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Robust Tracking for the Diffusion Equation using Sliding-Mode

Boundary Control

Diego Gutiérrez-Oribio1, Yury Orlov2, Ioannis Stefanou1 and Franck Plestan3

Abstract— Robust output tracking is addressed in this paper
for a diffusion equation with Neumann boundary conditions
and anti-collocated boundary input and output. The desired
reference tracking is solved using the well-known flatness and
Lyapunov approaches. The reference profile is obtained by
solving the motion planning problem for the nominal plant.
To robustify the closed-loop system in the presence of the dis-
turbances and uncertainties, it is then augmented with PI feed-
back plus a discontinuous component responsible for rejecting
matched disturbances with a priori known magnitude bounds.
Such control law only requires the information of the system at
the same boundary as the control input is located. The resulting
dynamic controller globally exponentially stabilizes the error
dynamics while also attenuating the influence of Lipschitz-in-
time external disturbances and parameter uncertainties. The
proposed controller relies on a discontinuous term that however
passes through an integrator, thereby minimizing the chattering
effect in the plant dynamics. The performance of the closed-
loop system, thus designed, is illustrated in simulations under
different kinds of reference trajectories in the presence of
external disturbances and parameter uncertainties.

I. INTRODUCTION

The diffusion equation is a first-order parabolic partial

differential equation used to describe the diffusion and other

diffusion processes such as chemical reactions, population

growth, market price fluctuations, and fluids flow to name a

few.

In order to perform a tracking over the diffusion equation,

a reference profile of the solution should be obtained. The

motion planning presented in [1] uses a flat output approach

capable of parametrising the state dynamics using it as a

reference. Such approach provides an open-loop control able

to track the desired reference but only for the nominal system

with no uncertainties and disturbances and starting at some

specific initial condition.

In order to robustify such a tracking control, one may

invoke a feedback control. Examples of boundary tracking

control of the diffusion equation utilize output feedback [2],

[3] and backstepping designs [4], [5], [6], [7], [8] as well as

sliding-modes techniques [9], [10].

Clearly, more realistic models should count for uncer-

tainties and disturbances. A classic approach to deal with

constant disturbances in the finite dimension setting is the
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integral action [11]. Dealing with a wider class of dis-

turbances, sliding-mode control has long been recognized

as a powerful control method to counteract non-vanishing

external disturbances and unmodelled dynamics, even for

infinite dimension systems (see, e.g., [12] and a very recent

monograph [13]).

The design of robust controllers in the diffusion equation

has been addressed in [10] using sliding-modes and using

H∞ control in [14]. For the case of the tracking task, in

[9] a control has been designed to compensate Lipschitz-in-

time disturbances using sliding-modes, but using distributed

control, and in [2], [3] robust boundary controls have been

designed to compensate bounded disturbances and requiring

to design two external systems (disturbance estimator and

servo system) to fulfil the task.

More works have been presented addressing the design

of boundary controls for the diffusion system under pertur-

bations (see [15] and [16] where sliding-mode controllers

were designed) and parameter uncertainties (see [16] again,

and [17] where an adaptive control has been presented).

Nevertheless, these last works usually require the measure-

ment of the state throughout all the space domain and

they need to solve an auxiliary PDE system in order to

design the control. Therefore, the design of simpler boundary

controllers capable of the boundary tracking of the diffusion

equation under disturbances and parameter uncertainties calls

for further investigation.

In this paper, a simple control strategy is proposed to

achieve global exponential tracking of the diffusion dy-

namics. Using boundary state feedback only, a PI control,

coupled to a discontinuous integral term, is designed. Such

a controller is capable of compensating model uncertain-

ties and Lipschitz-in-time disturbances using a continuous

control signal. This strategy can be viewed as the merge of

the classical integral action and the discontinuous functions

commonly used in sliding-mode control applications. Using a

well-known strategy for motion planning, reference profiles

are obtained for the nominal diffusion equation depending

on the choice of the flat output reference. Supporting sim-

ulations illustrate the closed-loop performance for differ-

ent kinds of references in the presence of unbounded but

Lipschitz-in-time disturbances and parameter uncertainties.

The outline of this work is as follows. The underlying

diffusion model and the control objective are introduced in

Section II. Using the flat approach, the trajectory generation

and open-loop tracking control are described in Section III.

The feedback control design for the nominal and disturbed

error systems is given in Section IV. The reliability of the



proposed control strategy is supported in the simulation study

of Section V. Finally, some concluding remarks are collected

in Section VI.

