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Abstract

In this note, we give a new proof of Liggett’s theorem on the invariant measures of
independent particle systems from [11] in the particular case of independent drifted
Brownian motions. This particular case has received a lot of attention recently due to
its applications for the analysis of the local extrema of discrete Gaussian free field.
The novelty of our proof is that it identifies directly the expected Poisson Point Process
with exponential intensity without relying on the Choquet-Deny convolution equation
µ ∗ P = µ ([6, 7]).
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1 Introduction

1.1 Context and main result

In his seminal paper [11], Liggett gave a full characterisation of point processes
which are left invariant under non-interacting particle systems. His setting is very
general (we refer to [11] as well as to [2, Chapter 9] for a very clear exposition of
Liggett’s theory). Let us shortly describe what his general result is. Let H be a locally
compact, separable Hausdorff space and fix P to be a Markov kernel on H . Liggett
considers the following discrete-time dynamics on (locally finite) point processes θ on
H . Starting from an initial point process θ0 = θ, particles evolve independently of each
other as discrete-time Markov chains on H with kernel P . Under very mild conditions,
Liggett proves that the invariant measures of this non-interacting particle system n 7→ θn
are classified by the Radon measures µ on H which satisfy the celebrated convolution
equation of Choquet-Deny ([6, 7])

µ ∗ P = µ .

More precisely he shows that all the invariant measures are obtained as superpositions
of Poisson Point Processes whose intensity measures are given by the solutions to
Choquet-Deny convolution equation. Liggett’s theorem in the particular case where
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A new proof of Liggett’s theorem

H = R and where particles evolve as independent drifted Brownian motions1 has
known an important revival over the last years especially since the work by Biskup
and Louidor [3]. In this work, the authors relied on Liggett’s theorem to show, via a
beautiful “Dysonization procedure”, that local extrema of a Discrete Gaussian Free field
are asymptotically distributed as a shifted Poisson Point Process with intensity e−λxdx.
See also [2, Chapter 9] for a very nice account on the characterization by Dysonization
as well as [13] where such a Dysonization procedure is also used. Another important
use of Liggett’s theorem, also in the case H = R case, can be found in the works by
Ruzmaikina-Aizenman and Arguin-Aizenman [12, 1] where links with spin glasses are
highlighted.

In this paper, we focus on this case of drifted Brownian motions on R which is thus
relevant to [12, 1, 3, 13]. Liggett’s non-interacting particle system corresponds in this
case to the following process. Let θ be a locally finite point process on R. (See the space
N and its topology below in Section 2). Let us write

θ =
∑
i∈I

δxi ,

with some finite or countable index set I. To each atom xi of θ, we attach an independent
Brownian motion with drift −λ which is denoted as (Bit − λt)t≥0. (N.B. the minus sign
here is just a convention, the drift λ may take any value in R). At time t > 0, we get the
following point process θt

θt =
∑
i∈I

δxi+Bit−λt.

As pointed out already in [11] the fact that θ0 is locally finite does not imply a priori that
θt still is. (It is easy to build examples for which a coming down from ∞ happens at
time 0+). Because of these possible explosions, our notion of invariant measure is not in
terms of Feller processes say, but rather following [11] in the following sense: a point
process θ ∼ π (where π is a probability measure on the space (N , d), see Section 2) will
be said to be an invariant measure (or a fixed point) for Brownian motion with drift −λ if
for all t > 0,

θt
d
= θ .

See also our companion paper [5, Section 2.2] for a detailed discussion on this notion of
invariant measure. We may now state Liggett’s theorem in this particular setting.

Theorem 1.1 (Theorem 1.2 of [11]). For any λ ∈ R, a point process θ is invariant under
Brownian Motions with drift −λ if and only if θ is distributed as a Poisson point process
with a random intensity measure2 of the form

(Z∞e
−2λx + Y∞)dx, (1.1)

where Z∞ and Y∞ are some non-negative (possibly correlated) random variables.

