
HAL Id: hal-03774603
https://hal.science/hal-03774603

Submitted on 11 Sep 2022

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

YALTAPy and YALTAPy_Online: Python toolboxes for
the H∞-stability analysis of classical and fractional

systems with commensurate delays
Hugo Cavalera, Jayvir Raj, Guilherme Mazanti, Catherine Bonnet

To cite this version:
Hugo Cavalera, Jayvir Raj, Guilherme Mazanti, Catherine Bonnet. YALTAPy and YALTAPy_Online:
Python toolboxes for the H∞-stability analysis of classical and fractional systems with commensurate
delays. TDC 2022 - 17th IFAC Workshop on Time Delay Systems, Sep 2022, Montréal, Canada.
pp.192–197, �10.1016/j.ifacol.2022.11.356�. �hal-03774603�

https://hal.science/hal-03774603
https://hal.archives-ouvertes.fr

YALTAPy and YALTAPy Online: Python
toolboxes for the H∞-stability analysis of

classical and fractional systems with
commensurate delays

Hugo Cavalera ∗ Jayvir Raj ∗∗ Guilherme Mazanti ∗∗∗

Catherine Bonnet ∗∗∗

∗ Université Paris-Saclay, CNRS, CentraleSupélec, Inria, Laboratoire
de signaux et systèmes, 91190 Gif-sur-Yvette, France

∗∗ Université Paris-Saclay, CNRS, CentraleSupélec, Inria, Laboratoire
de signaux et systèmes, 91190 Gif-sur-Yvette, France and IPSA, 63

boulevard de Brandebourg, 94200 Ivry-sur-Seine, France
∗∗∗ Université Paris-Saclay, CNRS, CentraleSupélec, Inria, Laboratoire

de signaux et systèmes, 91190 Gif-sur-Yvette, France (e-mail:
firstname.lastname@inria.fr)

Abstract: The aim of this paper is to give a presentation of the Python toolbox YALTAPy
dedicated to the stability study of standard and fractional delay systems as well as its online
version YALTAPy Online. Both toolboxes are derived from YALTA whose functionalities will
be recalled here. Examples will be given to show how these toolboxes may be used.

Keywords: Stability of delay systems, fractional-order systems, Model reduction, Python
Toolbox, Online Software

1. INTRODUCTION

The stability analysis of linear delay systems is a deep
research subject which has been the source of countless
studies in time and frequency domains since the 1950’s,
such as Pontryagin (1955); Bellman and Cooke (1963);
Niculescu and Gu (2004); Richard (2003); Walton and
Marshall (1987); Niculescu and Michiels (2014). More re-
cently, the literature involved the stability study of frac-
tional linear systems with delays, as fractional systems suc-
cessfully model complex phenomena in a compact manner.

Many results have been obtained in both settings concern-
ing stability characterization (asymptotic/exponential sta-
bility, H∞-stability) of retarded delay systems. However,
much remains to be done for neutral delay systems. Even
though stability characterization (by sufficient or neces-
sary and sufficient conditions) is a central issue, several
related questions such as easy-to-check stability condi-
tions, precise location of stable/unstable poles, behavior of
stable/unstable poles when the delay varies, are of interest
for a full and efficient study of practical situations.

In parallel of theoretical and numerical studies, e.g. Olgac
and Sipahi (2004); Gumussoy and Michiels (2012); Hwang
and Cheng (2006); Fioravanti et al. (2012), toolboxes have
been developed to facilitate and popularize the use of
the obtained results both in the academic and industrial
environments. We cite here Quasi-Polynomial Mapping
Based Rootfinder (QPmR, Vyhĺıdal and Źıtek (2003)),
Tool for Robust Analysis and Characteristic Equations of
Delay Differential Equations (TRACE-DDE, Maset and
Vermiglio (2005)), Bifurcation analysis of delay differential

equations (DDE-Biftool, Engelborghs et al. (2001)), Yet
another LTI TDS Algorithm (YALTA, Avanessoff et al.
(2013)), Partial pole placement via delay action (P3δ,
Boussaada et al. (2020, 2021)), and Parallel Processing
Delay Margin Finder (parDMF, Ramı́rez et al. (2021)).
The references Avanessoff et al. (2013, 2014) present the
functionalities of the Matlab toolbox YALTA and briefly
describe its positioning relative to earlier toolboxes. We
also refer to Sipahi (2019) and Pekar and Gao (2018) for a
recent overview on effective methods for the stability anal-
ysis of delay systems where toolboxes are also presented.