Notation: The function ⌈·⌋γ := | · |γsign(·) is determined for

any γ ∈ R≥0. Given a differentiable function r(t), notation

r(i)(t) with i ∈ Z≥0 stands for the i-th time derivative

of r(t). The Sobolev space of absolutely continuous scalar

functions u(x) on (a, b) with square integrable derivatives

u(i)(x), i = 1, l . . . , l and the norm

||u(·)||Hl(a,b) =

√

√

√

√

∫ b

a

l
∑

i=0

[u(i)(x)]2 dx,

is typically denoted by H l(a, b) with a ≤ b and

l = {0, 1, 2, ...}. For ease of reference, the nomenclature

||u(·)||H0(a,b) = ||u(·)||L2(a,b)
= ||u(·)|| is used throughout.

The spatial derivatives are denoted by ux = ∂u/∂x and

uxx = ∂2u/∂x2.

For later use, well-known inequalities are recalled.

Young’s Inequality:

ab ≤ ap

p
+

bq

q
, p, q > 1,

1

p
+

1

q
= 1.

Cauchy-Schwarz Inequality:

∫ b

a

f(x)g(x) dx ≤ ||f(x)|| ||g(x)|| .

Poincare’s Inequality: Let u(x) ∈ H1(0, 1). Then , the

following inequality holds

∫ 1

0

u2(x) dx ≤ 2u2(i) + 2

∫ 1

0

u2
x(x) dx, i = 0, 1.

For u(x) ∈ H1(0, D) and D ∈ R>0, the latter inequality is

specified to

∫ D

0

u2(x) dx ≤ 2Du2(i) + 2D2

∫ D

0

u2
x(x) dx, i = 0, D.

II. PROBLEM STATEMENT

Consider the following diffusion equation with Neumann

boundary conditions (BC)

ut(x, t) = duxx(x, t),

ux(0, t) = 0,

ux(D, t) = q + ϕ(t),

(1)

where u(x, t) is the state vector evolving in the space

H1(0, D), x ∈ [0, D] is the space variable, t ≥ 0 is the

time variable, d is the thermal diffusivity, q is the boundary

control input and the function ϕ(t) is a disturbance term

supposed to satisfy

|ϕ̇| ≤ L (2)

with an a priori known constant L. Furthermore, the positive

parameters d,D are uncertain, but bounded as

0 < dm ≤ d ≤ dM , 0 < Dm ≤ D ≤ DM , (3)

by some known constant dm, dM , Dm, DM .

It is well-known (see, e.g., [13, Chapter 3]) that for arbi-

trary initial conditions u(x, 0) of class H1(0, D), there exists

a mild solution of the open-loop boundary value problem

(BVP) (1). Throughout the paper, only mild solutions of the

corresponding BVP are in play.

The objective of this work is to design a control input q
capable of driving the output

y(t) = u(0, t) (4)

of the underlying BVP (1) to a desired reference r(t), despite

the presence of uncertainties and/or disturbances.

III. MOTION PLANNING

Following [1],[6, Chapter 12], the reference trajectory

generation for the diffusion equation (1) becomes available

through its flat output (4). The trajectory generation is further

performed for the unperturbed system with ϕ(t) ≡ 0 and the

perfect knowledge of the system parameters d,D.

The state trajectory to follow is represented in the form

ū(x, t) =

∞
∑

i=0

ai(t)
xi

i!
,

where the time-varying coefficients ai(t) have to be deter-

mined by substituting the latter sum into (1),(4) and using

the desired tracking r(t) = ū(0, t). Thus, the reference state

trajectory is specified to

ū(x, t) =
∞
∑

i=0

r(i)(t)
x2i

di(2i)!
, (5)

and the nominal input signal from the BC at x = D is defined

as

q̄ =

∞
∑

i=1

r(i)(t)
D2i−1

di(2i− 1)!
. (6)

In order to guarantee that u(x, t) → ū(x, t) and y(t) →
r(t), the convergence of (5) needs to be studied. The next

theorem states which conditions should be imposed on the

to-be-tracked reference in order to achieve this.

Theorem 1: The series (5) is absolutely convergent pro-

vided that the output reference r(t) fulfils

sup
t≥0

∣

∣

∣
r(i+1)(t)

∣

∣

∣
≤ 2d

D2
(i+ 1) sup

t≥0

∣

∣

∣
r(i)(t)

∣

∣

∣
∀ i ∈ Z≥0.