Liggett’s original proof of the above Theorem is based on Choquet-Deny Theorem [7],
[6] on convolution equations. See Section 3 below for a brief summary of Liggett’s proof.
Our new proof avoids the use of Choquet-Deny Theorem and in some sense computes
the solutions of Deny-Choquet equation along the way. Our method would apply for more
general Markov Kernels on Rd than the one corresponding to drifted Brownian motions
on R, but for simplicity we shall stick to this case which seems to be the most relevant
one in the literature.

More than the result itself (which is a particular case of [11]), we believe that
the main interest of this note lies in the strategy of identification of the invariant

1It is more natural in this particular case to work in continuous time
2These processes are often called Cox processes.
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measures. For example in [5], we were unable to adapt Liggett’s proof scheme in order
to characterize the invariant measures of branching Brownian motion with critical drift.
See the discussion in Section 1.5 in [5]. We therefore had to look for a different approach
which is presented here in the simpler setting of drifted Brownian motions without
branching. We believe this new way of identifying fixed points may be applied to other
natural settings.

2 Short preliminaries

State space. Let N be the space of integer valued measures on R which are locally
finite. This space is naturally equipped with the vague topology, see [8].

Remark 2.1. Note that the weak topology is not appropriate for the type of processes
considered in this paper. This is due to the following reason: recall θn

w−→ θ if and only
if for any continuous bounded f ∈ Cb(R), θn(f)→ θ(f). But the processes we consider
will in general have a diverging mass near −∞, as such they will not integrate, say
the continuous function f ≡ 1. The vague topology is more indulgent and corresponds
instead to θn

v−→ θ if and only if for any f ∈ Cc(R), θn(f)→ θ(f).

The vague topology on N is metrizable and one can define a metric d = dN on N such
that the space (N , d) is Polish (see Theorem A2.3 in [8]). As such we may now consider
probability measures on N in the usual way.

Cox processes. A useful class of random variables in (N , d) are the so-called Cox
processes. They correspond to the random point processes θ ∈ N which are defined via
the following two steps procedure:

1. Start by sampling a random σ-finite positive measure σ on (R,B(R)).

2. Then, given σ, sample θ to be a Poisson Point Process of intensity σ, i.e. θ ∼ PPP(σ).

We recall that the Laplace transform of a Cox process is given by the following Lévy-
Khintchine formula.

Proposition 2.2 (Proposition 2.12 of [4] or p28 in [10]). Let θ be a Cox process with
random intensity σ. Then, for any non-negative measurable function f ,

E[e−〈f,θ〉] = E

[
exp

{
−
∫ ∞
−∞

(1− e−f(x))σ(dx)

}]
, (2.1)

where 〈f, θ〉 :=
∫∞
−∞ f(x)θ(dx).

3 Liggett’s proof and idea of the new proof

3.1 Summary of Liggett’s proof

(See [2] or our summary of Liggett’s proof in [5] which holds for the more general
setting). To characterize the point processes θ invariant under Brownian motions with
drift −λ, it suffices to check (see for example [9]) that for all f ∈ C+

c (R),

E[e−〈f,θt〉] = E[e−〈f,θ〉]. (3.1)

Using some basic computations, one obtains

E[e−〈f,θt〉] = E

[
exp

(∫
R

logE[e−f(x+Bt−λt)]θ(dx)

)]
, (3.2)

where E[e−f(x+Bt−λt)] = 1− ot(1) uniformly for x ∈ R. So,

− logE[e−f(x+Bt−λt)] = (1 + ot(1))E[1− e−f(x+Bt−λt)]. (3.3)
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Let P t(x,dy) denote the transition probabilities of Bt − λt. Then, by use of Fubini
theorem, one gets essentially that

E[e−〈f,θt〉] =E

[
exp

(
−(1 + ot(1))

∫
R

∫
R

(1− e−f(y))P t(x,dy)θ(dx)

)]
=E

[
exp

{
−(1 + ot(1))

∫
R

(1− e−f(y))Mt(dy)

}]
, (3.4)

where Mt(dy) = 〈P t(·,dy), θ(·)〉. Letting t→∞ leads to

E[e−〈f,θ〉] = lim
t→∞

E

[
exp

{
−
∫
R

(1− e−f(y))Mt(dy)

}]
.

