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Ice crystal drag model extension to snowflakes: experimental
and numerical investigations.
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To ensure safe flight under snowy conditions, aircraft manufacturers must demonstrate
that each engine and its air inlet system can operate throughout the flight power range of the
engine (including idling) in both falling and blowing snow conditions. This study is part of an
effort to develop models for snow accretion. The focus here is on the modeling of snowflake
transport by the carrier airflow and more specifically on the modeling of the drag coefficient
of snowflakes. Based on comparisons between numerical and experimental results, we show
that, provided that the complex shape of the snowflakes is accounted for, the models initially
developed for ice crystal icing can also be used to estimate the drag coefficient of a snowflake.
We also propose a methodology to estimate the geometric parameters of the drag models from

2D images of the particles which in general are the only available experimental data.
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mp = Particle mass

Vp = Particle velocity

Va = Air velocity

w = Relative velocity between air and particle
Smax = Maximum diameter of Feret

Srax = Maximum crosswise diameter of Feret
A+ = Particle shadow area

Vspheroia = Volume of the reconstructed spheroid
Agpheroia = Surface of the reconstructed spheroid
dy = Particle volume equivalent diameter
dm = Particle mass equivalent diameter

[ = Particle sphericity

loss = Particle crosswise sphericity

Fp = Drag force

g = Gravity

Pa = Air density

Aver = Particle reference surface associated to the drag coefficient in the drag force definition.
dref = Particle characteristic length scale

Cp = Drag coefficient

Re,, = Particle Reynolds number

Pp = Particle density

Pw = Water density

Ha = Air dynamic viscosity

A, = Arearatio

Xpx = Width of one pixel

PIP = Precipitation Imaging Probe

Introduction
To ensure safe flight under snowy conditions, aircraft manufacturers must demonstrate that each engine and its air
inlet system can operate throughout the flight power range of the engine (including idling) in both falling and blowing
snow conditions, without adverse effect on engine operation (power or thrust loss, surge, stall or flameout).

Snow particles are precipitation sized ice particles that form in clouds and precipitate to the ground. Falling snow



formation has its origin in a complex interplay of microphysical processes (vapor deposition, riming and aggregation,
fall of the hydrometeors at different speeds depending on their size and shape), which are governed by cloud dynamics
(vertical and horizontal transport) and thermodynamics (temperature and humidity vertical profiles). Snow particles
have interested scientists since a long time and the first systematic studies of snow crystals started with the pioneering
work of Nakaya [1]. Numerous studies about snow particles have been published in contemporary literature since
these early studies. In particular, in the framework of meteorological applications, the works of [2—7], dedicated to the
prediction of the terminal velocity of naturally falling snowflakes, can be mentioned. The terminology of Pruppacher
and Klett [8] is adopted here: ice particles grown by vapor deposition and/or riming are called snow crystals and
aggregates of snow crystals are referred to as snowflakes.

Due to the variability of atmospheric conditions prevailing in snow clouds, the shape, size, density, and related
properties such as drag and terminal fall speed of natural snow particles (snow crystal and snowflakes) are found to be
highly variable. Regarding the shape for instance, Fig. 1 presents samples of ice crystals (columns, columns with plates,
plates in the top row, planar dendrites in the third row, graupel or snow pellets in the fifth row) and snowflakes with

different degrees of riming in the three last rows.

Fig. 1 MASC picture of hydrometeor illustrating the variability in the shape and size of snow particles.
Reprinted with permission from [9]. Copyright 2012 authors (distributed under the Creative Commons Attri-
bution 3.0 License).

In a context where aircraft manufacturers must comply with certifications requirements to ensure safe aircraft
operation in snowy conditions, models and numerical simulation methodologies are an important asset to limit costly

icing wind tunnel and flight tests. The main objective of this paper is to propose models for the transport of snowflakes by



the airflow, which is a first step in the computation of snow accretion on an aeronautical surface. This paper focuses on
the trajectory of snowflakes, including the evaluation of the drag coefficient. Thermal aspects, in particular the melting
of particles during transport, will be addressed in a future paper. In the particular case of snow, the main difficulty
consists in developing models that take into account the geometrical complexity of the particle from experimental data
that are often partial and that do not allow the complete geometrical characterization of the snowflake. This is the case
when using a Precipitation Imaging Probe (PIP) from Droplet Measurement Technologies to characterize the geometry
of snowflakes during a flight test campaign. Figure 2 shows the installation of the PIP among two other probes, the
Cloud Imaging probe (CIP) and the High Speed Imager (HSI) on the left wing of an ATR 42. Only PIP and CIP probes

were used for the ICEGENESIS [10] flight test campaign, as the HSI probe was ultimately not installed. The operating

PIP

Fig. 2 CIP, HSI and PIP probes installed on the left wing of the ATR 42 managed by SAFIRE, the French
facility for airborne research.

principle of the PIP is illustrated in Fig. 3. It is an imager used to measure the snowflake shape from shadow images of
particles passing through a collimated laser beam that are projected onto a linear array of 64 photodetectors. Particle
images are reconstructed from individual 1D slices, each slice corresponding to the part of the particle illuminated by
the laser beam at a given time (Figs. 3c and 3d). The snowflake is then represented by a single projected 2D image (Figs.
3e and 3f), which limits the geometric description of the whole particle. The post-processed image obtained depends on

the position of the PIP sensors with respect to the orientation of the particle. This is illustrated in Fig. 3 where the
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same snowflake is shown from two different orientations (Fig. 3a for view #1 and Fig. 3b for view #2) resulting in two
different 2D images from the PIP. In addition, from the point of view of drag force calculation, the position of the PIP
sensor relative to the particle is not necessarily the most relevant since the measured projected area should normally
correspond to the cross section of the particle normal to the flow. Furthermore, the characterization of the snowflake
shape by a single image does not account for the anisotropy of the particle.

