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General context: development of a computer code for molecular spectroscopy applications Ex. "Forbidden" spectrum of methane (observed on Titan, Neptune, ...) • ab initio treatment :

no scaling

• mean relative error on line positions: 2.46 * 10 -5

• mean relative error on intensities 5.85 % (empirical fit 6.28 %, experimental uncertainties: 10.62%)
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Why developing a new electronic method?

• To calculate electronic spectra

• To calculate electronic potential energy and dipole moment hypersurfaces required for ro-vibrational Hamiltonians

• To transpose the ideas developed successfully for nuclear motion

• To have a uniform formalism to treat both electronic and nuclear motions + many other applications beyong in silico spectroscopy
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• Disapointing new ideas

• More promising new ideas
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The "electronic" challenge in Quantum Chemistry

Solve to the desired accuracy the eigenvalue equation,

H e ( q) Ψ = E( q) Ψ
for the Hamiltonian of the electrons of a molecule H e ( q) , where q is a parameter specifying the position of the nuclei in the space of n-electron wave functions, Ψ ∈ ∧ n H , where H is a Hilbert space of the form:

H := H o ⊗ H s , H s ≡ C 2 and H o a finite dimensional vector subspace of L 2 (R 3 ) •First •Prev •Next •Last •Go Back •Full Screen •Close •Quit

Notation

• H : Hilbert space of one-electron functions, spanned by a set of spin-orbitals (ψ i ) i fermionic creation and annihilation operators a † i , a i :

|ψ i = a † i |0 , ψ i | = 0|a i , [a i , a † j ] + = δ i,j
• ∧ n H : Hilbert space of n-electron antisymmetric functions, spanned by the Slater determinantal functions (

ψ i 1 ∧ ψ i 2 ∧ • • • ∧ ψ i n ) (i 1 <i 2 <•••<i n )
any n-particle wave function can be expanded as Φ :=

I:=(i1<...<in) c I ψ i1 ∧ • • • ∧ ψ in ,
extended second quantization notation :

|Φ = a † (Φ)|0 a † (Φ) = I:=(i 1 <...<i n ) c I a † i 1 a † i 2 • • • a † i n , a(Φ) = I:=(i 1 <...<i n ) c * I a i n • • • a i 2 a i 1 a † (ψ i ) = a † i , a † (ψ i1 ∧ ψ i2 ∧ • • • ∧ ψ in ) = a † i1 a † i2 • • • a † in , a(ψ i1 ∧ ψ i2 ∧ • • • ∧ ψ in ) = a in • • • a i2 a i1 , •First •Prev •Next •Last •Go Back •Full Screen •Close •Quit

Variational methods

Minimize the energy functionnal E(Φ) = Φ|H e ( q)|Φ Φ|Φ with Φ ∈ ∧ n H plus some additional constraints • Ex.: Full Configuration Interaction (FCI) method: Minimize the energy functionnal E(Φ) = Φ|H e ( q)|Φ Φ|Φ with no additional constraint.

• Ex. Hartree-Fock (HF) method: Minimize the energy functionnal E(Φ) = Φ|H e ( q)|Φ Φ|Φ with Φ of the single Slater determinantal form: 

Φ = a † (φ 1 )a † (φ 2 ) • • • a † (φ n )|0 , ∀i, φ i ∈ ∧ 1 H ≡ H . • Ex. Geminal Self-Consistent Field (GSCF) method: Minimize the energy functionnal E(Φ) = Φ|H e ( q)|Φ Φ|Φ with Φ of the non-orthogonal geminal product form: Φ = a † (Γ 1 )a † (Γ 2 ) • • • a † (Γ n 2 )|0 , ∀i, Γ i ∈ ∧ 2 H . •First •Prev •Next •Last •Go Back •Full Screen •Close •Quit
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Calculation of matrix elements between group functions

Recursion formula from an n-electron integral to a sum of products of an n 1 -electron integral × an (n -n 1 )-electron integral.