Let h(y) := 1− e−f(y) with f ∈ C+
c (R). Then it follows that for any h ∈ C+

c (R) such that
0 ≤ h(y) < 1, limt→∞E[e−〈h,Mt〉] exists. As this class of functions h is sufficiently large,
we deduce that Mt(dy) converges in law to some locally finite random measure M∞(dy).
Furthermore,

E[e−〈f,θ〉] = E

[
exp

{
−
∫

(1− e−f(y))M∞(dy)

}]
. (3.5)

This implies that θ must be a Cox process with random intensity measure given by

M∞(dy). Using the constraint (3.1) once more, it follows that M∞P t
d
= M∞. Further-

more, since the law of Bt is supported on the whole R, Corollary 3.8 of Liggett [11]
implies that M∞P t = M∞ a.s. This is the well-known convolution equation of Choquet-
Deny and the Choquet-Deny Theorem (see [6, 7]) implies that M∞(dy) must necessarily
be of the form (1.1).

- Hx time s= THE

Zoe dx
Yfodx→
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Figure 1: An artistic view of the proof.

3.2 Idea of the new proof

To characterize the invariant point processes θ, we still wish to recognize the structure
of a Cox process via the Laplace transforms E

[
e−〈f,θ〉

]
for any fixed f ∈ C+

c (R). Starting
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as in the previous analysis, for any f ∈ C+
c (R) we have as t→∞

E[e−〈f,θt〉] = E

[
exp

(
−(1 + ot(1))

∫
R

∫
R

(1− e−f(y))P t(x,dy)θ(dx)

)]
= E

[
exp

(
−(1 + ot(1))

∫
R

θ(dx)

∫
[−Kf ,Kf ]

(1− e−f(y))P t(x,dy)

)]
,

where Kf is such that supp(f) ⊂ [−Kf ,Kf ]. We are left with understanding the following
random variable (possibly at large times t)∫

R

θ(dx)

∫
[−Kf ,Kf ]

(1− e−f(y))P t(x,dy) . (3.6)

Now the main observation in the proof is as follows: if all fixed points θ were indeed
given (as we expect) by Cox processes with random intensity measure of the form (1.1),
we would notice that in the above integral, as t→∞, with high probability, only points
coming from very specific zones would contribute to (3.6). Namely, for t large

• Particles seen at time t in the window [−Kf ,Kf ] coming from the flat part PPP(Y∞dx)

will arise with high probability from initial particles (i.e. at time t = 0) in the far
ahead region [λt − t2/3, λt + t2/3]. N.B we may have chosen instead the window
[λt− tα, λt+ tα] for any exponent α ∈ ( 1

2 , 1).
• While Particles seen at time t in the window [−Kf ,Kf ] coming from the exponential

part PPP(Z∞e
−2λxdx) will arise with high probability from initial particles (t = 0)

in the far backward region [−λt− t2/3,−λt+ t2/3].

This observation leads us to decompose the (random) integral (3.6) into the following
three parts.

Zt(f) :=

∫
[−λt−t2/3,−λt+t2/3]

θ(dx)

∫
[−Kf ,Kf ]

(1− e−f(y))P t(x,dy)

Yt(f) :=

∫
[λt−t2/3,λt+t2/3]

θ(dx)

∫
[−Kf ,Kf ]

(1− e−f(y))P t(x,dy)

Et(f) :=

∫
R\([−λt−t2/3,−λt+t2/3]∪[λt−t2/3,λt+t2/3])

θ(dx)

∫
[−Kf ,Kf ]

(1− e−f(y))P t(x,dy) .

The proof then proceeds by analyzing each of these three terms on which we now say a
few words. See also Figure 1 which illustrates what is the strategy of the proof.