The variability in particle shape and bulk density was not addressed by the European projects HAIC [11] and
MUSIC-haic [12], where models for trajectory, impact and erosion [13-29] were derived for ice particles (referred to
as ice crystals in the rest of the manuscript) with high bulk densities (typically of the order of 917 kg.m™>) and fairly
regular geometric shapes (sphericities larger than 0.8). Regarding the specific risk of snow accretion or accumulation,
there are currently no validated engineering tools (test facilities and numerical tools) available for snowflakes. The
extension and validation of the models from ice crystal icing to snowy conditions is the main objective of this paper.
More specifically the focus is on the modeling of the drag coefficient of snowflakes. The influence of the accuracy of
the input data for the models will be studied. To this end, emphasis will be placed on the geometric procedure which is
used to reconstruct a simplified 3D shape of the particle from a single post-processed PIP image (typical data format
from a flight test campaign). This work is thus part of an effort to meet the requirements of the aeronautical community,
namely to propose models whose input data are compatible with those from wind tunnels and flight tests.

The rest of the paper is divided in four parts followed by some conclusions. In a first part, the experiments dedicated
to the measurement of the drag coefficient of a free falling snowflake are described. The procedure for post-processing
images generated by the experiments and allowing a 2D to 3D geometric reconstruction is also described. The second
part presents the extension of the drag models for ice crystals to the case of snowflakes and the third part is dedicated to

the comparison between model predictions and experimental results. A fourth part is dedicated to discussion.

I. Experiments: free fall of a snowflake

A. Experimental Apparatus

For the experiments, artificial snowflakes are used, generated using the SnowFALL device provided by the company
IAG. These snowflakes have an irregular shape, close to natural snowflakes like those depicted in Fig. 1. The
experimental setup used for the measurement of snowflake drag is schematically shown in Fig. 4. The entire setup and
measurement equipment is mobile and can be operated at ambient temperatures down to —20 °C. The setup consists
of a large PMMA tube with a diameter and height of 150 mm and 300 mm, respectively. Through a baffle (opening
of 10 mm) at its top, free falling snowflakes enter the PMMA tube, which has the purpose of shielding them from
possible external gusts influencing their trajectory. Immediately after a snowflake falls out of the PMMA tube, its

movement is captured using high-speed cameras in a front, side and bottom view using a recording speed of 3000 frames
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Fig.4 Schematic view of the experimental setup used to measure snowflake drag.

per second. The resolutions of the front, bottom and side views are 24.1 pym/pixel , 34.6 um/pixel and 51.7 um/pixel,
respectively. The side view has the largest field of view and is primarily used for measuring the free fall velocity. After
the measurement of their terminal velocity, the snowflakes are caught and melted on a transparent, superhydrophobic
coated PMMA plate, forming nearly spherical liquid drops. These drops are captured using the front view camera,
which allows measurement of the drop diameter and therefore, the computation of the snowflake mass. Measurement of
the snowflake projected area in three nearly orthogonal views, as well as measuring their mass, allows the calculation of
the snowflake drag coefficient corresponding to its characteristic terminal velocity. Figure 5 shows example images of a
snowflake in the front view, falling with a terminal velocity of 1.36 m/s and finally landing on the PMMA plate. The
snowflake’s maximum dimension is 3.5 mm. As shown in Fig. 5, a snowflake might be very fragile and shatter when it
impinge the PMMA plate, even if it falls with a rather moderate terminal velocity. In the case of fragmentation, all
fragments are collected and melted together, using a stream of hot air directed toward the bottom of the PMMA plate.
As aresult, an almost spherical drop is formed on top of the superhydrophobic PMMA plate, an example which can be
seen in Fig. 6. It can be observed that the droplet surface is flat at its contact with the PMMA plate. Given that the
drop can be depicted as a body of revolution, its geometry can be defined using only a single image in which the drop
symmetry axis is aligned with the camera focal plane. The symmetry axis of the drop is assumed to be aligned normal

to the PMMA surface, intersecting with the drop centroid and the distance of each pixel inside the drop to this axis in



Fig.5 Example images of a snowflake recorded with camera 1 (front view) having a resolution of 24.1 pm/pixel.