The aim of this paper is to present YALTAPy, a Python
version of the Matlab toolbox YALTA, as well as YAL-
TAPy Online, which is an online version of YALTAPy.
Note that YALTAPy is an open source software.

In Section 2 we will describe the main functionalities of
YALTAPy (i.e., briefly recall those of YALTA). Section 3
will detail a bit the features of YALTAPy Online. Then
examples of use of YALTAPy and YALTAPy Online will
respectively be given in Sections 4 and 5.

2. MAIN FEATURES OF YALTAPY

YALTAPy and YALTAPy Online consider delay systems
described by transfer functions of the type:

G(s) =
t(s)+

∑N′

κ=1
tκ(s)e

−κτs

p0(s)+
∑N

k=1
pk(s)e−kτs

= n(s)
d(s) , (1)

where τ > 0 is the nominal delay, α ∈ (0, 1] is the
fractional exponent, and, for every k ∈ {0, . . . , N}, pk(s) is
a polynomial in the variable sα. We let n denote the degree

of p0 and we assume that n ≥ deg t, n ≥ deg tκ for every
κ ∈ {1, . . . , N ′}, and n ≥ deg pk for every k ∈ {1, . . . , N},
i.e., the system is either of retarded or neutral type.

We refer to Bellman and Cooke (1963); Fioravanti et al.
(2010a); Partington (2004) for an analysis of the position
of chains of poles of such systems:

(1) If deg p0 > deg pk for all k ∈ {1, . . . , N}, then there
are only chains of retarded type;

(2) If deg p0 = deg pN , then there are only chains of
neutral type;

(3) If deg p0 = deg pk > deg pN , for some k ∈ {1, . . . , N−
1}, then there are chains of both neutral and retarded
types.

We recall that a neutral chain is asymptotic to a vertical
axis in the complex plane, while a retarded chain contains
poles with arbitrarily large negative real part. The coeffi-

cient of the highest degree term of p0(s)+
∑N

k=1 pk(s)e
−kτs

is given by

c̃d(z) = 1 +
∑N

i=1 αiz
i. (2)

When dealing with neutral systems, in order to avoid
the possibility of an infinite number of zero cancellations
between the numerator and denominator of G, we make
the same Hypothesis (H) than in Avanessoff et al. (2013,
2014) in terms of deg t, deg tk and roots of c̃d and c̃n.

We refer to Avanessoff et al. (2013, 2014) for a complete
description of the functionalities of YALTA and just pre-
cise below that YALTAPy and YALTAPy Online will give:

• the type of delay system: retarded or neutral
• the position of asymptotic axes for a neutral system
• the stability property when the delay is zero
• stability windows
• a root locus showing the displacement of the poles
when the delay varies between two chosen values

• a Padé-2 approximation of the system (only for stan-
dard systems).

Let us now describe how inputs should be provided to
YALTAPy functions. The quasi-polynomial d(s) may be
rewritten

d(s) = P0(s) +
∑M

k=1 Pk(s)e
−nkτs, (3)

where, for every k ∈ {0, . . . ,M}, nk is a positive integer
and Pk(s) = pnk

(s). In other words, we eliminate from the
denominator of (1) all delays kτ corresponding to values
of k for which pk is identically zero, and M ∈ {1, . . . , N}
denotes thus the number of polynomials among p1, . . . , pN
that are not identically zero.

The data of the system corresponding to (3) is hence de-
scribed by the coefficients of the polynomials P0, . . . , PM ,
the exponent α, the delay τ , and the integer multiples
n1, . . . , nM of the delay τ that appear in the system.

In order to input the coefficients of P0, . . . , PM to YAL-
TAPy, one should provide the (M + 1)× (n+ 1) matrix

p0,n p0,n−1 · · · p0,0
p1,n p1,n−1 · · · p1,0
...