1. The key point in the analysis of the part Zt(f) will be to obtain estimates uniform
in the starting point x ∈ [−λt− t2/3,−λt+ t2/3]. Indeed, without having too much
control on the way initial particles are spread over [−λt− t2/3,−λt+ t2/3], this will
allow us to show that after a long time t the few lucky particles among these which
will reach a position in [−Kf ,Kf ] will have “equilibrated” under an exponential
distribution 1[−Kf ,Kf ]e

−2λxdx. The only control we need on the initial spreading of

particles in [−λt− t2/3,−λt+ t2/3] is the fact that there are not too many particles

there (with high probability at least). We use for this the fact that θt
d
= θ. If there

were too many particles at times 0 in [−λt − t2/3,−λt + t2/3], we show that this
would create a suspicious rise of the intensity at time t.

2. The analysis of the part Yt(f) will follow the same idea except that now particles
come from the up-front [λt− t2/3, λt+ t2/3] (when λ > 0, otherwise left and right
need to be permuted). The only but important difference is that now the few
particles which start at time 0 in [λt − t2/3, λt + t2/3] and will reach [−Kf ,Kf ] at
time t will now “equilibrate” according to the flat Lebesgue measure and are as
such (asymptotically as t→∞) responsible for the part PPP(Y∞dx).
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3. To conclude the proof, it remains to show that it is very unlikely that particles
initially in the sets

(−∞,−λt− t2/3] ∪ [−λt+ t2/3, λt− t2/3] ∪ [λt+ t2/3,∞)

will reach at time t the window [−Kf ,Kf ]. This is in fact the main step in the
proof whose underlying idea is as follows: imagine that for arbitrary large times
t, we find with probability bounded away from 0 particles issued say from the left
interval (−∞,−λt− t2/3]. Then we claim that this would imply that at a well-chosen
later time s = t+

√
t, there would be way too many particles in [−Kf ,Kf ] which

would contradict θs
d
= θ.

4 A New proof of Theorem 1.1

4.1 Existence

We first check that Poisson point processes with random intensity measure (Z∞e
−2λx+

Y∞)dx are indeed invariant. This is a standard computation, and we provide it here for

the sake of completeness. Let θ
d
= PPP((Z∞e

−2λx + Y∞)dx). Using the characterisation
property of Laplace transforms (see for example Proposition 2.10 of [4]), it suffices to
check that for all f ∈ C+

c (R),

E[e−〈f,θt〉] = E[e−〈f,θ〉]. (4.1)

By (2.1),

E[e−〈f,θ〉] = E

[
exp

{
−
∫ ∞
−∞

(1− e−f(x))(Z∞e−2λx + Y∞)dx

}]
.

On the other hand,

E[e−〈f,θt〉] =E

[
exp

{∫ ∞
−∞

log(E[e−f(x+Bt−λt)])θ(dx)

}]
=E[exp{−

∫ ∞
−∞

E[1− e−f(x+Bt−λt)](Z∞e−2λx + Y∞)dx}], (4.2)

where the second equality also comes from (2.1) except it is applied to E
[
e−〈g,θ〉

]
with

the function g(x) := − log(E
[
e−f(x+Bt−λt

]
).

Note that for any measurable non-negative function h, by the change of variables
y = z + x− λt and Fubini’s theorem,∫

R

E[h(x+Bt − λt)]e−2λxdx =

∫
R

∫
R

h(x+ z − λt) 1√
2πt

e−
z2

2t dze−2λxdx

=

∫
R

∫
R

h(y)
1√
2πt

e−
(y+λt−x)2

2t dye−2λxdx

=

∫
R

h(y)e−2λydy

∫
R

1√
2πt

e−
(x+λt−y)2

2t dx

=

∫
R

h(y)e−2λydy.

Similarly, ∫
R

E[h(x+Bt − λt)]dx =

∫
R

h(x)dx.

In particular, with h(x) = 1− e−f(x),∫
R

E[1− e−f(x+Bt−λt)](Z∞e−2λx + Y∞)dx =

∫
R

[1− e−f(x)](Z∞e−2λx + Y∞)dx

which yields (4.1).