0.5 mm

Fig. 6 Image of the melted snowflake, having a mass of 0.263 mg and a diameter of 0.795 mm.

meters, r;, is determined. Then, the drop mass can be computed as:
N nx
X
mp ZPWZTP[(rj +xpx/2)2_(rj_xpx/2)2]a 1
=1

where p,, is the water density, x, is the width of one pixel in meters and N is the number of all pixels located inside of

the drop. The diameter of the drop is approximately 0.8 mm and its mass is computed as 0.263 mg. Using the snowflake



images of the front, side and bottom view, characteristic size and shape parameters can be derived. Unlike a PIP where
only a single image is available, the three views obtained from the three high-speed cameras will allow to evaluate the
sensitivity of the computed terminal falling velocity with respect to the position of the camera used for the 2D to 3D

geometric reconstruction of the particle (see Sec. I.B).

B. Image post-processing

In this part we briefly present the post-processing procedure of the images acquired during the experiments described
in the previous section. The technique described here is the one that would be also used to process PIP images.
Umbroscopic measurements provide grayscale or black and white images of the snowflake shadow area in the direction

of the camera (Fig. 7a). A preliminary step of digitizing the grayscale image is performed. For each pixel of the image,

—— Contour (Perimeter P = 31.21 mm)
Max and max orthogonal Feret
(fmae = 5.64 mm, f = 2.82mm)

B Particle shadow area (A1 = 9.47 mm?)

(a) Grayscale image of a snowflake. (b) Post processed image.

Fig. 7 Data post-processing illustration.

if the gray level is higher than that of the background of the image, the value of the pixel is imposed to 1. Otherwise, the
value of the pixel is imposed to 0. An automatic image post-processing tool has been developed to provide the maximum
Smax and maximum crosswise f;,, diameters of Feret (in gray in Fig. 7b) from the digitized image. Reconstructed
snowflake shadow area A+ is also derived (in black in Fig. 7b). f. . is defined as the largest diameter among all
diameters orthogonal to f,,,.. Using Feret’s diameters, it can be deduced an ellipse of major semi axis a = f;;4x/2

and minor semi axis ¢ = f

/2 (in gray in Fig. 8). From the axes of the ellipse it can be constructed either an oblate

spheroid (generated by rotation of the ellipse around its z minor axis, Fig. 8a) or a prolate spheroid (generated by

rotation of the ellipse around its y major axis, Fig. 8b) of volume V;pperoia = 7/ 6A2C. For an oblate spheroid A = 2a



(a) Oblate spheroid reconstruction. (b) Prolate spheroid reconstruction.

Fig. 8 Oblate and prolate spheroid reconstructions.

and C = 2c, while for a prolate spheroid A = 2¢ and C = 2a. Using these parameters, the following characteristics can

be deduced:

6V pheroid 173 ﬂdz Edz
dv=(—” ) L o= TS @

ot =
T spheroid At
where dy is the volume equivalent diameter, A+ the snowflake shadow area (Fig. 7b) and A pheroid is the surface
2
of the spheroid. Aspheroid = 2ra® + 7(% In (t—‘é) for an oblate spheroid and Agpheroia = 2ra? (1 + ac—e arcsin e) for a

prolate spheroid. @ and @+ are respectively the particle sphericity and crosswise sphericity. The eccentricity of the

ellipse is defined as e = /1 — <.

I1. Models for snowflake trajectory

For the computation of snow particle trajectory, only the drag force is considered in the momentum equation, and
the influences of the added mass force, the Basset force, and the lift force are neglected. Regarding the added mass
and Basset forces, this is justified because the density of the air is much lower than the bulk density of a snowflake.
Concerning the lift force, this comes from the fact that a snowflake rotates on itself during its motion so that the average
value (but not the instantaneous value) of the lift force can be considered as zero. Hence, the particle motion equation
simply reads:

dv

1
mpd—t” =Fp+mpg, Fp=—3pulwlwAresCp(Rep) 3)

where m, is the snow particle mass, Fp the drag force, g the gravity, p,, the air density and w = v, — v, the relative

velocity between the air (v,) and the particle (v,). In the following, ||w|| will simply be denoted w. The drag coefficient

10



Cp is defined with respect to the reference surface A, ¢ . Itis a function of the particle Reynolds number Re ), = ’%i”f

where p, is the air dynamic viscosity, d,. s a characteristic length scale and p,, the air density. Note that in the present
study the mass of the particle m, is known experimentally. For free fall conditions, the airflow being at rest, the

stationary final particle velocity v, is the solution of Eq. (3) for which the left-hand term has been cancelled:

2mpg
Vo = 4| —— @)
P \/paAref CD(Rep)

At steady state, the particle Reynolds number Re, being itself a function of v,_, Eq. (4) is an implicit equation of the
unknown v, which is solved numerically by a Newton algorithm. Note that, according to Eq. (4), if the mass of the
particle is known (which is the case here), the velocity v, is a function of the only product A, - Cp. The models
described in the rest of the manuscript will assign different weights to the two contributions A,. s and Cp.