(7)

Proof: In order to check if under conditions of the

theorem, (5) is a convergent series, the ratio test is performed

with Sp = r(p)(t) x2p

dp(2p)! . Then

lim
p→∞

∣

∣

∣

∣

Sp+1

Sp

∣

∣

∣

∣

= lim
p→∞

∣

∣

∣

∣

r(p+1)(t)

r(p)(t)

∣

∣

∣

∣

x2p+2

x2p

dp

dp+1

(2p)!

(2p+ 2)!

= lim
p→∞

x2

d

∣

∣

∣

∣

r(p+1)(t)

r(p)(t)

∣

∣

∣

∣

1

(2p+ 1)(2p+ 2)
< 1

for all x ∈ [0, D] under condition (7). Theorem 1 is thus

proved.

References r(t), which are usually adopted in motion

planning [1], [7], [8], are the Gevrey class defined as follows.



Definition 1: [1] A smooth function r(t) is Gevrey of

order α if exist M,R > 0 such that

sup
t≥0

∣

∣

∣
r(i)(t)

∣

∣

∣
≤ M

i!α

Ri
,

for all i ∈ Z≥0.

In the works cited above, the condition to guarantee the

series convergence requires r(t) to be Gevrey of order α < 2.

The next lemma links references r(t) satisfying condition (7)

to a certain kind of the Gevrey functions.

Lemma 1: Any smooth function r(t), fulfilling (7), is

Gevrey of order α = 1 such that Definition 1 holds for r(t)

with R = D2

2d and M > 0.

Proof: From the Definition 1, one concludes that

sup
t≥0

∣

∣

∣
r(i+1)(t)

∣

∣

∣
≤ M

(i+ 1)!α

Ri+1
≤ M

R
(i+ 1)α

i!α

Ri
,

thereby deriving the inequality

sup
t≥0

∣

∣

∣
r(i+1)(t)

∣

∣

∣
≤ (i + 1)α

R
sup
t≥0

∣

∣

∣
r(i)(t)

∣

∣

∣
.

Since (7) follows from the latter inequality with the selection

of α,R,M under the lemma conditions, the proof is thus

completed.

Although the principle reference, used in the afore-cited

works, is the so-called ”bump function” (see [1]), its pro-

posed counterpart (7) allows one to exemplify more admis-

sible references among analytical functions such as:

F.1 r(t) = A for any A ∈ ℜ.

F.2 r(t) = At, t ∈ [0, tf ] for any A ∈ ℜ, tf ≥ D2

2d .

F.3 r(t) = A sin(ωt), ω ∈ ℜ>0 for any A ∈ ℜ, ω ≤ 2d
D2 .

F.4 r(t) = Aeβt, β ∈ ℜ for any A ∈ ℜ, |β| ≤ 2d
D2 .

Remark 1: The output (4) matches the reference trajectory

r(t) only if the state trajectory to follow satisfies the same

initial condition as that of the plant, i.e., if u(x, 0) =
ū(x, 0). Furthermore, the nominal control (6) is not capable

of compensating any non-trivial disturbance ϕ(t) 6= 0.

Next, the tracking problem of interest is addressed for the

arbitrarily initialized state trajectory to follow in the presence

of matched disturbances.

IV. TRACKING CONTROL DESIGN

Setting the state deviation

ũ(x, t) = u(x, t)− ū(x, t), (8)

from the reference trajectory ū(x, t), given by (5), the error

dynamics (8) are then governed by

ũt(x, t) = dũxx(x, t),

ũx(0, t) = 0,

ũx(D, t) = q − q̄ + ϕ(t) = q̃ + ϕ(t),

(9)

where the control input

q = q̃ + q̄ (10)

is pre-composed in terms of the reference input q̄, determined

by (6), and the virtual component q̃. Now the tracking

objective for the nominal reference (5) is reduced to the

virtual input design q̃ exponentially stabilizing the error

dynamics (9) in the origin.

A. Disturbance-free tracking

First, the disturbance-free case ϕ(t) ≡ 0 is analysed.

Selecting the control q̃ as

q̃ = − λ1

Dn

ũ(D, t), (11)

where λ1 is a gain to be tuned and Dn the nominal value of

D. The next result is in order.

Theorem 2: Let ϕ(t) ≡ 0 and let the control parameters

in (11) be such that

λ1 >
Dn

Dm

. (12)

Then the error dynamics (9), driven by (11), are globally

exponentially stable. �

Proof: Consider the positive definite Lyapunov func-

tional candidate

V =
1

2
||ũ(x, t)||2 .