Φ 1 ∧ Φ 2 |Ψ 1 ∧ Ψ 2 = I 1 ,I 2 |I 1 |+|I 2 |=n 1 (-1) |I 2 |•(n 1 -|I 1 |) Φ 1 |(Ψ 1 ) I 1 ∧ (Ψ 2 ) I 2 Φ 2 |(Ψ 1 )Ī1 ∧ (Ψ 2 )Ī2 Ex.: Geminals, n 1 = 2
• no orthogonality: n(n-1) 2 terms factorial scaling with electron number

• each term requires ∼ m 2 floating point operations then recurses

m 2 × n 2 (m orbital number) •First •Prev •Next •Last •Go Back •Full Screen •Close •Quit
p-internal space of a wave function Definition:

I p [Ψ] = {Ω ∈ ∧ p H, ∃Φ ∈ ∧ n-p H, a(Φ)|Ψ = |Ω }
p-external space of a wave function

Definition:

E p [Ψ] = I p [Ψ] ⊥ = {Ω ∈ ∧ p H, a(Ω)|Ψ = 0} dimH = m ⇒ dim ∧ p H = m p ⇒ dimI p [Ψ] + dimE p [Ψ] = m p •First •Prev •Next •Last •Go Back •Full Screen •Close •Quit

Examples

Example 1:

|Ψ = |ψ 1 ∧ψ 2 +ψ 3 ∧ψ 4 +ψ 1 ∧ψ 3 +ψ 2 ∧ψ 4 = a † 1 a † 2 |0 +a † 3 a † 4 |0 +a † 1 a † 3 |0 +a † 2 a † 4 |0 dimH = 4, dimE 1 [Ψ] = 2, dimI 1 [Ψ] = 2, I 1 [Ψ] = C(ψ 1 +ψ 4 )⊕C(ψ 2 +ψ 3 ) |Ψ = |(ψ 1 + ψ 4 ) ∧ (ψ 2 + ψ 3 ) = (a † 1 + a † 4 )(a † 2 + a † 3 )|0 Example 2: |Ψ = |ψ 1 ∧ ψ 2 ∧ ψ 3 ∧ ψ 4 + ψ 1 ∧ ψ 2 ∧ ψ 5 ∧ ψ 6 = a † 1 a † 2 a † 3 a † 4 |0 + a † 1 a † 2 a † 5 a † 6 |0 dimH = dimI 1 [Ψ] = 6 ⇒ dim ∧ 2 I 1 [Ψ] = 6 2 = 15 a(ψ 3 ∧ ψ 5 ), a(ψ 3 ∧ ψ 6 ), a(ψ 4 ∧ ψ 5 ), a(ψ 4 ∧ ψ 6 ), a(ψ 3 ∧ ψ 4 -ψ 5 ∧ ψ 6 )|Ψ = 0 dimE 2 [Ψ] = 5 dimI 2 [Ψ] = 10 •First •Prev •Next •Last •Go Back •Full Screen •Close •Quit

p-orthogonality

Definition: Let Ψ 1 be the wave functions of an n 1 electron group and Ψ 2 that of an n 2 electron group. Ψ 1 and Ψ 2 are said p-orthogonal if and only if:

I p [Ψ 1 ] ⊥ I p [Ψ 2 ]
Proposition (graded orthogonality): If two states represented by the wave functions Ψ 1 and Ψ 2 are porthogonal then they are a fortiori q-orthogonal for all q such that, inf (n 1 , n 2 ) ≥ q ≥ p.