From a single post processed image of the snowflake (obtained for instance from the PIP), two sets of definitions
will be compared to define d,.y (as a parameter of Re,), A,.r and Cp. The first one, based only on a surface
description of the particle, is the underlying assumption of models denoted as surface-based geometric models in the
rest of the manuscript. This is the assumption made by the historical Heymsfield and Westbrook model for snowflakes
[2] for which a short description is proposed in Sec. II.A. This model will be the baseline for evaluating the drag
coefficient of complex-shaped snow particles. The second one is based on a volume description of the particle, leading
to volume-based geometric models according to the denomination used in the rest of the paper. This is achieved by
introducing the diameters dy and d,,, defining respectively the volume and mass equivalent diameters corresponding
to the diameter of the equivalent spherical particle having the same volume (resp. mass) as the snowflake. This is
the approach adopted by the Haider er al. [30], Ganser [31] and Holzer et al. [32] correlations for non-spherical
particles and which has already been validated for ice crystal icing [20, 29]. The extension of these last three models to

snowflakes is proposed in Sec. II.B.

A. Surface-based geometric model for Cp: the Heymsfield and Westbrook (H&W) approach
The Heymsfield and Westbrook model [2] is an improvement of the models based on the Abraham’s drag coefficient

of a sphere [33].

1. The Abraham model for spherical particles
In Abraham [33], the problem is considered as an assembly of a smooth sphere of radius a plus a thin boundary layer
of thickness ¢ in a moving fluid of density p, at a velocity v. The assembly is then assumed to evolve in an asymptotic

low viscosity aerodynamic flow in a regime where the drag coefficient is independant of Re,,. These assumptions lead
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to the following expression for the drag force of a sphere of radius a + ¢:

2
Fp = %ﬂ(a +6)2Cp, (5)

where Cp, is a constant parameter to be adjusted. Equation (5) may be re-written as:

v2 5\
FD = paTTl'achO (1 + ) (6)

a

which is the drag force for a particle of radius a with Cp, (1 + g)z as drag coefficient. The boundary layer thickness is

given by g = —%_ where & is a dimensionless coefficient. This leads to the following drag coefficient definition for

VRep

the particle:

2
5
Cp =Cp, |1+ —Ol )

VRep

where Cp,, and dy are chosen to ensure Cp, 6(2) = 24 (Stokes regime) and 6y = 9.06.

2. Extension to non-spherical particles
Many authors have used Eq. (7) for non-spherical particles with Cp, = 0.35 and 69 = 8. In the definition of Re,

the diameter d,.. ¢ is then chosen as:

dref = fmax ®)

where f,,4x is the maximum Feret diameter (Fig. 7b). The reference surface A, is given by:
Aref =At 9

Mitchell, Heymsfield, Khvorostyanov and Curry (MHKC) [3-7] used this method to calculate the drag coefficient
and compared the resulting fall velocities for a wide range of particles. Planar and columnar-type, graupel and aggregates
with a size range from 250 um to 8 mm were studied. More recently, Heymsfield and Westbrook found that fall velocities
were overestimated for particles with a low area ratio. In some cases the relative error exceeded 100 % and this effect
appears to be stronger at low Reynolds number. Needles, dendrites, stellars and aggregates are key particle types that
are affected by this bias. To mitigate this high sensitivity to the area ratio, they considered the following modified drag
coefficient [2]:

Ci = CpA* (10)

where A, is the area ratio defined by:
AL
Ay = ———— (1T)
7 frnax /4
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Provided that m, is known (which is the case here), all necessary geometric information for the computation of the drag

coeflicient Cp, is extracted from the 2D image (fiqx and AL).

B. Volume-based geometric models for Cp: the Haider er al., Ganser and Holzer ez al. approaches

Among all the general mathematical expressions that can be found in the literature for the drag coefficient of
non-spherical particles, we can mention the models of Haider & Levenspiel (H&L) [30], Ganser (Ga) [31] and Holzer &
Sommerfeld (H&S) [32]. for which the drag coefficients, respectively denoted as C g &L Cg“ and C g &S can be written
as a function of Re,,, ® and @+ as follows (see [30-32] for a complete description and the appendix for a summary of

the models):

CH&L — CH&L (Re,, @) (12a)
C5% =C5% (Re), @, d*) (12b)
CH&S = CH4S (Re,, @, @) (12¢)

For the three models H&L, Ga and H&S, several definitions are possible for d,.. . These will be given below. From

drey , the reference surface is defined as:

Arer = ndfef /4 (13)
while the particle Reynolds number is given by:
aWdre
Re, = 2"rel. (14)
Ha

The main point is the definition of the particle reference diameter d,.. y . Two approaches will be compared to define it,

namely an ice-core density-based approach and an ice-bulk density-based approach .

1. Ice-core density-based approach

This is the approach proposed in the framework of ice crystal icing [20, 29] where ice crystals are assumed to be

compact with a density close to the ice core density p7°*:

pp =P (15)
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where p7°"¢ = 917 kg.m™3. The reference diameter d, . r is then defined as the mass equivalent diameter d,,, corresponding

to the diameter of the equivalent spherical particle of density p{**® having the same mass 1, as the snowflake:

1/3
6m,, ) (16)

dref = dm — (—ﬂp;}ore

The volume of the equivalent spherical particle is given by m,,/p$°". The values of ® and ®* are respectively defined

in this case as:

&= ™n (17a)
= Ap a
(m/4)d2
1 _ m
- ALflow (17b)

where A, is the surface of the snowflake and ALSlow jts projected surface normal to the airflow. Note that A p and
A+S1oW are not known a priori.