...
. . .

...
pM,n pM,n−1 · · · pM,0

 ,

i.e., the matrix whose kth row (starting from k = 0)
describes the coefficients of Pk in descending order of
power. This matrix should be represented in Python as a 2-
dimensional numpy array (see Harris et al. (2020) for details
on numpy). Concerning the integer multiples n1, . . . , nM of
the delay τ , they should be input as a vector of size M ,

(n1 · · · nM) ,

which should be represented as a 1-dimensional numpy
array of integers. Finally, τ and α should be input to
YALTAPy as floating-point numbers or integers. Examples
of use of YALTAPy are provided in Section 4 below.

3. YALTAPY ONLINE

The team working on YALTA has recently developed an
interface for facilitating the use of YALTAPy, based on
a Python’s Jupyter Notebook, an open document format
which can contain live code, equations, visualizations,
and text. Our Jupyter Notebook implements a friendly
graphical user interface for YALTAPy Online thanks to
interactive widgets from Python’s ipywidgets module.
The next aim is to facilitate the use of YALTAPy Online
by making it available with no need of installation thanks
to the Binder service (Project Jupyter et al., 2018), which
allows the creation of personalized computing environ-
ments directly from a git repository. The Binder service is
free to use and is powered by BinderHub, an open-source
tool that deploys the service in the cloud.

Fig. 1. Main screen of YALTAPy Online.

YALTAPy Online starts by a presentation screen (see
Fig. 1) recalling the class of systems that it handles and its
main features. It is divided into five tabs: the first one is
the presentation screen, the second one is dedicated to the
input of the data, the third one provides features of sta-
bility analysis, stability windows, and root locus, the third
one provides a tool for computing Padé approximations,
and the last one allows the user to obtain a PDF report
with the obtained results. A detailed example of the use
of YALTAPy Online is provided in Section 5.

4. EXAMPLES OF USE OF YALTAPY

In this section, we present two examples illustrating the
use of YALTAPy for the stability analysis of time-delay
systems. The first one, described in Section 4.1, considers
a time-delay system of order 3 with a single delay, whereas
the second one, described in Section 4.2, illustrates how to
use YALTAPy to study the stability of a fractional system.

4.1 A third-order system

Consider the time-delay system given by

ẋ(t) = A0x(t) +A1x(t− τ), (4)

where x(t) ∈ Rn, A0 and A1 are n × n matrices with
real coefficients, and τ > 0 is the delay. The stability
of such a system can be studied through the roots of its
characteristic equation

d(s) = det(s Id−A0 −A1e
−sτ),

where Id denotes the n× n identity matrix.

In this example, we consider n = 3, τ = 3, and

A0 =

 0 1 −1
1 − 1

2 − 1
4

−1 0 − 4
5

 , A1 =

−3 −2 1
2

−1 0 1
5

2
3

1
3 0

 .

In this case, a straightforward computation shows that

d(s) = s3 + 13
10s

2 − 8
5s−

31
20 + +

(
3s2 + 163

20 s+ 323
60

)
e−τs

−
(
12
5 s+ 173

60

)
e−2τs + 7

30e
−3τs.

(5)

In order to input the characteristic equation (5) into
YALTAPy, we define the numpy array

P = np.array([[1, 13/10, -8/5 , -31/20],
[0, 3, 163/20, 323/60],
[0, 0, -12/5, -173/60],
[0, 0, 0, 7/30]])

(assuming that numpy was previously imported using
import numpy as np). Similarly, we input the vector n
of the multiples of the delays and the values of τ and α by

n = np.array([1, 2, 3]), tau = 3, alpha = 1

Stability analysis With the previous definitions, one
studies the stability of (4) by using YALTAPy’s thread
analysis function. After importing YALTAPy using
import yaltapy as yp and defining P, n, tau, and alpha
as above, the thread analysis function is called by

res = yp.thread_analysis(P, n, alpha, tau)

After its execution, thread analysis returns a dictionary
with information on the stability of the system. In this
example, the variable res contains the following data:

Type: Retarded
AsympStability: There is (are) 4 unstable
pole(s) in the right half-plane
RootsNoDelay: [-3.07585975+0.j

-0.61207012+0.10043131j
-0.61207012-0.10043131j]

RootsChain: Roots chains only computed for
neutral systems
CrossingTable:
[[0.38196552 1.86170973 3.37495433 1.]]
ImaginaryRoots:
[[0.38196552 3.37495433 1.]
[0.38196552 -3.37495433 1.]
[2.24367525 3.37495433 1.]
[2.24367525 -3.37495433 1.]]