Its derivative along the system (9) reads as

V̇ =

∫ D

0

ũ(x, t)ũt(x, t) dx

= d

∫ D

0

ũ(x, t)ũxx(x, t) dx.

Applying the integration by parts and then employing the

BC and Poincare’s inequality, it follows that

V̇ = −d

∫ D

0

ũ2
x(x, t) dx + d [ũ(x, t)ũx(x, t)]

D
0

≤ − d

2D2
||ũ(x, t)||2 + d

D
ũ2(D, t) + dũ(D, t)q̃.

Now, taking into account the control law (11), coupled to

(12), the Lyapunov derivative is further estimated as

V̇ ≤ − d

2D2
||ũ(x, t)||2 −

(

λ1

Dn

− 1

D

)

dũ2(D, t)

≤ − d

2D2
||ũ(x, t)||2

≤ − d

D2
V,

that guarantees the exponential decay of the system dynamics

(9). Since the Lyapunov functional is radially unbounded, (9)

is concluded to be globally exponentially stable.

B. Tracking under disturbances

In the presence of the external disturbance ϕ(t) 6= 0, the

proposed control q̃ in (11) is no longer capable of stabilizing

the error dynamics. To robustify the control law in the

disturbance-corrupted case, it is modified to

q̃ = − λ1

Dn

ũ(D, t) + ν,

ν̇ = −λ2ũ(D, t)− λ3 ⌈ũ(D, t)⌋0 ,
(13)



where λ1, λ2, λ3 are gains to be tuned and Dn is the nominal

value of D.

The proposed feedback law (13) is composed by a PI

control and a discontinuous term passing through an integra-

tor. It generates a continuous control signal despite having a

discontinuous (multi-valued) right-hand side in the manifold

ũ(D, ·) = 0. The precise meaning of the solutions of the

distributed parameter system (9) driven by this discontinuous

controller, are viewed in the Filippov sense [18]. Extension of

the Filippov concept towards the infinite-dimensional setting

may be found in [13]. The present paper focuses on the

tracking synthesis whereas the well-posedness analysis of

the closed-loop system (9),(13) is similar to that of [9] and it

remains beyond the scope of the paper. Thus, for the closed-

loop system in question, it is assumed that it possesses a

Filippov solution.

The closed-loop system (9), driven by (13), reads as

ũt(x, t) = dũxx(x, t),

ũx(0, t) = 0,

ũx(D, t) = − λ1

Dn

ũ(D, t) + δ,

δ̇ = −λ2ũ(D, t)− λ3 ⌈ũ(D, t)⌋0 + ϕ̇(t),

(14)

with δ = ν + ϕ, being substituted into (13) for ν = δ − ϕ
for deriving δ-dynamics (14). The following result is then in

force.

Theorem 3: Let the error dynamics (9) be driven by the

feedback q̃, governed by (13) and tuned in accordance with

λ1 >
Dn

Dm

, λ2 > dM , λ3 > L. (15)

Then the closed-loop error dynamics (14) are globally ex-

ponentially stable despite the presence of any boundary

disturbance ϕ of class (2).

Proof: Consider the positive definite Lyapunov func-

tional candidate

V =
1

2
||ũ(x, t)||2 + 1

2
δ2, (16)

and employing the magnitude bound (2) for ϕ̇, compute its

time derivative along the error dynamics (14), thus obtaining

V̇ ≤ − d

2D2
||ũ(x, t)||2 −

(

λ1

Dn

− 1

D

)

dũ2(D, t)

+ dũ(D, t)δ + (−λ2ũ(D, t)− λ3 ⌈ũ(D, t)⌋0 + ϕ̇)δ

≤ − d

2D2
||ũ(x, t)||2 −

(

λ1

Dn

− 1

D

)

dũ2(D, t)

+ (−λ2 + d− λ3 |ũ(D, t)|−1
+ L ⌈ũ(D, t)⌋−1

)ũ(D, t)δ.

