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Advances in Sliding Mode Control of Earthquakes via Boundary

Tracking of Wave and Diffusion PDEs

Diego Gutiérrez-Oribio1, Yury Orlov2, Ioannis Stefanou1 and Franck Plestan3

Abstract— Two recent results on earthquake control are
summarized. A simplified model of an earthquake phenomenon
is addressed by means of a cascade system of a 1D wave
equation, representing the fault slip and wave propagation, and
a 1D diffusion equation, representing the actuator dynamics as
a diffusion process. In order to avoid a fast slip (earthquake-
like behaviour), the control is designed to follow a slow
reference. The control strategies are presented separately for
both Partial Differential Equations (PDEs). For the wave PDE, a
homogeneous boundary tracking control is developed to achieve
exponential Input to State Stability (eISS) of the error closed-
loop dynamics. For the diffusion PDE, Proportional Integral
(PI) and a discontinuous integral term are coupled to expo-
nentially stabilize the error origin despite model uncertainties
and perturbations. Simulations are additionally conducted to
support the robustness and stability properties of the proposed
control algorithms, by separately, obtaining critical remarks
that will lead to the design of the single control for the cascade
system in a future stage.

I. INTRODUCTION

Earthquakes are dynamic instabilities that occur in the

earth’s crust [1]. Most of earthquakes are of natural causes.

However, earthquakes also occur due to anthropogenic

causes. It is nowadays established that injecting fluids in the

earth’s crust can reactivate seismic faults, leading to impor-

tant earthquake events (see [2], [3] and [4], to name a few

examples). Such earthquake instabilities are characterized by

important nonlinearities due to friction. Such frictional term

can present many uncertainties and unmodelled dynamics to

be compensated by an appropriate control action. There are

few works dealing with the control of earthquake phenomena

(see [5], [6]) using a mathematical model of reduced order

that can establish the average behaviour of a single earth-

quake fault. Nevertheless, the wave PDE model describes

more precisely a fault slip in one dimension due to the

inclusion of the wave propagation phenomenon, whereas

the diffusion PDE model describes the evolution of the

input pressure applied at the fault through diffusion process

(actuator dynamics).

The wave equation is a second-order hyperbolic PDE

used to model the propagation of waves in elastic medium.

This may concern, for instance, acoustic, electromagnetic

and mechanical waves. The boundary control design of such
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systems has been addressed with the backstepping approach

[7], [8], [9] and H∞ control [10], for example. Reference

tracking has been not often adressed. It has been solved

in [11], [12] only, using flatness-based control and adaptive

control, respectively, and that calls for further investigation.

The diffusion equation is a first-order parabolic PDE used

to describe heat and other diffusion processes such as chem-

ical reactions, population growth, market price fluctuations,

and fluids flow to name a few. The motion planning has

been addressed for the diffusion equation using a flat output

capable of parameterising the system state evolution [8],

[13], [14], [15]. Such approach provides an open-loop control

able to track the desired reference but only for the nominal

system with no uncertainties and disturbances and starting

at some specific initial condition. In order to robustify such

a tracking control, one may invoke a feedback control.

Boundary tracking control of the diffusion equation has been

based on output feedback [16], [17] and backstepping [8],

[15], to name a few.

It is well-known that real systems present uncertain-

ties/disturbances in their dynamics, resulting in the necessity

of robust control which is able of attenuating such phe-

nomena. Sliding-mode control has been recognized since a

long time as a powerful control method to counteract non-

vanishing external disturbances and unmodelled dynamics,

even for infinite dimension systems (see, e.g., [18] and a

very recent monograph [19]). In [20] a dynamic sliding-

mode control was designed to achieve the uncertain wave

equation stabilization; in [21] sliding-mode techniques were

used to perform the tracking of the wave equation, but both

with distributed control input. With respect to the sliding-

modes control in the diffusion equation, the design of robust

controllers was made in [22] and the tracking task was solved

in [21] compensating Lipschitz-in-time disturbances by using

distributed control.

This paper reviews recent advances in the earthquake

control task based on two recent results [23] and [24]. A

simplified earthquake model is considered as a coupling

between a 1D wave equation and a 1D diffusion equation.