Hence, YALTAPy has identified that the given system
is of retarded type and that it has 4 poles in the right
half-plane, yielding the conclusion that, with the given

parameters, the system is unstable. YALTAPy has also
computed the characteristic roots of the system without
delay, i.e., when τ = 0. In this case, the characteristic
equation of the system reduces to the polynomial d(s) =
s3 + 43

10s
2 + 83

20s+
71
60 , whose three complex roots are those

provided in YALTAPy output RootsNoDelay.

Since the system is of retarded type, it presents no chains
of roots asymptotic to a vertical line, a fact that is recalled
in the output RootsChain. The outputs CrossingTable
and ImaginaryRoots describe the behavior of the system
as the delay increases from 0 to its nominal value. For
instance, ImaginaryRoots states that, at τ ≈ 0.3820, two
roots cross the imaginary axis, at the values ±3.3750i, and
the direction of crossing is from the left to the right (value
1 in the third column), and, at τ ≈ 2.2437, two other roots
cross the imaginary axis, once again at the values ±3.3750i
and from the left to the right. As for the CrossingTable,
its first column gives the first value of the delay for which
a specific zero crosses the axis, its third column gives the
frequency ω of crossing of a zero, its second column is 2π

ω ,
and its fourth column provides the crossing direction.

Stability windows YALTAPy provides a function to ob-
tain stability windows for the system under consideration,
called thread stability windows. After defining P, n,
tau, and alpha as above, this function is called by

res = yp.thread_stability_windows(P, n,
alpha, tau)

As for thread analysis, the function thread stability
windows also returns a dictionary with information on
stability windows for the system. In the present example,
in addition to outputs already given by thread analysis,
the variable res contains the following data:

StabilityWindows:
[[0. 0.38196552 3.]
[1. 0. 0.]]

NbUnstablePoles:
[[0. 0.38196552 2.24367525 3.]
[0. 2. 4. 4.]]

The outputs StabilityWindows and NbUnstablePoles,
in this example, are interpreted as follows: at τ = 0, the
system is stable (value 1 at StabilityWindows) and has no
poles in the right half-plane (value 0 at NbUnstablePoles).
At τ ≈ 0.3820, the system becomes unstable (value 0
at StabilityWindows) and has 2 poles in the right half-
plane (value 2 at NbUnstablePoles). At τ ≈ 2.2437, two
additional poles appear in the complex right half-plane,
and the system remains unstable and with 4 poles in the
right half-plane until the nominal delay value τ = 3.

In addition to those outputs, thread stability windows
also plots the data in StabilityWindows and NbUnstable
Poles by setting its optional input argument plot to True
(default). The plot for this example is provided in Fig. 2.

Root locus The root locus of the roots of a system that
eventually become unstable is computed using YALTAPy’s
function thread root locus. For systems of neutral type,
this function only runs if the system with nominal delay
possesses chains asymptotic to vertical axes located in the

0.000 0.382 3.000Delay (s)
0

1

S
ta
b
il
it
y

0.000 0.382 2.244 3.000

Delay (s)

0

2

44

N
u
m
b
er

of
u
n
st
a
b
le

p
ol
es

Fig. 2. Stability windows for the example from Section 4.1.

open left half-plane.Similarly to the previous functions,
this function is called by

res = yp.thread_root_locus(P, n, alpha, tau)

and it returns a dictionary with information on the root
locus. In the present example, the dictionary res returned
by the function contains, in addition to outputs also
provided by the previous functions, the outputs

UnstablePoles:
[0.08427953+2.50094915e+00j
0.08427953-2.50094915e+00j
1.01660266+2.18573355e-13j]
PolesError: [1.e-11+0.j 1.e-12+0.j 1.e-10+0.j]

The dictionary also contains an entry RootLocus contain-
ing information on the movement of the roots, but since it
is too long, it is not shown here.