In the spirit of the models derived for ice crystal icing [20, 29], the ice-core density-based approach is constructed
from the single hypothesis p, = p;°". This approach is therefore suitable when the other geometric parameters d,,, (or
equivalently m,, Eq. (16)), ® and ®* describing the snowflake are provided experimentally by respectively particle

mass, sphericity and orthogonal sphericity distributions representing the variety of snowflakes encountered in the clouds.

2. Ice-bulk density-based approach
The reference diameter d,. ¢ is defined as the volume equivalent diameter dy corresponding to the diameter of the

equivalent spherical particle having the same volume V/, as the snowflake:

1/3
6V,,) (18)

drey =dy = (T

V), is defined here as V), = Vipheroia, Where Vipperoia is the volume of the reconstructed oblate or prolate spheroid

from planar images of the particle (Eq. (2), Sec. I.B). The density of the particle, then defined by:

m
pp=pi =g (19)
spheroid

can be considered as an ice bulk density such that p?“lk < p§°'. The values of ® and ®* are computed from Eq. (2).
The ice-bulk density-based approach is therefore suitable when images are provided by the experiments allowing a

spheroid geometrical reconstruction of the snowflake from a single planar view (Sec. 1.B).
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III. Model validation using experimental data
The volume-based geometric models (H&L, Ga and H&S, Sec. 11.B) are compared with the surface-based reference
geometric model (H&W Sec. II.A) for the computation of the drag coefficient for snowflakes. Moreover, regarding the
volume-based geometric models, the description of the snowflake by a dense particle (ice-core density-based approach,
Sec. II.B.1) is compared to that by a less dense particle (ice-bulk density-based approach, Sec. I11.B.2). The influence
of the 2D to 3D reconstruction (oblate or prolate spheroid) is also studied in the case of the ice-bulk density-based

description of the particle. This is summarized in Tab. 1 where the abbreviations used in the following are specified.

Table 1 Abbreviations used for model comparison.

Particle equivalent density

Type of geometric representation Abbreviation Ref.
(only for volume-based models)
Surface-based geometric model H&W Sec. ILA
H&LCOI‘B
ice-core density-based (o, = p7°") Gacore Sec. IL.B, Egs. (16) and (15)
H&SCOI’C
Volume-based geometric models
H &Lbulk
ice-bulk density-based (p,, = p?"I¥) Gabulk Sec. IL.B, Egs. (18) and (19)
H &Sbulk

Terminal free fall velocities for 16 snowflakes are measured with the experimental method described in Sec. L.A.
Conditions are described in row "Experiments" of Tab.2. For each of the studied drag models, the reconstructed
geometrical parameters are also given for each of the three views (front, side and bottom). The averaged values of the
parameters over the three views are noted av. The standard deviation is written std. Note that for each snowflake, the

mass is measured experimentally (Sec. I.A). In this study, m, is therefore a known input for the models.

A. Ice-bulk density-based description for volume-based geometric models

Figure 9 shows the comparison between the experimental (17;);” , X axis) and numerical (v}, Y axis) results for the
snowflake terminal velocity. The H&LP¥, Ga®'* and H&SP"* models are compared with the H&W model (reference).
The sensitivity to the 2D to 3D reconstruction is studied (oblate vs. prolate spheroid). Main diagonal (black solid line)
means a perfect agreement. + 30% relative error regions are shown (dashed lines). For the numerical solutions, each
symbol in Fig. 9 is obtained by the arithmetic average (noted v;"™) of the three velocities computed from each of the
three geometric reconstructions, which are themselves obtained from each of the three views (front, side, bottom). The
three volume-based geometric models H&LP"¥, GaP"'¥ and H&SP"!* are able to reproduce the terminal free fall velocity
with an average relative accuracy of 30%, which is similar to that of the reference model H&W, except for the models
H&LPX and Ga®™* which tend to overestimate the snowflake fall velocity for some test cases, either for the prolate or

oblate spheroid reconstruction. Generally speaking, the prolate or oblate spheroid reconstruction has a minor influence
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Table 2 Snowflake free fall study. 16 test cases. Experimental conditions and reconstructed geometric
parameters

N 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

Experiments Fall speed v, (m/s) 0.67 1.83 1.47 149 144 107 1.8 092 138 169 128 149 1.64 141 1.51 121
Mass m,, (mg) 0.063 148 0576 0.132 0.546 0.17 0298 0.047 0243 0459 0.157 0.134 0.349 0578 0266 0.15