ECP 26 (2021), paper 72.
Page 6/12

https://www.imstat.org/ecp

https://doi.org/10.1214/21-ECP435
https://imstat.org/journals-and-publications/electronic-communications-in-probability/


A new proof of Liggett’s theorem

4.2 Characterization of the fixed points

We now turn to the main part of Theorem 1.1, namely we prove that if θ is in-

variant, then there exist non-negative random variables Z∞ and Y∞ such that θ
d
=

PPP((Z∞e
−2λx + Y∞)dx).

We are going to show that for any f ∈ C+
c (R),

E[e−〈f,θt〉] = E

[
exp

{
−
∫
R

(1− e−f(y))
[
e−2λyZ∞ + Y∞

]
dy

}]
(4.3)

Recall that for any t > 0, one has

E[e−〈f,θt〉] = E

[
exp

{∫ ∞
−∞

log(E[e−f(x+Bt−λt)])θ(dx)

}]
.

Let Kf be such that the support of f is contained in [−Kf ,Kf ]. Then

E[1− e−f(x+Bt−λt)] ≤P(|x+Bt − λt| ≤ Kf )

=

∫
R

e−
z2

2t

√
2πt

1{|x+z−λt|≤Kf}dz ≤
2Kf√

2πt
= ot(1) .

As a consequence, E[e−〈f,θt〉] = E[exp(−(1 + ot(1))Θt(f))] where

Θt(f) :=

∫
R

E[1− e−f(x+Bt−λt)]θ(dx). (4.4)

From the structure of the known fixed points, we expect the main contribution to
this integral to arise from points x located either at −λt + ot(1) (i.e. from the points
corresponding to the expected PPP(Z∞e

−2λxdx)) or otherwise located at λt+ o(1) (i.e.
from the expected PPP(Y∞dx)). We then split Θt(f) into the following three parts:

Θt(f) = Zt(f) + Yt(f) + Et(f), (4.5)

where

Zt(f) :=

∫
[−λt−t2/3,−λt+t2/3]

E[1− e−f(x+Bt−λt)]θ(dx); (4.6)

Yt(f) :=

∫
[λt−t2/3,λt+t2/3]

E[1− e−f(x+Bt−λt)]θ(dx); (4.7)

Et(f) :=

∫
R\([−λt−t2/3,−λt+t2/3]∪[λt−t2/3,λt+t2/3])

E[1− e−f(x+Bt−λt)]θ(dx). (4.8)

Observe that

E[1− e−f(x+Bt−λt)] = E
[
(1− e−f(x+Bt−λt))1{x+Bt−λt≥−Kf}

]
= E

[
(1− e−f(x+Bt−λt))|x+Bt − λt ≥ −Kf

]
P(x+Bt − λt ≥ −Kf ).

For any a > 0, it is known that conditioned on Bt ≥ at = at+ o(t), Bt − at converges in
law to an exponential random variable with parameter a. One can even show a uniform
convergence over at ∈ [at− t2/3, at+ t2/3].

Let us recall the following basic estimate on the tail of normal distribution. For
z →∞, one has

P(B1 ≥ z) = (1 + oz(1))
1

z
√

2π
e−z

2/2. (4.9)
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It implies that for any fixed Kf ≥ 0, uniformly over x ∈ [−λt− t2/3,−λt+ t2/3],

P(x+Bt − λt ≥ −Kf ) =
1 + ot(1)

2λ
√

2πt
e−

(λt−x)2
2t +2λKf . (4.10)

Using again the notation h(y) = 1−e−f(y). We see that for any x ∈ [−λt− t2/3,−λt+ t2/3],

E
[
(1− e−f(x+Bt−λt))1{x+Bt−λt≥−Kf}

]
=

∫
R

h(x+ z − λt) e
− z22t
√

2πt
1{x+z−λt≥−Kf}dz

=

∫ ∞
−Kf

h(y)
1√
2πt

e−
(y+λt−x)2

2t dy

=
1√
2πt

e−
(λt−x)2

2t

∫ ∞
−Kf

h(y)e−
y2

2t −y(λ−
x
t )dy.