−1.00 −0.75 −0.50 −0.25 0.00 0.25 0.50 0.75 1.00

Real part

−10.0

−7.5

−5.0

−2.5

0.0

2.5

5.0

7.5

10.0

Im
ag

in
a
ry

p
ar
t

0.0 0.5 1.0 1.5 2.0 2.5 3.0

Delay

Root locus

Fig. 3. Root locus for the example from Section 4.1.

The output UnstablePoles provides the location of the 4
unstable poles at the nominal value of the delay τ = 3 (we
have a real pole of multiplicity 2 in this example) and the
respective estimated numerical errors in PolesError. If
the optional input argument plot is set to True, the root
locus is graphically displayed, as shown in Fig. 3, where
we observe the behavior of the four roots of the system
that become unstable as the delay increases from 0 to 3.

4.2 A fractional system

As a second example, we consider the fractional system
described by its characteristic equation

d(s) = s
1
2 + 15

2 −
(

1
6s

1
2 + 20

7

)
e−τs + 80

11e
−3τs,

with τ = 2.5. Such a system is input into YALTAPy by
defining the variables P, n, tau, and alpha as

P = np.array([[1, 15/2],
[-1/6, -20/7],
[0, 80/11]])

n = np.array([1, 3]), alpha = 0.5, tau = 2.5

Stability analysis Similarly to the example in Sec-
tion 4.1, we run thread analysis in the present example,
obtaining as a result

Type: Neutral
AsympStability: There is (are) 4 unstable
pole(s) in the right half-plane
RootsNoDelay: []
RootsChain: [-0.71670379]
CrossingTable:
[[0.42100844 2.96762299 2.11724512 1.]
[1.96353668 2.32594339 2.70134919 1.]]

ImaginaryRoots:
[[0.42100844 2.11724512 1.]
[0.42100844 -2.11724512 1.]
[1.96353668 2.70134919 1.]
[1.96353668 -2.70134919 1.]]

YALTAPy identifies that the system has a single chain
of poles asymptotic to the vertical line with real part
−0.7167, indicates that the system is unstable for the
nominal value of the delay, and identifies the crossings
of the imaginary axis as the delay increases from 0 to
2.5, providing the value of the delay at which the crossing
occurs and the position and direction of crossing.

Stability windows Using YALTAPy to compute stability
windows, we obtain the following output (only fields not
already returned by thread analysis are shown)

StabilityWindows:
[[0. 0.42100844 2.5]
[1. 0. 0.]]

NbUnstablePoles:
[[0. 0.42100844 1.96353668 2.5]
[0. 2. 4. 4.]]

Root locus Finally, we use YALTAPy to compute the
root locus of the present example, obtaining the following
output (outputs already present in the previous functions
are omitted, as well as the output RootLocus, too long to
be shown here)

UnstablePoles:
[0.00224791+2.12366734j
0.00224791-2.12366734j
0.01138514-0.36488849j
0.01138514+0.36488849j]

PolesError: [1.e-10+0.j 1.e-13+0.j
1.e-12+0.j 1.e-11+0.j]

The corresponding root locus is presented in Fig. 4, where
we observe in particular the crossings already known from
the previous computation of stability windows.

−0.06 −0.04 −0.02 0.00 0.02

Real part

−10.0

−7.5

−5.0

−2.5

0.0

2.5

5.0

7.5

10.0

Im
a
gi
n
ar
y
p
ar
t

0.0 0.5 1.0 1.5 2.0 2.5

Delay

Root locus

Fig. 4. Root locus for the example from Section 4.2.