(H&L, Ga, H&S)™™ dp, (mm) 0.51 146  1.06  0.65 1.04 071 085 046 0.8 098  0.69 0.65 0.9 1.06 082 0.68
T Pp (kg/m?) 9170 917.0 917.0 917.0 917.0 917.0 917.0 917.0 917.0 917.0 917.0 917.0 917.0 917.0 917.0 917.0

front 112 298 241 .11 316 163 177 102 219 199 133 1.73 1.58 1.57 339 238

side 124 274 244 136 376 194 1.7 0.9 22 257 164 113 1.69 3.02 358 212

dy (mm) bottom  1.39 358 295 132 319 207 1.54 131 2.6 2.39 1.8 136 1.66 257 421 2.38
av. 1.25 3.1 2.6 126  3.37 1.88 1.67 1.08 233 232 159 141 1.64 239 373 2.3

std. 011 035 025 o011 027 018 009 017 019 024 019 025 005 061 035 0.2

front 86.0 107.0 79.0 183.0 33.0 740 103.0 850 440 111.0 1260 500 169.0 2880 13.0 210

side 640 138.0 760 101.0 200 440 1150 1250 440 520 680 1770 1390 40.0 11.0  30.0

pp (kg/m?) bottom 450 620 430 110.0 320 370 1550 40.0 270 640 520 101.0 1450 65.0 7.0 21.0

av. 650 1020 660 131.0 280 520 1240 830 380 760 820 1090 151.0 131.0 10.0 24.0

(H&L, Ga, H&S)™ % std. 170 310 160  37.0 6.0 16.0 220 350 8.0 260 320 520 13.0 111.0 3.0 4.0
(oblate reconstruction) front 097 091 096 099 096 098 1.0 098 097 099 087 096 099 098 093 099
side 086 092 09 097 099 09 095 081 09 094 091 092 098 098 089 0.9

@ (-) bottom 098  0.98 1.0 099 098 097 095 092 1.0 096 098 084 098 098 1.0 0.99

av. 093 093 097 098 098 097 097 0.9 098 096 092 091 098 098 094 0.96
std. 005 003 002 001 001 001 002 007 002 002 004 005 0.0 0.0 0.04  0.04

front 1.41 1.75 1.85 1.41 1.46 1.24 1.72 1.4 1.27 131 1.4 15 1.31 1.27 1.54 139
side 1.6 1.4 1.57 1.34 1.53 1.5 1.39  0.96 1.33 1.46 1.48 1.14 1.38 1.41 1.64 1.37
@ (-) bottom  1.53 137 203 1.29 1.27 1.51 1.59 1.38 1.49 1.39 1.33 1.46 1.36 1.5 1.55 1.53

av. 1.51 1.51 182 1.35 142 142 156 125 137 1.39 1.4 1.37 1.35 1.39 1.58 143
std. 008 017 019 005 011 012 013 0.2 009 006 006 016 0.03 0.1 0.04  0.07

front 097 235 206 103 272 148 1.73 0.9 1.9 1.83 1.0 1.48 144 142 278 221

side 091 218 2.1 1.19 347 1.67 144 0.63 19 2.11 1.3 0.91 152 274 276  1.66

dy (mm) bottom 124  3.18 286 121 2.86  1.81 1.31 1.06 252 204 159 099 1.5 229 405 218
av. 1.04 257 234 114 302 165 1.49 086 211 1.99 1.3 1.13 149 215 319 202

std. 0.14 044 037 008 033 014 018 018 029 012 024 025 003 055 0.6 0.25
front ~ 130.0 217.0 126.0 230.0 52.0 1000 110.0 122.0 67.0 143.0 296.0 79.0 222.0 389.0 240 27.0
side 157.0 2720 1190 1490 250 700 189.0 3650 680 930 1350 337.0 190.0 540 240 620

pp (kg/m?) bottom 64.0 88.0 470 1430 450 550 2550 760 290 1040 750 2660 1980 920 80  28.0

av. 1170 1920 970 1740 400 750 1850 1880 550 113.0 1680 2270 2030 1780 19.0 39.0

(H&L, Ga, H&S)Puk std. 390 770 360 400 11.0 190 590 1270 18.0 220 930 109.0 140 1500 8.0 17.0
(prolate reconstruction) front 097 093 097 099 097 098 1.0 098 097 099 09 097 099 098 095 099
side 089 093 097 097 099 097 096 085 097 095 093 094 098 099 091 092

D () bottom 098 098 1.0 099 098 097 096 094 1.0 096 098 087 098 098 1.0 099

av. 095 095 098 098 098 098 097 092 098 097 094 093 098 098 095 097
std. 0.04 0.02 0.01 0.01 0.01 0.01 002 0.05 001 002 003 004 0.0 0.0 0.04  0.03

front 1.07 1.09 1.36 121 1.08 1.02 1.64 1.1 0.96 L1 079 1.1 1.09 1.04 1.04 1.19

side 088 089 1.17 1.03 1.31 1.1 1.0 047 099 099 093 074 112 116 097 084

@t () bottom  1.21 1.08 1.9 1.09 1.02 116 114 089 1.41 1.01 1.04 076 1.11 1.19 1.44  1.28
av. 1.05 1.02 1.47 1.11 1.14  1.09 1.26  0.82 1.12 1.04 092 0.87 1.1 1.13 1.15 1.1

std. 0.14  0.09 0.31 007 012 006 027 026 021 0.05 0.1 0.17  0.01 0.07  0.21 0.19

front 1.29 378 281 1.2 3.67 1.81 1.81 .15 253 217 1.77 201 1.73 1.73 414 257

side 1.67 343 283 1.55 406 226 201 128 255 311 2.07 1.4 1.87 332 465 271

finax (mm) bottom 1.56  4.02  3.05 144 356 236 1.82 1.62 2,67 281 203 1.88 1.85 289 438 2.6
av. 1.5 3.75 29 14 376 214 188 135 258 2.7 196  1.77 1.82 2,65 439 263