By dominated convergence theorem,∫ ∞
−Kf

h(y)e−
y2

2t −y(λ−
x
t )dy −−−→

t→∞

∫ ∞
−Kf

h(y)e−2λydy

as t → ∞. Note that h = 1 − e−f vanishes on (−∞,−Kf ) ∪ (Kf ,∞) and that this
convergence holds uniformly for x ∈ [−λt−t2/3,−λt+t2/3]. Moreover

∫∞
−Kf h(y)e−2λydy =∫

R
h(y)e−2λydy. Going back to (4.6) and (4.10), we get that

Zt(f) = (1 + ot(1))Zt

∫
R

(1− e−f(y))e−2λydy (4.11)

where

Zt :=

∫ −λt+t2/3
−λt−t2/3

1√
2πt

e−
(λt−x)2

2t θ(dx) (4.12)

Note that by use of (4.10), we have

Zt = (1 + ot(1))
2λ

e2λ − 1

∫ −λt+t2/3
−λt−t2/3

P(x+Bt − λt ∈ [−1, 0])θ(dx). (4.13)

Now on the other side, for points x ∈ [λt− t2/3, λt+ t2/3],

E[1− e−f(x+Bt−λt)]

= E
[
(1− e−f(x+Bt−λt))1{|x+Bt−λt|≤Kf}

]
=

∫
R

h(x+ z − λt) e
− z22t
√

2πt
1{|x+z−λt|≤Kf}dz

=

∫ Kf

−Kf
h(y)

1√
2πt

e−
(y+λt−x)2

2t dy =
1√
2πt

e−
(λt−x)2

2t

∫ Kf

−Kf
h(y)e−

y2

2t −y(λ−
x
t )dy.

Again, dominated convergence theorem shows that uniformly for x ∈ [λt− t2/3, λt+ t2/3],∫ Kf

−Kf
h(y)e−

y2

2t −y(λ−
x
t )dy −−−→

t→∞

∫ Kf

−Kf
(1− e−f(y))dy,

where
∫Kf
−Kf (1− e−f(y))dy =

∫
R

(1− e−f(y))dy as 1− e−f vanishes outside [−Kf ,Kf ]. We

hence deduce that uniformly for x ∈ [λt− t2/3, λt+ t2/3],

E[1− e−f(x+Bt−λt)] = (1 + ot(1))

∫
R

(1− e−f(y))dy 1√
2πt

e−
(λt−x)2

2t . (4.14)
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Plugging it into (4.7) yields that

Yt(f) = (1 + ot(1))Yt

∫
R

(1− e−f(y))dy (4.15)

where

Yt :=

∫ λt+t2/3

λt−t2/3

1√
2πt

e−
(λt−x)2

2t θ(dx). (4.16)

Notice that the previous arguments for (4.14) also work if we replace 1− e−f by 1{[−1,0]}.
It means that

P(x+Bt − λt ∈ [−1, 0]) = (1 + ot(1))
1√
2πt

e−
(λt−x)2

2t

uniformly for x ∈ [λt− t2/3, λt+ t2/3]. This implies that

Yt = (1 + ot(1))

∫ λt+t2/3

λt−t2/3
P(x+Bt − λt ∈ [−1, 0])θ(dx) . (4.17)

Next, for the term Et(f) in (4.8), it is natural to split it into integrals on three disjoint
intervals:

Et(f) = Lt(f) + Ct(f) +Rt(f) (4.18)

where Lt(f) :=
∫ −λt−t2/3
−∞ E[1 − ef(x+Bt−λt)]θ(dx), Ct(f) :=

∫ λt−t2/3
−λt+t2/3 · · · and Rt(f) :=∫∞

λt+t2/3
· · · . (Lt, Ct, Rt respectively stand for Left, Center and Right terms).

In view of (4.11), (4.15) and (4.18), (4.5) becomes

Θt(f) = (1 + ot(1))Zt

∫
R

(1− e−f(y))e−2λydy + (1 + ot(1))Yt

∫
R

(1− e−f(y))dy

+ Lt(f) + Ct(f) +Rt(f).