The control design is addressed separately, designing a track-

ing boundary control for each PDE. For the wave equation

case, a homogeneous algorithm achieves exponential eISS

of the error closed-loop system. A PI feedback plus a

discontinuous component for the diffusion equation obtains

global exponential stability of the error closed-loop system

despite the presence of uncertainties and/or disturbances.

Both tracking control strategies are tested in simulations,

supporting the reliability and robustness of the controllers.



This will lead to the design of the single control for the

cascade system in future works.

The outline of this work is as follows. The simplified

earthquake model and the control objective are introduced

in Section II. The design of the boundary tracking control

for the wave equation and its simulations are given in Section

III, whereas the tracking boundary control for the diffusion

equation is accompanied with simulations in Section IV. The

proposed tracking strategies are discussed in Section V, and

concluding remarks are collected in Section VI.

Notation: Define the function ⌈·⌋γ := | · |γsign(·),
for any γ ∈ R≥0. H l(a, b) with a ≤ b and l =
{0, 1, 2, ...} denotes the Sobolev space of absolutely con-

tinuous scalar functions u(x) on (a, b) with square inte-

grable derivatives u(i)(x) up to the order l. H l-norm reads

as ||u(·)||Hl(a,b) =

√

∫ b

a

∑l
i=0[u

(i)(x)]2 dx. The symbols

||u(·)||H0(a,b) = ||u(·)||L2(a,b)
= ||u(·)|| are also used as

throughout the paper. Finally, ux = ∂u/∂x and uxx = ∂2u/∂x2

are in play as well.

II. PROBLEM STATEMENT

The physical process of an earthquake is modelled by a

three dimensional coupled PDE (see Biot theory, [25]). Here

we simplify the problem to 1D by assuming invariance in

the spatial variables belonging to the fault plane. Moreover,

we consider that fluid injection rates are low. As a result, the

physical process can be described by a 1D wave equation and

a 1D diffusion equation, which are coupled through their BC

on the seismic fault. This coupling is owed to the dependency

of the fault friction (1D wave equation Neumann BC) to the

fluid pressure (1D diffusion equation Dirichlet BC) at x = 0,

as seen in Fig. 1 and system (1).

utt(x, t) = c2uxx(x, t),

ux(0, t) =
µ(u(0, t), ut(0, t), t)− µ0

G
σ′

−
µ(u(0, t), ut(0, t), t)

G
p(0, t), u(D, t) = 0,

pt(x, t) = dpxx(x, t),

px(0, t) = 0, px(D2, t) = q + ϕ(t).
(1)

The first three equations of (1) (1D wave equation) de-

scribe fault slip on the boundary x = 0 and the wave

propagation due to deformation propagation along x until

the attached point x = D > 0. [u(x, t), ut(x, t)] is its state

vector evolving in the space H1(0, D)×H0(0, D) (displace-

ment and velocity, respectively). x ∈ [0, D] is the space

variable, t ≥ 0 is the time variable, c =
√

G/ρ is the shear

velocity, where G is the shear modulus and ρ the density

of the surrounding to the fault rocks. µ(u(0, t), ut(0, t), t) is

the friction coefficient and µ0 is its initial constant value1.

On the frictional interface (fault), the difference between

the constant effective “overburden” normal stress, σ′, and

the pressure of the injected or extracted fluid in/from the

1From now on, the dependency on (u(0, t), ut(0, t), t) will be neglected
for ease of reference.

fault-like interface, p(0, t), is applied (Terzaghi’s principle of

effective stress [26]), which justifies the boundary condition

at x = 0. More details of this system are given in [5], [27],

[28].