std. 016 024 0.1 015 021 024 0.09 0.2 0.06 0.4 013 026 006 0.67 021 0.06
front 0.54 036 0.4 061 051 066 056 056 059 0.64 0.4 049 064 065 044 0.2
side 034 045 047 057 056 049 052 051 056 047 042 057 059 059 036 045
Ar () bottom 0.52 058 046 065 063 051 045 047 063 052 059 036 0.6 053 059 055
av. 047 046 044 061 057 055 051 051 059 054 047 047 061 059 046 054
std. 009 0.09 003 003 005 008 004 003 003 007 008 009 002 005 0.1 0.07

H&W
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on the computation of the terminal velocity. The only point for which all models have a relative error greater than 30%
is case 15 which is characterized by the lowest reconstructed bulk densities of the entire database.
For each of the models H&S"¥, Ga®"!k, H&LP'¥ and H&W, and in addition to Fig. 9, Figs. 10 and 11 show error

bars accounting for the snowflakes being described by three views (front, side and bottom, see Sec. I.A). The legend

Shum

is similar to that of Fig. 9. The symbols showing v)*"™ are reminded. The lengths of the error bars correspond

Shum

to \7;':0"1 + o where o is the standard deviation calculated from e

and the different velocities computed from the
particles reconstructed from each of the three views. The error bar lengths indicate the dispersion of the computed
free fall velocity with respect to the image chosen for the geometric reconstruction of the snowflake. Although the
snowflakes were observed to have a privileged direction of fall in the experiments, the choice of the view direction for
the oblate or prolate reconstruction has a limited effect on the model error, since the error bars are as a whole in the +
30% relative error regions. This seems to be confirmed by the overall good behavior of the H&L model which does
not depend on @~ and is therefore less sensitive to the view chosen to reconstruct the spheroid. For the 16 test cases,

Shum

31% of the best estimates for v P are obtained with the front view, 28% with the bottom view, and 41% with the side
view. This indicates that the models can be applied to estimate drag coefficients of snowflakes recorded from a random
direction in airborne measurements.

Table 2 shows that the reconstructed densities p; vary from 5.0 kg.m™3 to 389 kg.m™3, far from the value of
917 kg.m™3 used for ice particles in the framework of ice crystal icing. This is consistent with the observed complex
shape of snowflakes as aggregates, which are poorly dense and contain air pockets.

Note that for the 16 test cases in Tab. 2, the range of values for the particle Reynolds number Re, varies from 44 to

362 for all the particles with the ice-bulk density-based description. This indicates that the drag force is driven by the

intermediate law corresponding to a transition region between the Stokes’ and Newton’s regimes.

B. Ice-core density-based description for volume-based geometric models

Figure 12 shows the comparison between the experimental vf)fcp and numerical v results for the snowflake
terminal velocity. The H&L™, Ga®"® and H&S"™ models are compared with the H&W model (reference). Main
diagonal (black solid line) means a perfect agreement. + 30% relative error regions are shown (dashed lines). Since there
is no 2D to 3D reconstruction for the ice-core density-based description, the values of ® and @+ for the models H&L ™,
Ga®™ and H&S®°™ cannot be deduced from the spheroid reconstruction as in the case of ice-bulk density-based models.
The lack of particle geometric reconstruction from images also accounts for the missing error bars in Fig. 12. To
determine ® and ®*, an error minimization procedure is performed on all 16 flakes and for each model between the
experimental and numerically computed terminal free fall velocities. Indeed, contrary to ice crystals where @ = 1 and
@' =1 lead to acceptable predictions of the particle trajectories and in particular of the collection efficiency [19, 22],

such an assumption is no longer acceptable for the case of aggregates where the geometry is more complex and the
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inertia is lower. The mapping of the L,-norm error as a function of @ and ®* is shown in Fig. 13 for each model.
The vertical lines in Fig. 13a simply mean that the H&L model does not depend on ®*. The values of @ and ®* that
minimize the L,-error are those used in Fig. 12. The optimal values obtained for ® and ®* are below 0.4, at levels
much smaller than those used in the framework of ice crystal icing where ® and ®* were chosen between 0.8 and 1
[19, 22]. Thus, provided that the geometric complexity of the snowflake is taken into account by adapting ® and @+,
the description of the snowflake by a dense particle allows the simulation of terminal free fall velocity with an accuracy
comparable to the previous method where the snowflake is modeled by a less dense spheroid particle.

For the 16 test cases in Tab. 2, the range of values for the particle Reynolds number Re, varies from 22 to 170 for
all the particles with the ice-core density-based description. As expected, the values for Re,, are lower than for the
ice-bulk density-based approach. However, the observed regimes for the drag force are similar, namely the intermediate

law between the Stokes’ and Newton’s regimes.