Here we claim the following assertions:

1. The random variables Zt are tight in t > 0.
2. The random variables Yt are tight in t > 0.
3. Lt(f), Ct(f), and Rt(f) converge in probability to zero as t→∞.

By admitting these three assertions, we deduce that as t→∞ along some subsequence,
Θt(f) converges in law towards∫

R

(1− e−f(y))
[
Z∞e

−2λy + Y∞
]
dy

with some non-negative random variables Z∞ and Y∞ (who may not be independent).
Recalling (4.4), this suffices to conclude that

E[e−〈f,θ〉] = E

[
exp

{
−
∫
R

(1− e−f(y))
[
Z∞ e−2λy + Y∞

]
dy

}]
which is what we want.

It remains to verify the three assertions. We first state a basic concentration inequality
for sum of independent Bernoulli random variables, which is follows from Chebyshev
inequality and second Borel-Cantelli Lemma.

Lemma 4.1. Let (Xi, i ≥ 1) be a sequence of independent Bernoulli random variables
such that E[Xi] = pi ∈ (0, 1]. For any set I ⊂ N∗, let XI :=

∑
i∈I Xi. If E[XI ] <∞, then

P(|XI − E[XI ]| ≥ E[XI ]/2) ≤ 4

E[XI ]
.

If E[XI ] =∞, then XI = +∞ a.s.

Now we are ready to prove the above assertions (1),(2),(3). Recall that we write
θ =

∑
i∈I δxi .
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4.3 The tightness of Zt

As mentioned in (4.13), we have

Zt = (1 + ot(1))
2λ

e2λ − 1

∫ −λt+t2/3
−λt−t2/3

P(x+Bt − λt ∈ [−1, 0])θ(dx).

The advantage of this expression is that if we define

Zt :=
∑

i:xi∈[−λt−t2/3,−λt+t2/3]

1{xi+Bt−λt∈[−1,0]},

then

Zt = (1 + ot(1))
2λ

e2λ − 1
E[Zt|θ].

It thus suffices to prove the tightness of E[Zt|θ]. Note that conditioned on θ, Zt is a sum
of independent Bernoulli random variables. By use of Lemma 4.1, one sees that for any
K > 0,

P (E[Zt|θ] ≥ K) ≤ P (E[Zt|θ] ≥ K; |Zt − E[Zt|θ]| ≥ E[Zt|θ]/2) + P (Zt ≥ K/2)

≤ 4

K
+ P (Zt ≥ K/2) .

Next, compare Zt with θt, we observe that Zt ≤ θt([−1, 0]). As θt([−1, 0]) has the same
law as θ([−1, 0]) which is finite a.s.,

P (Zt ≥ K/2) ≤ P(θ([−1, 0]) ≥ K/2)

It follows that

sup
t>0

P (E[Zt|θ] ≥ K) ≤ 4

K
+ P(θ([−1, 0]) ≥ K/2)→ 0, as K →∞.

This concludes the tightness of Zt.

4.4 The tightness of Yt

In view of (4.17), the tightness of Yt follows from the same arguments as in the
previous subsection.

4.5 The convergences in probability of Lt(f), Ct(f), and Rt(f)

First, by (4.18), one sees that

Lt(f) ≤
∫ −λt−t2/3
−∞

P(|x+Bt − λt| ≤ Kf )θ(dx) =: L+
t (f); (4.19)

Ct(f) ≤
∫ λt−t2/3

−λt+t2/3
P(|x+Bt − λt| ≤ Kf )θ(dx) =: C+

t (f) (4.20)

Rt(f) ≤
∫ +∞

λt+t2/3
P(|x+Bt − λt| ≤ Kf )θ(dx) =: R+

t (f). (4.21)