4.3 Padé approximation

YALTAPy can compute Padé approximation of functions

of the form (p0(s) +
∑N

k=1 pk(s)e
−ksτ)/(s + 1)δ where

p0(s), . . . , pk(s) are polynomials in the variable s following
the same assumptions as before and δ is an integer greater
than the degree of p0. We illustrate this functionality of
YALTAPy in the case δ = 2 and

d(s) = s+ 2− e−s. (6)

To input such a system into YALTAPy, we define

P = np.array([[1, 2], [0, -1]]),
n = np.array([1]), tau = 1, delta = 2

Padé approximations can be computed through YAL-
TAPy’s compute pade function, which, in addition to the
above variables, takes as arguments also the mode of
approximation (“ORDER” or “NORM”) and a parame-
ter mod arg whose interpretation depends on the mode:
mod arg is the order of approximation in mode “ORDER”
and the maximum error in H∞ norm for the approxima-
tion in mode “NORM”. For instance, a first-order Padé
approximation of (6) is obtained by

res = yp.compute_pade(P, delta, tau, n,
mod_arg = 1, mode = "ORDER")

The variable res will contain the data of the approxima-
tion: res.num approx and res.den approx contain the
coefficients of the numerator and denominator, respec-
tively, of the Padé approximation, while res.error norm
and res.pade order contain, respectively, the H∞ norm
of the approximation error and the order of approximation.
After running the present example, these four variables
contain, respectively, the values

array([1., 9., 45., 79., 54., 12.])
array([1., 10., 42., 88., 97., 54., 12.])
0.032917024033214635
1

5. EXAMPLE OF USE OF YALTAPY ONLINE

Let us now illustrate the use of YALTAPy Online through
the example from Section 4.1 above. The first step is to

Fig. 5. Data input in YALTAPy Online.

input the data of the problem in the tab “Data” (see
Fig. 5). The polynomials without delays and with delays
are entered separately. After selecting the fractional power
of sα (which is α = 1 in this example) and degree of the
polynomial P0 without delay terms (3 in this example),
the user enters its coefficients in the corresponding field.
The user is then prompted for the number of delayed terms
and for the coefficients of the corresponding polynomials.
Finally, the last part is dedicated to the nominal delay and
the vector containing the integers multiplying the delay.

After entering the data, the user goes to the tab “Sta-
bility Analysis” to obtain YALTAPy Online’s study of
the system. As YALTAPy, YALTAPy Online will perform
a stability analysis (corresponding to YALTAPy’s func-
tion thread analysis), compute stability windows (cor-
responding to thread stability windows), and compute
root locus of unstable roots (corresponding to thread
root locus). Those analyses are started by the respective
“Run” buttons on the page and all results are displayed
on the screen. Long outputs are automatically hidden, but
can be shown through the corresponding “Show” buttons.
Graphs are interactive, and the user can zoom in parts of
the graph or export it as an image. The screen obtained
after running all available analyses for the example from
Section 4.1 is provided in Fig. 6 (the root locus was omitted
due to space constraints).

REFERENCES

D. Avanessoff, A. Fioravanti, and C. Bonnet (2013).
YALTA: a Matlab toolbox for the H∞-stability analysis
of classical and fractional systems with commensurate
delays. 11th IFAC Workshop on Time-Delay Systems.

D. Avanessoff, A. Fioravanti, C. Bonnet, and L.H.
V. Nguyen (2014). H∞-stability analysis of (fractional)

Fig. 6. Stability analysis in YALTAPy Online (root locus
omitted for simplicity).

delay systems of retarded and neutral type with the
Matlab Toolbox YALTA. Delay systems, from theory
to numerics and applications, ADDS Series, Springer.

R. Bellman and K. Cooke (1963). Differential-Difference
Equations. Academic Press.

I. Boussaada, G. Mazanti, S.-I. Niculescu, J. Huynh,
F. Sim, and M. Thomas (2020). Partial pole placement
via delay action: A Python software for delayed feedback
stabilizing design. ICSTCC 2020, pp. 196–201.

I. Boussaada, G. Mazanti, S.-I. Niculescu, A. Leclerc,
J. Raj, and M. Perraudin (2021). New Features of
P3δ software: Partial Pole Placement via Delay Action.
IFAC-PapersOnLine, 54(18), pp. 215–221.

K. Engelborghs, T. Luzyanina, and G. Samaey (2001).
DDE-BIFTOOL v. 2.00: a Matlab package for bifurca-
tion analysis of delay differential equations. Technical
Report TW-330, K.U.Leuven, Belgium.

