiments & Results: The network described in
Sec. III-E is used here, as well as the pixel-wise AD metrics
from Sec. III-B.

Table III gives the score in terms of pixel-wise ROCAUC,
for all the models (we have discarded some of the worst
performing approaches, ranking according to the MVTec
results). We can see that the VAE-GRF performs best with
both the MAD and the MAD ⊙ SM metrics. Again, the
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Category VAE VAE-GRF
ℓ-2 SM MAD MAD ⊙ SM ℓ-2 SM MAD MAD ⊙ SM

Stationary
textures

Leather 0.78 0.92 0.80 0.91 0.77 0.93 0.95 0.980.980.980.980.98
Tile 0.64 0.78 0.55 0.77 0.66 0.81 0.70 0.850.850.850.850.85

Wood 0.70 0.75 0.67 0.77 0.71 0.80 0.74 0.810.810.810.810.81

Non stationary
textures

Carpet 0.63 0.90 0.59 0.91 0.63 0.920.920.920.920.92 0.58 0.91
Grid 0.72 0.930.930.930.930.93 0.51 0.930.930.930.930.93 0.71 0.92 0.54 0.930.930.930.930.93

Hazelnut 0.88 0.980.980.980.980.98 0.64 0.97 0.95 0.980.980.980.980.98 0.62 0.980.980.980.980.98

TABLE I: ROCAUC scores for pixel-wise AD on the texture images from the MVTec dataset. The VAE-GRF approach does not
exhibit an advantage over the VAE approach for Carpet, Grid and Hazelnut possibly because the stationary GRF assumption
is clearly wrong for these images. For all the experiments with the VAE-GRF model, we have β = 1 except for Wood where
we set β = 0.1. Similarly, we used the Matern- 32 correlation everywhere except for Tile where we used Matern- 12 . Best scores
appear in bold and second best are underlined. Scores from the main contribution of this article are in purple.

Category VAE-GRF Liu et al. [20] Zimmerer et al. [35] Dehaene et al. [8]
MAD ⊙ SM VEVAE

∣∣∇xxxEθθθ,φφφ(xxx)
∣∣ ∣∣∇xxxEθθθ,φφφ(xxx)

∣∣⊙ SM SM grad

Stationary
textures

Leather 0.980.980.980.980.98 0.95 0.55 0.94 0.95
Tile 0.850.850.850.850.85 0.80 0.62 0.78 0.78

Wood 0.810.810.810.810.81 0.77 0.54 0.76 0.74

Non stationary
textures

Carpet 0.910.910.910.910.91 0.78 0.61 0.89 0.89
Grid 0.930.930.930.930.93 0.73 0.54 0.92 0.90

Hazelnut 0.980.980.980.980.98 0.980.980.980.980.98 0.80 0.980.980.980.980.98 0.92

TABLE II: ROCAUC scores for pixel-wise AD on the texture images from the MVTec dataset. Comparisons with other
methods. Best scores appear in bold and second best are underlined. Scores from the main contribution of this article are in
purple.
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Fig. 3: Evolution of the β-ELBO (Eθθθ,φφφ,β(xxx)) in function of epochs for the three textures. As noted in Table I, β = 1 everywhere
except for the VAE-GRF of the Wood experiment. While we observe convergence of the training procedure, it is not possible
to extrapolate the relative performance of the model according to the relative ELBO values reached for each model.
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Fig. 4: Selected illustrations for the MVTec experiment. Anomaly maps and reconstructions from our proposed approach. Top
row: original image. Middle row: the anomaly maps overlaying the VAE-GRF reconstruction. Bottom row: The segmented
anomalies. From left to right: the Leather, Tile, Wood, Carpet, Grid and Hazelnut categories.

improvements brought by the GRF prior could be expected
since the images seem to really fit the stationary GRF
hypothesis. Fig. 5 provides a graphical illustration of the
experiment over some images of the dataset.

Remark: The MAD metric is all the more interesting as
it is a metric which is only computed from the latent space,
i.e., at testing time, we do not need to perform any compu-
tations with the decoder. This then represents an interesting
computational gain (one can calculate that this saves more than
40.000 two dimensional convolutions when using the decoder
described in Sec. III-D). Moreover, being independent of the
reconstruction can be very interesting on complex dataset
where reconstructions are unreliable as it will be shown in
the next experiment.

B. Semmacape dataset

1) Presentation: The Semmacape dataset4 comprises 165
aerial images collected in the Gironde estuary and Pertuis sea
Marine Nature Park, France, in 2020. Birds and dolphins have
been manually annotated, the images were then subdivided
into patches giving rise to 345 images with an animal and
138, 544 empty images. Such a large number of empty images
enables us to learn the normality (surface of the sea) and then
to detect animals as anomalies. We will perform pixel-wise
AD assessment with the previously introduced models.

2) Experiments & Results: The network described in
Sec. III-E is used here; we are in the same experimental setting
as before.