So, it suffices to show the convergence in probability towards zero for L+
t (f), C+

t (f),
and R+

t (f).
First, let us introduce the random variables L+

s (f, t), C+
s (f, t) and R+

s (f, t) associated
with some time s > 0 (to be suitably chosen below) by replacing P(|x+Bt−λt| ≤ Kf )θ(dx)

by P(|x+Bs − λs| ≤ Kf )θ(dx) in the integrals, as follows,

L+
s (f, t) :=

∫ −λt−t2/3
−∞

P(|x+Bs − λs| ≤ Kf )θ(dx)

The following lemma compares L+
t (f) and L+

s (f, t).
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Lemma 4.2. For t large enough and s = t+
√
t (respectively for s = t−

√
t), uniformly

for |x| ≥ λt+ t2/3 (respectively for |x| ≤ λt− t2/3),

P(|x+Bs − λs| ≤ Kf )

P(|x+Bt − λt| ≤ Kf )
≥ 1

2
e
λ
4 t

1/6

.

Its proof is postponed to the end. By means of this result, one sees that for s = t+ t1/2

and t sufficiently large,

L+
s (t, f) ≥ 1

2
e
λ
4 t

1/6

L+
t (f).

So, for any η > 0, one has

P(L+
t (f) ≥ η) ≤ P

(
L+
s (t, f) ≥ 1

2
e
λ
4 t

1/6

η

)
. (4.22)

Note that if we set

L+
s (f, t) :=

∑
i∈I:xi∈(−∞,−λt−t2/3)

1{|xi+Bis−λs|≤Kf}

then E[L+
s (f, t)|θ] = L+

s (f, t). Moreover, L+
s (f, t) is dominated by θs([−Kf ,Kf ]) which is

distributed as θ([−Kf ,Kf ]). Applying Lemma 4.1 to L+
s (f, t) conditioned on θ implies

that for any K > 0,

P
(
L+
s (t, f) ≥ K

)
≤P

(
L+
s (t, f) ≥ K; |L+

s (f, t)− L+
s (f, t)| ≥ L+

s (f, t)

2

)
+ P

(
L+
s (t, f) ≥ K;L+

s (f, t) ≥ L+
s (f, t)

2

)
≤ 4

K
+ P (θ([−Kf ,Kf ]) ≥ K/2) , (4.23)

where the last inequality follows from the fact that L+
s (f, t) is stochastically dominated

by θ([−Kf ,Kf ]).
In view of (4.22) and (4.23), one gets that for any η > 0,

P(L+
t (f) ≥ η) ≤ ot(1) + P

(
θ([−Kf ,Kf ]) ≥ eλ4 t

1/6

η/4
)
−−−→
t→∞

0,

because θ is locally finite. This suffices to conclude that L+
t (f) converges in probability

to zero. The same arguments can be applied to get the convergence in probability of
R+
t (f). For C+

t (f), we take s = t− t1/2 instead of t+ t1/2, again the similar arguments

hold and we obtain that C+
t (f)

P−→ 0.
It remains to prove Lemma 4.2. Basic computation shows that

P(|x+Bs − λs| ≤ Kf ) =

∫
R

1√
2πs

e−
z2

2s 1{|x+z−λs|≤Kf}dz =

∫ Kf

−Kf
e−

(y+λs−x)2
2s

dy√
2πs

,

and

P(|x+Bt − λt| ≤ Kf ) =

∫ Kf

−Kf
e−

(y+λt−x)2
2t

dy√
2πt

.

Note that for s = t+ t1/2, for any x such that |x| ≥ λt+ t2/3 and y ∈ [−Kf ,Kf ], as long
as t is large enough, we have s ≤ 2t and

− (y + λs− x)2

2s
+

(y + λt− x)2

2t
=

(y − x)2

2st
t1/2 − λ2

2
t1/2 ≥λt

5/3+1/2

4t2
=
λ

4
t1/6.

As a consequence,
P(|x+Bs − λs| ≤ Kf )

P(|x+Bt − λt| ≤ Kf )
≥ 1

2
e
λ
4 t

1/6

.

The case |x| ≤ λt− t2/3 and s := t− t1/2 is done similarly. This completes the proof.
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