The left-hand boundary represents the coupling with the

next three equations (1D diffusion equation) due to the

presence of an actuator dynamics of the input pressure.

p(x, t) is its state vector (pressure) evolving in the space

H1(0, D2), x ∈ [0, D2] is the space variable, t ≥ 0 is

the time variable and d is the thermal diffusivity. A well is

located at the boundary x = D2 > 0 where the flux q (control

input) is applied. The term ϕ represents external disturbances

acting on the system. ϕ is supposed to be sufficiently smooth

and to fulfil |ϕ̇| ≤ L, with some a priori known constant L.

x=D

Attached point

x=0

Fault

[u(0,t),ut(0,t)]

p(0,t)

x=D2

Well

u(D,t)=0
q(t)

Fig. 1. Simplified earthquake model, a cascade system of a 1D wave equa-
tion (blue) and a 1D diffusion equation (red). u(x, t) denotes displacement
(wave) and p(x, t) denotes fluid pressure.

It is well-known (see, e.g., [19, Chapter 3]) that for arbi-

trary initial conditions u(x, 0), ut(x, 0) of class H1(0, D)×
H0(0, D) and p(x, 0) of class H1(0, D2), there exists a

mild solution of the open-loop boundary value problem

(BVP) (1). Throughout the paper, only mild solutions of the

corresponding BVP are in play.

Without control, system (1) presents a fast slip behaviour

(earthquake). To prevent this, one should adequately adjust

the well flux, q, to obtain a desired fluid pressure at the

fault, p(0, t), by employing control techniques in order to

stabilize the system (1) origin and/or track a reference input

signal, releasing the stored elastic energy smoothly and not

abruptly. Therefore, the objective of this work is to design

a control input q of the diffusion equation, which drives the

boundary states u(0, t) and ut(0, t) of the wave equation, to a

vicinity of desired references r(t), ṙ(t), respectively, despite

the presence of uncertainties in the system parameters and/or

disturbances ϕ. For this purpose, the tracking control design

is performed separately for the wave and diffusion equations

and supported with simulation evidences for each case.

III. TRACKING FOR THE WAVE EQUATION

In order to drive the state u(0, t) to a desired reference

signal r(t) on the wave equation

utt(x, t) = c2uxx(x, t),

ux(0, t) =
µ− µ0

G
σ′ −

µ

G
p, u(D, t) = 0,

(2)



the error w(x, t) is defined as

w(x, t) = u(x, t)−
D − x

D
r(t). (3)

Note that if w(x, t) = 0, then the main tracking goal,

u(0, t) = r(t), will be solved. Moreover, this error is also

consistent with the boundary condition u(D, t) = 0 of the

system (2).

Then, the error dynamics of the wave equation reads as

wtt(x, t) = c2wxx(x, t)−
D − x

D
r̈(t),

wx(0, t) =
µ− µ0

G
σ′ −

µ

G
p+

1

D
r(t), w(D, t) = 0.

(4)

A. Control Design

Define the control p as

p = −
G

µ

(

ν −
1

D
r(t) −

µ− µ0

G
σ′

)

,

ν = λ1 ⌈w(0, t)⌋
a
+ λ2 ⌈wt(0, t)⌋

a
.

(5)

with a ∈ [0, 1] and λ1, λ2 positive gains to be chosen.

The proposed control (5) is composed by feedback lineari-

sation terms and homogeneous algorithm ν inspired by [29].

When a = 0 this algorithm is nothing else than the well-

known Twisting Controller [30] and is governed by discon-

tinuous (multi-valued) right-hand side in the two manifolds

w(0, t) = 0 and wt(0, t) = 0. Solutions of the distributed

parameter system (4) driven by this discontinuous controller

are understood in the Filippov’s sense [31]. Extension of

the Filippov concept towards the infinite-dimensional setting

may be found in [19]. The present paper focuses on the

tracking synthesis whereas the well-posedness analysis of the

closed-loop system (4), (5) is similar to that of [21] and it

remains beyond the scope of the paper. Thus, for the closed-

loop system in question, it is simply assumed that it possesses

a unique Filippov’s solution.

The stability of the error dynamics (4) is then in force.

Theorem 1: System (4) fulfils an eISS condition2 w.r.t. the

the H1(0, D)×H0(0, D) norm

Γw(t) =

(

|w(0, t)|
1+a

+ ||wx(x, t)||
2
+

1

c2
||wt(x, t)||

2

)1/2

if the controller gains on (5) are tuned as λ1 > λ2

1+a , λ2 > 0.