This justifies the term "strong orthogonality" used for one-orthogonality
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Example 1: For integers, n ≥ p > 0, the pairs,

Ψ 1 := φ 1 ∧ • • • ∧ φ n-p ∧ φ n-p+1 • • • ∧ φ n and Ψ 2 := φ 1 ∧ • • • ∧ φ n-p ∧ φ n+1 . . . ∧ φ n+p , are (n -p + 1)-orthogonal but not (n -p)-orthogonal since for Φ 1 := φ n-p+1 ∧ . . . ∧ φ n and Φ 2 := φ n+1 ∧ . . . ∧ φ n+p , Φ 1 ← Ψ 1 |Φ 2 ← Ψ 2 = φ 1 ∧ . . . ∧ φ n-p |φ 1 ∧ . . . ∧ φ n-p = 1 is non zero, although (Φ i ← Ψ i ) ∈ I n-p [Ψ i ], for i ∈ {1, 2}, by definition. Example 2: Ψ 1 := φ 1 ∧ φ 2 ∧ φ 3 + φ 4 ∧ φ 5 ∧ φ 6 and Ψ 2 := φ 1 ∧ φ 7 + φ 2 ∧ φ 8 are
2-orthogonal (it is impossible to obtain Ψ 2 by annihilating a spinorbital in Ψ 1 ) but not 1-orthogonal since both φ 1 and φ 2 belongs to their one-internal space.
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Geminal-SCF and p-orthogonality

Ground state energies in Hartree at "experimental" geometry (STO-3G calculations) 882392 -14.403655 -14.667340 -15.594861 -24.809945 -28.804345 d[Ψ] = n: E 0 GSCF -7. 882372 -14.403655 -14.667114 -15.594715 -24.809938 -28.803212 with 2-orthogonality -7.882368 -14.403654 -14.667090 -15.594703 -24.809920 -28.803080 with 1-orthogonality -7.882203 -14.403630 -14.666584 -15.588630 -24.807908 -28. 

System LiH Be Li 2 BeH 2 BH Be 2 d[Ψ] = 1: E 0 F CI -7.
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Calculation of matrix elements between qorthogonal group functions

Φ 1 ∧ Φ 2 |Ψ 1 ∧ Ψ 2 = I 1 ,I 2 |I 1 |+|I 2 |=n 1 |I 1 |∈{n 1 -q+1,...,n 1 } (-1) |I 2 |•(n 1 -|I 1 |) Φ 1 |(Ψ 1 ) I 1 ∧ (Ψ 2 ) I 2 Φ 2 |(Ψ 1 )Ī1 ∧ (Ψ 2 )Ī2 Φ 1 q-orthogonal to Ψ 2 n1 i=n1-q+1 n1 i n-n1 n1-i terms instead of n n1 = n1 i=0 n1 i n-n1 n1-i .
Ex.: Geminals, n 1 = 2

• 1-orthogonality: 1 term

Φ 1 ∧ Φ 2 |Ψ 1 ∧ Ψ 2 = Φ 1 |Ψ 1 Φ 2 |Ψ 2 • 2-orthogonality: 2n -3 terms 2-electron overlap × (n -2)-electron overlap
• no orthogonality: n(n-1) 2 terms factorial scaling with electron number
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Hopes to reduce the complexity

• Case n 1 = 1 amounts to Laplace formula for a determinant of an n-dimensional matrix. a priori complexity n! but there exists algorithms scaling as n 3 or less.

• Exploit matrix representation for the (S z = 0)-geminals :

Γ i = a,b (C i ) a,b ψ a ∧ ψb * 1-Orthogonality: ∀i = j, C † i C j = 0 * permutationally invariant 2-Orthogonality: ∀i = j, tr[C † i C j ] = 0 and ∀i, j, k distinct, C i C † k C j = -C j C † k C i •First •Prev •Next •Last •Go Back •Full Screen •Close •Quit
Hopes to reduce the complexity * general matrix element closed formula:

Γ1 ∧ • • • ∧ Γ k |Γ 1 ∧ • • • ∧ Γ k = 0≤N k,0 ,...,N k,k ≤k k i=0 N k,i = k i=0 iN k,i =k (-1) N k,0 σ,σ ∈S k k i=1 N k,i j=1 tr C † σ( i-1 p=0 pN k,p +(j-1)i+1) C σ ( i-1 p=0 pN k,p +(j-1)i+1) • • • C † σ( i-1 p=0 pN k,p +ji) C σ ( i-1 p=0 pN k,p +ji) i N k,i N k,i ! , * Ex.: k = 3 3 partitions of k -N 3,1 = 3, N 3,2 = 0, N 3,3 = 0 3 * 1 + 0 * 2 + 0 * 3 = 3 = 1 + 1 + 1, N 3,0 = 0 σ,σ ∈S 3 tr C † σ(1) C σ (1) tr C † σ(2) C σ (2) tr C † σ(3) C σ (3) 3! -N 3,1 = 1, N 3,2 = 1, N 3,3 = 0 1 * 1 + 1 * 2 + 0 * 3 = 3 = 0 + 1 + 2, N 3,0 = 1 - σ,σ ∈S 3 tr C † σ(1) C σ (1) tr C † σ(2) C σ (2) C † σ(3) C σ (3) 2 -N 3,1 = 0, N 3,2 = 0, N 3,3 = 1 0 * 1 + 0 * 2 + 1 * 3 = 3 = 0 + 0 + 3, N 3,0 = 2 σ,σ ∈S 3 tr C † σ(1) C σ (1) C † σ(2) C σ (2) C † σ(3) C σ (3) 3 •First •Prev •Next •Last •Go Back •Full Screen •Close •Quit
Solving the permutationally invariant 2-Orthogonality relations

• permutationally invariant 2-Orthogonality relations ∀i = j, tr[C † i C j ] = 0 and ∀i, j, k distinct, C i C † k C j = -C j C † k C i • Plus easy trace calculations ⇓ C i =     λ i 1 τ i 0 0 0 0 λ i 2 τ i 0 0 0 0 . . . 0 0 0 0 λ i m τ i    
with λ i j scalars and τ i ∈ {Id 2 , σ x , iσ y , σ z } if τ i = τ j λ i | λ j = 0 if τ i = τ j = τ k ∀l λ i l λ j l λ k l = 0 kills traces of large "length"
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Work in progress

Trace evaluation amounts to 2 × 2 matrix product calculations following simple rules

Let U be a product of an arbitrary number of matrices in {σ x , iσ y , σ z }.

Let n σ x (U ), n iσ y (U ) and n σ z (U ) be the numbers of σ x , iσ y and σ z in U , respectively.

The trace of U is non zero (and equal ±2) if and only if n σ x (U ), n iσ y (U ) and n σ z (U ) are all even or all odd.

Les traces de E 11 U et E 22 U sont non nulles (et égales à ±1) si et seulement si n σ x (U ) et n iσ y (U ) sont de même parité.

Les traces de E 12 U et E 21 U sont non nulles (et égales à ±1) si et seulement si n σ x (U ) et n iσ y (U ) sont de parité opposée.

It remains to investigate the accuracy of the ansatz (wrt AP1roG for ex.) implementation is in progress

  Experimental spectrum R(7-18) (SOLEIL Synchrotron, V.Boudon et al. 2010) Calculated spectrum R(7-18) (CONVIV code, P.Cassam-Chenaï et al. 2012) 

  Accuracy of the GSCF method

	Lowest singlet energy levels of Beryllium in Hartree
		(6-31G*, 6d calculations)	
	state symmetry Full CI (frozen	GSCF	Full CI
		core, 105 CSFs) (239 Coef.) (4200 CSFs)
	1 S	-14.613435	-14.616073	-14.616634
	1 P	-14.388909	-14.390291	-14.393112
	1 D	-14.311959	-14.312844	-14.316351
	1 S	-14.222495	-14.223317	-14.226960
	1 P	-14.144298	-14.145614	-14.148581
	1 S	-14.106706	-14.108337	-14.109614
	1 P	-14.038519	-14.039284	-14.043223
	1 D	-13.931205	-13.932110	-13.935630
	1 P	-13.895624	-13.896746	-13.900150
	1 S	-13.800902	-13.802002	-13.805443
	Coef.: Coefficients, CSFs: Configuration state functions.
	P. Cassam-Chenaï, J. Chem. Phys. 124, 194109 (2006)
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