IV. Discussion

Surface-based and volume-based geometric models provide comparable accuracy for computing the terminal free
fall velocity of snowflakes. This validates the extension to snowy conditions of the volume-based geometric models
initially developed for ice crystal icing. Among the volume-based models, the ice-bulk and ice-core density-based
descriptions are fairly similar in the sense that they assign a different relative weight to Cp and A, s, keeping in mind
that only the product Cp - A, s is relevant for the computation of the drag force (Eq. (3)). For the ice-bulk density-based
approach, the snowflake is represented by a particle of regular shape and low bulk density, taking into account air
gaps inside the particle. This leads to a higher value for A,.s and in return a lower value for Cp. On the contrary, for
the ice-core density-based approach, the characteristic size of the particle d,. ¢ is arbitrarily defined as the equivalent
mass diameter thus leading to a smaller value for A,.y and a in turn to a higher value for Cp (resulting from smaller
values of @ and @, ). However, even if both approaches ultimately lead to results of comparable accuracy, the ice-bulk
density-based approach is more physically satisfactory since it takes into account (in a simplified way) the geometry of
the particle and thus does not require the use of adjustable parameters (® and @) whose optimal values obtained in the
case of this study are not intended to be general.

The preferred use between the ice-bulk or the ice-core density-based geometric reconstruction for the snowflake
depends on the type of input data available to describe the particle. If an image of the snowflake is provided, then the
ice-bulk density-based approach is to be preferred since all the geometric characteristics of the particle can be deduced
from the 3D spheroid reconstruction. If such an image is not available, then the ice-core density-based approach can
provide an interesting alternative. All that is needed is then the mass distribution of the particles in the cloud and as
well the corresponding distributions for the particle sphericities (and orthogonal sphericities for the Ga and H&S drag

models). The need to provide sphericity is clearly the weak point of this second approach. A parametric study in the
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spirit of the present study would be necessary to provide sphericity values for different types of particles that may be
encountered in a cloud.

Regarding the accuracy of the geometric reconstruction of the snowflake, Leinonen ef al. [34] proposed a 3D
reconstruction from a triplet of images and an artificial intelligence algorithm based on Generative Adversarial Network
(GAN) to reconstruct the mass and geometric descriptors of the particle. Future work should propose new drag models

with more input data adapted to the improved accuracy of the geometric reconstruction.

Conclusions

In this paper, a comparison is presented between different empirical approaches to estimate the drag force of a
snowflake when incomplete information on its shape is available. In this case, it is necessary to use simple geometrical
descriptors in order to compute the reference surface A,y of the particle and its drag coefficient Cp, knowing that only
the product is relevant for the drag force. The conclusion of the present study, based on the analysis of an experimental
database containing 16 snowflakes of various shapes and sizes, is that the different approaches are globally equivalent
in terms of relative error on the terminal free fall velocity of the snowflakes. However, the ice-bulk density-based
approach seems more satisfactory because there is a simple procedure to determine the geometric parameters (dy , ®
and ®+) from a single 2D image of the particle. Determining ® and @+ is more problematic in the case of the ice-core
density-based approach since these parameters are difficult to be estimated a priori for very irregular particles and
should rather be considered as adjustable parameters for the computation of the drag coefficient. It remains questionable
whether the values of the order of 0.2 to 0.4 found in the present work can be applied to a large class of snowflakes. It is
however confirmed [29] that they are far too low for more regular particles such as ice crystals.

The level of confidence in the snowflake mass estimate has not been discussed in this work since it is known
experimentally. In reality, the estimation of the particle mass is often provided by correlative mass-diameter relations
[8] which are sources of additional inaccuracies. Thus, to improve the prediction of snowflake trajectories, joint efforts
will have to be made in the geometrical description of the particles, the estimation of their mass, and the accuracy of the
drag coefficient model.

In the context of future developments of heat exchange models for snow particles, the validity of the volume-based
geometric models to describe the dynamics of snowflakes is an argument in favor of extending the thermal models
initially proposed for ice crystals to snow particles. The latter are actually derived from a Reynolds-type analogy between

heat transfer and momentum where drag forces are computed with the H&S model for the drag coefficient Cp [29].

Appendix

H&S
CD

A summary of the drag models C g &L Cg“ and is provided here.
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* For the Haider & Levenspiel (H&L) model [30], the drag coefficient is given by:

chen _ 2

where the coefficients a, b, ¢ and d are given by:

a=exp (2.3288 —6.45810 + 2.4486c1>2)

b =0.0964 + 0.5565®

¢ = exp (4.905 — 13.8944 + 18.42220% — 10.2599(1)3)

d = exp (1.4681 +12.2584 — 20.73220% + 15.8855@3)

* For the Ganser (Ga) model [31], the drag coefficient is given by:

where Cga’* is defined as:

Ga,*
CD

*
Re},

Ga
CD = Lshape

24 0.6567
- (1+0.1118(Re;) )+

Ga,*
. CD

0.4305

Rej; is written as a function of the particle Reynolds number Re, as follows:

Re

* _
p=

fshape

In Egs. (22) and (24), Cspape and fipape are defined as:

Cshape

2 __
fshape = =0 172
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CshapeRep
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* For the Holzer & Sommerfeld (H&S) model [32], the drag coeflicient is given by:

H&S _
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