A.R. Fioravanti, C. Bonnet, H. Özbay, and S.-I. Niculescu
(2010). A numerical method to find stability windows
and unstable poles for linear neutral time-delay systems.
9th IFAC Workshop on Time Delay Systems.

A.R. Fioravanti, C. Bonnet, H. Ozbay, and S.-I. Niculescu
(2012). A numerical method for stability windows and

unstable root-locus calculation for linear fractional time-
delay systems. Automatica, 48(11), pp. 2824–2830.

S. Gumussoy and W. Michiels (2012). Root-locus for SISO
dead-time systems: A continuation based approach. Au-
tomatica, 43(3), pp. 480–489.

C.R. Harris, K.J. Millman, S.J. van der Walt, R. Gom-
mers, P. Virtanen, D. Cournapeau, E. Wieser, J. Tay-
lor, S. Berg, N.J. Smith, R. Kern, M. Picus, S. Hoyer,
M.H. van Kerkwijk, M. Brett, A. Haldane, J.F. del Ŕıo,
M. Wiebe, P. Peterson, P. Gérard-Marchant, K. Shep-
pard, T. Reddy, W. Weckesser, H. Abbasi, C. Gohlke,
and T.E. Oliphant (2020). Array programming with
NumPy. Nature, 585(7825), pp. 357–362.

C. Hwang and Y.C. Cheng (2006). A numerical algorithm
for stability testing of fractional delay systems. Auto-
matica, 42(5), pp. 825–831.

S. Maset and R. Vermiglio (2005). Pseudospectral dif-
ferencing methods for characteristic roots of delay dif-
ferential equations. SIAM J. Sci. Comput., 27(2), pp.
482–495.

S.-I. Niculescu and K. Gu (2004). Advances in Time-Delay
Systems. Springer.

S.-I. Niculescu and W. Michiels (2014). Stability, control,
and computation of time-delay systems. An eigenvalue
based approach. Advances in Design and Control 27,
SIAM, Philadelphia, PA, Second Edition.

N. Olgac and R. Sipahi (2004). A practical method for
analyzing the stability of neutral type LTI-time delayed
systems. Automatica, 40, pp. 847–853.

L. Pekar and Q. Gao (2018). Spectrum Analysis of
LTI continuous-time systems with constant delays: a
literature overview of some recent results. IEEE Access,
July 2018.

J.R. Partington (2004). Linear Operators and Linear
Systems: An Analytical Approach to Control Theory.
Cambridge University Press.

L.S. Pontryagin (1955). On the zeros of some elementary
transcendental functions. Amer. Math. Soc. Transl.,
2(1), pp. 95–110.

Project Jupyter, M. Bussonnier, J. Forde, J. Freeman,
B. Granger, T. Head, C. Holdgraf, K. Kelley, G. Nal-
varte, A. Osheroff, M. Pacer, Y. Panda, F. Perez,
B. Ragan Kelley, and C. Willing (2018). Binder 2.0
- Reproducible, interactive, sharable environments for
science at scale. In F. Akici, D. Lippa, D. Niederhut,
and M. Pacer (eds.), Proceedings of the 17th Python in
Science Conference, pp. 113–120.

A. Ramı́rez, D. Breda, and R. Sipahi (2021). A scalable
approach to compute delay margin of a class of neutral-
type time delay systems. SIAM J. Control Optim. 59(2),
pp. 805–824.

J.P. Richard (2003). Time-Delay Systems: An Overview
of Some Recent Advances and Open Problems, Auto-
matica, 39, pp. 1667–1694.

R. Sipahi (2019). Mastering Frequency Domain Techniques
for the Stability Analysis of LTI Time Delay Systems.
SIAM.

T. Vyhĺıdal and P. Źıtek (2003). Quasipolynomial map-
ping based rootfinder for analysis of Time delay systems,
Proc. of IFAC Workshop on Time-Delay Systems.

K. Walton and J.E. Marshall (1987). Direct method for
TDS stability analysis. newblock IEE Proceedings, 134,
pp. 101–107.