Remark 1: The proof of Theorem 1 and more details

about it, can be found in [23]. Furthermore, the uncertain

system control design, i.e. the system (2) with uncertainties

in the parameters and perturbations matched to the control,

is under preparation.

B. Numerical Simulations

The friction coefficient chosen to perform numerical simu-

lations is a slip-weakening friction law (see [33]) µ = µres−
∆µ ·e−u(0,t)/dc , with ∆µ < 0. A fault is reactivated when it

reaches its static coefficient of friction, µmax = µres −∆µ,

2See [32] for more details on ISS in infinite-dimensional setting.

following by a stress drop ∆µ in a characteristic distance

dc, leaving the residual value µres as friction coefficient.

The desired reference is a smooth function chosen as

r(t) = dmaxs
3(10 − 15s+ 6s2), where s = t/top, dmax is

the target displacement and top is the operational time of the

controller. The later is chosen in order to modify the speed

and acceleration of the reference. The reference parameters

were chosen as dmax = 0.823 [m] and top = 600 [s].

The system parameters are ρ = 2500 [kg/m3] (surround-

ing rock density), G = 30 [GPa] (shear modulus), σ′ =
50 [MPa] (effective normal stress), µres = 0.5 (residual

friction), ∆µ = −0.1 (friction drop), dc = 10 [mm]

(characteristic slip distance) and D = 5 [km] (fault length).

The control (3), (5) and the system (2) have been imple-

mented in Matlab Simulink with the Runge-Kutta’s integra-

tion method of fixed step and a sampling time equal to 1
[ms]. The wave equation is implemented using the finite-

differences approximation technique, discretizing the spatial

domain x ∈ [0, D] into 51 ordinary differential equations

(ODE).

Three different values of a in (5) were chosen to com-

pare the results. The respective gains λ1, λ2 were selected

according to condition in Theorem 1:

• a = 0 with λ1 = 1.1× 10−8 and λ2 = 1× 10−8.

• a = 0.5 with λ1 = 7× 10−9 and λ2 = 1× 10−8.

• a = 1 with λ1 = 5.1× 10−9 and λ2 = 1× 10−8.

In order to evaluate the importance of the control im-

plementation, a scenario without control (like a ”standard”

earthquake) is also presented. The results can be seen in

Figures 2-4. The three cases drive the states u(0, t), ut(0, t)
close to the desired reference, dissipating the earthquake

energy slowly in comparison with the control-free scenario.

The case a = 0 achieves a much better precision for

w(0, t) but not for wt(0, t). This is due to the presence

of high-frequency oscillations in wt(0, t) due to the use of

discontinuous control when a = 0. Nevertheless, the control

signal p (Fig. 4) is not affected by a chattering effect due to

its small gains.

IV. TRACKING FOR THE DIFFUSION EQUATION

Consider the diffusion equation

pt(x, t) = dpxx(x, t),

px(0, t) = 0, px(D2, t) = q + ϕ(t),
(6)

where the parameters d,D2 are assumed to be uncertain, but

bounded as 0 < dm ≤ d ≤ dM , 0 < Dm ≤ D2 ≤ DM , by

some known constant dm, dM , Dm, DM .

The objective here is to design a control input q able to

drive the output y(t) = p(0, t) of the underlying BVP (6) to a

desired reference rp(t) despite the presence of uncertainties

and/or disturbances. Furthermore, the measurement of the

state at x = D2 is assumed to be available for the control

design, i.e., p(D2, t). Yet, the exact value of the parameter

D2 is uncertain and only a nominal value, Dn, is on the use.

This is because the exact fault location in the cascade system

is unknown (the point x = 0 in Fig. 1).



Fig. 2. Slip and slip-rate at the fault (x = 0) versus time (sec).
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Fig. 3. Error variables at the fault (x = 0) versus time (sec).
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Fig. 4. Control signal p versus time (sec).

A. Motion Planning

Following [13],[8, Chapter 12], the reference trajectory

generation for the diffusion equation (6) can be obtained

through its flat output y(t) = p(0, t). The trajectory gener-

ation is further performed for the unperturbed system with

ϕ(t) ≡ 0.