Table IV gives the scores for the models in terms of
pixel-wise ROCAUC. First of all, probably because of the
complexity of the dataset (many images are corrupted by
the sun glare), the SSIM anomaly map seems particularly
unreliable. We argue that this is the reason for the decrease in

4https://semmacape.irisa.fr/

O
ri

gi
na

l
VA

E
-G

R
F

M
A
D

⊙
S
M

G
ro

un
d

tr
ut

h

Fig. 5: Selected illustrations of the detection of our model in
the Livestock dataset experiment using the VAE-GRF model
with Matern- 32 correlation function. Top row: original image
with ground truth. Middle row: VAE-GRF reconstruction with
the anomaly map overlaid. Bottom row: ground truth segmen-
tation.

performance of the MAD⊙SM metric. However, among all
comparable and simpler models, the VAE-GRF with MAD
metric seems to be the best performing. We also provide
as a comparison to the best results achieved so far on this
dataset in [3] with a much more complex model combining
the PaDiM approach [7] and Normalizing Flows (NF) [26].
We can conclude that our VAE-GRF is competitive with
the PaDIM + NF (which is not a generative approach), in
particular because the stationary GRF assumption is relevant
on such images of the sea surface. We also notice that, when
brought to this complex and real dataset, the performances of
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VAE VAE-GRF Zimmerer et al. [35] Dehaene et al. [8]
ℓ-2 SM MAD MAD ⊙ SM

∣∣∇xxxEθθθ,φφφ(xxx)
∣∣ ∣∣∇xxxEθθθ,φφφ(xxx)

∣∣⊙ SM SM grad

ROCAUC 0.67 0.76 0.840.840.840.840.84 0.83 0.77 0.52 0.68

TABLE III: ROCAUC scores for pixel-wise AD on the texture images from the Livestock dataset. For all the experiments
with the VAE-GRF model, we have β = 0.1 and we used the Matern-32 correlation function. Best scores appear in bold and
second best are underlined. Scores from the main contribution of this article are in purple.
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Fig. 6: Selected illustrations of the detection of our model in
the Semmacape dataset experiment using the VAE-GRF model
with Matern- 32 correlation function. Top row: original image.
Bottom row: VAE-GRF reconstruction with the anomaly map
overlaid. Bottom row: with ground truth bounding box (green)
and prediction (red). The right column describes a typical very
complex images, with a lot of sun glares which are moreover
confused with the white birds.

the approaches from [35] and [8] collapse. Fig. 6 graphically
illustrates the experiment.

V. CONCLUSION

We have introduced a stationary GRF prior in the VAE
model and shown how such a more complex prior (with full
covariance matrix) can be embedded in a VAE model while
preserving efficient computations. We have also demonstrated,
in the context of AD, that such refinement in the modeling is
relevant for specific images, notably, for texture images. To do
so, we have introduced two new metrics yielding competitive
results against comparable state-of-the-art VAE models for AD
tasks on several datasets. Our results suggest that the VAE-
GRF might replace the VAE baseline for many tasks, as we
show how the stationary assumption does not introduce any
additional computational cost. Indeed, VAE-GRF might offers
an efficient and relevant prior for many practical applications,
especially for the processing of images that exhibit textures.

Since the stationary assumption for the GRF prior remains
a strong assumption, future work might consider relaxing
this assumption and we might study ways to introduce non-
stationary GRF prior while preserving the tractability of the
model.
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APPENDIX

A. Spectral computations

We now detail the formulas mentioned in Sec. II-A2. More
details on the elements of this section can be found in [30].
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Very useful properties, linked with the Fourier transform,
are available for circulant and block-circulant matrices. We
only recall the formulas for block-circulant matrices that are
used in this study. In the following properties, DFT2 (resp.
IDFT2) is the 2 dimensional (resp. inverse) Fourier transform,
⊙ is the element-wise matrix multiplication and • is the
element-wise exponentiation of the elements of the matrix.
Note that in the next equations, we consider orthonormal
Fourier transforms (normalized by 1√

lxly
, where lx × ly is

the matrix dimensionality).
1) Inverse of a block-circulant matrix: Let C be a block-

circulant matrix, then we have

base(C−1) =
1

lxly
IDFT2(DFT2(base(C)) • (−1)). (17)

2) Product of block-circulant matrices: Let C and D be
two block-circulant matrices, then we have

base(CD)=
√

lxlyIDFT2(DFT2(base(C))⊙DFT2(base(D))).
(18)

3) Eigenvalues of a block-circulant matrix: Let C be a
block-circulant matrix, then the matrix filled with the eigen-
values of C is

Λ =
√
lxlyDFT2(base(C)). (19)

4) Product of block-circulant matrix with vector : Let vvv be
the column major vector obtained from n×N matrix V, then
uuu = Cvvv is obtained from

U =
√
lxlyDFT2(DFT2(base(C))⊙ IDFT2(U)). (20)