Thus, the reference state trajectory is specified to

p̄(x, t) =

∞
∑

i=0

r(i)p (t)
x2i

di(2i)!
, (7)

and the nominal input signal from the BC at x = D is defined

as

q̄ =

∞
∑

i=1

r(i)p (t)
D2i−1

2

di(2i− 1)!
. (8)

In order to guarantee that p(x, t) → p̄(x, t) and y(t) →
rp(t), the convergence of (7) has to be guaranteed. The next

theorem states the conditions to be imposed on the to-be-

tracked reference in order to achieve convergence.

Theorem 2: The series (7) is absolutely convergent pro-

vided that the output reference rp(t) fulfils

sup
t≥0

∣

∣

∣
r(i+1)
p (t)

∣

∣

∣
≤

2d

D2
2

(i+ 1) sup
t≥0

∣

∣

∣
r(i)p (t)

∣

∣

∣
∀ i ∈ Z≥0.

(9)

B. Control Design

The output y(t) = p(0, t) to-be-tracked matches the

reference trajectory rp(t) only if the state trajectory satisfies

the same initial condition as that of the plant, i.e., if p(x, 0) =
p̄(x, 0). Furthermore, the nominal control (8) is not able to

compensate any non-trivial disturbance ϕ(t) 6= 0. Next, the

tracking problem of interest is addressed for the arbitrarily

initialized state to-be-tracked trajectory in the presence of

matched disturbances. Setting the state deviation

p̃(x, t) = p(x, t)− p̄(x, t), (10)

from the reference trajectory p̄(x, t) (7), the error dynamics

(10) is governed by

p̃t(x, t) = dp̃xx(x, t),

p̃x(0, t) = 0, p̃x(D2, t) = q̃ + ϕ(t),
(11)

where the control input q = q̃+ q̄ is precomposed in terms of

the reference input q̄, determined by (8), and a new virtual

component q̃. Now the tracking objective for the nominal

reference (7) is reduced to the design of the virtual input q̃
exponentially stabilizing the error (10) at the origin.

Consider the following control law q̃ defined as

q̃ = −
λ1

Dn
p̃(D2, t) + ν,

ν̇ = −λ2p̃(D2, t)− λ3 ⌈p̃(D2, t)⌋
0
,

(12)

where λ1, λ2, λ3 are the gains that must be tuned and Dn is

the nominal value of D2.

The proposed feedback law (12) is composed by a PI con-

trol and a discontinuous term passing through an integrator. It

generates a continuous control signal despite a discontinuous

(multi-valued) right-hand side in the manifold p̃(D2, t) = 0.

The closed-loop system in question is assumed to admit a

Filippov solution as for the wave equation case.



The closed-loop system (11), driven by (12), reads as

p̃t(x, t) = dp̃xx(x, t),

p̃x(0, t) = 0, p̃x(D2, t) = −
λ1

Dn
p̃(D2, t) + δ,

δ̇ = −λ2p̃(D2, t)− λ3 ⌈p̃(D2, t)⌋
0
+ ϕ̇(t),

(13)

with δ = ν + ϕ, being substituted into (12) for ν = δ − ϕ
for deriving δ-dynamics (13). The following result is then in

force.

Theorem 3: Let the error dynamics (11) be driven by the

feedback q̃, governed by (12) and tuned in accordance with

λ1 > Dn

Dm

, λ2 > dM , λ3 > L. Then, the closed-loop error

dynamics (13) are globally exponentially stable despite the

presence of any boundary disturbance ϕ satisfying |ϕ̇| ≤ L.

Remark 2: The proof of Theorems 2, 3 and more details

about them, can be found in [24].

C. Numerical Simulations

The proposed control strategy q = q̃+ q̄ with (8),(12) has

been implemented in the system (6) using Matlab Simulink

with Euler’s integration method of fixed step and a sampling

time equal to 50 [ms]. The diffusion equation was imple-

mented using d = 0.05, D2 = 10 and ϕ(t) = 0.01t +
2 sin(t) and the finite-differences approximation technique,

discretizing the spatial domain x ∈ [0, D2] into 51 ordinary

differential equations (ODE). The initial condition was set

in p(x, 0) = 0.

The tracking reference rp(t) and the corresponding nom-

inal reference p̄(x, t) and control q̄, are defined depending

on the simulation time and expressions (7)-(8):

1) t ∈ [0, 1 × 104) [s]: rp(t) = At, A = 1× 10−3.

2) t ∈ [1 × 104, 2 × 104) [s]: rp(t) = 20.

3) t ∈ [2 × 104, 3 × 104) [s]:

rp(t) = Ae[−β(t−2×104)], A = 20, β = 1× 10−3.

4) t ∈ [3 × 104, 4 × 104] [s]: rp(t) = A sin(ωt), A =
10, ω = 1× 10−3.

All of the proposed output references fulfil the condition

(9). The respective gains of the error control q̃ have been

selected according to Theorem 3 as λ1 = 1, λ2 = 10, λ3 =
2.5 and Dn = 9, Dm = 9, dM = 0.06. The results are

displayed in Figs. 5-7. The main objective of stabilizing

the output y = p(0, t) over the four successive references

rp(t) is achieved despite the presence of the unbounded but

Lipschitz perturbation ϕ(t) (see Fig. 5). Furthermore, the

designed control strategy is able to stabilize the norm of

the error despite the abrupt change between references, as

seen in Fig. 6. The boundary control q shown in Fig. 7

clarifies how such disturbance compensation is performed.

This is due to the presence of the discontinuous term on the

control design. Nevertheless, the control signal generated is

continuous throughout the tracking task.

V. DESIGN DISCUSSION

Attractive design features of the proposed controllers

and their properties, revealed in simulations, are further
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Fig. 5. Tracking of the output y = p(0, t) over the successive references
rp(t) versus time (sec).
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Fig. 7. Control signal q versus time (sec).

discussed.

• An eISS result is obtained instead of asymptotic stability

due to the presence of the unmatched disturbance D−x
D r̈(t) in

(4). Nevertheless, the ultimate bound can be reduced either

incrementing the control gains λ1, λ2 or choosing a slow

tracking reference r(t) making Lr̈ smaller.

• Both proposed boundary controllers (5) and (12) require

the only information of the wave equation at x = 0,

i.e., [u(0, t), ut(0, t)], or the boundary diffusion equation

information p(D2, t). This greatly minimizes the amount

of information needed to perform the tracking task in both

PDE’s.

• Due to the exponential decay of the error dynamics (13)

and by virtue of δ = ν + ϕ, the virtual input ν of the

control (12) approaches the negative disturbance value, i.e.,

ν(t) → −ϕ(t) as t → ∞.

• Given the overall cascade system (1), the tracking for

the diffusion equation calls for future investigation with the

motion planing rp(t) = p(0, t), where p(0, t) takes the place

of the designed tracking control for the wave equation (5).

Remarkably, whenever condition (9) is to be fulfilled, the



only parameter choice in the proposed control (5) is a = 1
(the linear case).

VI. CONCLUSIONS

The present work summarizes recent advances in earth-

quake control. A cascade system, composed of a 1D wave

equation coupled to a 1D diffusion equation, is presented

as a simplified earthquake model. In order to ensure slow

aseismic response of the system, a tracking control is de-

signed in two steps. It is shown that a homogeneous boundary

control is able to drive the wave equation states close to a

bounded reference signal, resulting in eISS of the closed-loop

system, whereas a PI plus discontinuous integral term control

presented global exponential stability of the error system,

despite the presence of uncertainties and/or disturbances in

the model. Simulations show that the discontinuous version

of the homogeneous algorithm achieves the best precision

and robustness for the price of using high-frequency con-

trol signals. In turn, for the diffusion equation, simulations

show robust tracking for different kinds of references, using

continuous control signals and therefore diminishing the

chattering effect in the plant dynamics. The presented control

strategies give a deeper insight on the control of the coupled

system to be designed, resulting in performing the motion

planing of the diffusion equation choosing the linear case of

the homogeneous control of the wave equation. The further

development of such a cascade strategy calls for future work,

as well as the 3D case of the earthquake phenomenon does.
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