By applying Young’s inequality and the gains selection (15),

it follows that

V̇ ≤ − d

2D2
||ũ(x, t)||2 −

(

λ1

Dn

− 1

D

)

dũ2(D, t)

− (λ2 − d+ λ3 |ũ(D, t)|−1 − L ⌈ũ(D, t)⌋−1)
1

2
δ2

− (λ2 − d+ λ3 |ũ(D, t)|−1 − L ⌈ũ(D, t)⌋−1
)
1

2
ũ2(D, t)

≤ − d

2D2
||ũ(x, t)||2

− (λ2 − d+ λ3 |ũ(D, t)|−1 − L ⌈ũ(D, t)⌋−1
)
1

2
δ2

≤ −αV

where α = min
{

d
D2 , λ2 − d+ λ3 − L

}

. The latter in-

equality ensures the exponential stability of (14). Since the

Lyapunov functional is radially unbounded, the result holds

globally.

Remark 2: Due to the exponential decay of the Lyapunov

functional (16) and by virtue of δ = ν +ϕ, the virtual input

ν approaches the negative disturbance value, i.e., ν(t) →
−ϕ(t) as t → ∞.

Remark 3: The proposed feedback controls (11) and (13)

require only the boundary state information u(D, t). Thus,

the boundary output feedback is available to perform the

tracking task, minimizing the needed measurements of the

system.

V. SIMULATIONS

The proposed control strategy (6),(10),(13) has been im-

plemented in the system (1) using Matlab Simulink with

Euler’s integration method of fixed step and a sampling time

equal to 50 [ms]. The diffusion equation was implemented

using d = 0.05, D = 10 and ϕ(t) = 0.01t + 2 sin(t) and

the finite-differences approximation technique, discretizing

the spatial domain x ∈ [0, D] into 51 ordinary differential

equations (ODE). The initial condition was set in u(x, 0) =
0.

The tracking reference r(t) and the corresponding nominal

reference ū(x, t) and control q̄, are defined depending on the

simulation time and expressions (5)-(6):

1) t ∈ [0, 1 × 104) [s]:

r(t) = At, A = 1× 10−3,

ū(x, t) = At+Ax2

2d , q̄ = AD
d

.

2) t ∈ [1 × 104, 2 × 104) [s]:

r(t) = 20, ū(x, t) = 20, q̄ = 0.

3) t ∈ [2 × 104, 3 × 104) [s]:

r(t) = Ae[−β(t−2×104)], A = 20, β = 1× 10−3

ū(x, t) = Ae[−β(t−2×104)] cos

(

x
√

β
d

)

,

q̄ = −A
√

β
d
e[−β(t−2×104)] sin

(

D
√

β
d

)

.

4) t ∈ [3 × 104, 4 × 104] [s]:

r(t) = A sin(ωt), A = 10, ω = 1× 10−3,

ū(x, t) = 1
2Ae

x
√

ω
2d sin

(

ωt+ x
√

ω
2d

)

+ 1
2Ae

−x
√

ω
2d sin

(

ωt− x
√

ω
2d

)

,

q̄ = 1
2A

√

ω
2de

D
√

ω
2d sin

(

ωt+D
√

ω
2d

)



+ 1
2A

√

ω
2de

D
√

ω
2d cos

(

ωt+D
√

ω
2d

)

− 1
2A

√

ω
2de

−D
√

ω
2d sin

(

ωt−D
√

ω
2d

)

− 1
2A

√

ω
2de

−D
√

ω
2d cos

(

ωt−D
√

ω
2d

)

.1

All of the proposed output references fulfil the condition

(7), and more precisely, the conditions described in F.1-

F.4. The respective gains of the error control q̃ have been

selected according to (15) as λ1 = 1, λ2 = 10, λ3 = 2.5 and

Dn = 9. The results are displayed in Figs. 1-4. The solution

u(x, t) of the diffusion equation is performing a tracking

over the space variable x. The main objective of stabilizing

the output y = u(0, t) over the four successive references

r(t) is achieved despite the presence of the unbounded but

Lipschitz perturbation ϕ(t) (see Fig. 2). Furthermore, the

designed control strategy is able to stabilize the norm of

the error despite the abrupt change between references, as

seen in Fig. 3. The boundary control q shown in Fig. 4

clarifies how such disturbance compensation is performed.

This is due to the presence of the discontinuous term on the

control design. Nevertheless, the control signal generated is

continuous throughout the tracking task.

Fig. 1. Evolution of the diffusion equation state u(t, x).
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Fig. 2. Tracking of the output y = u(0, t) over the successive references
r(t).

In order to test even more the designed control, a scenario

where the motion planning was performed using the nominal

values of d and D, i.e., dn = 0.06 and Dn = 9. In this

case, the obtained reference ū(x, t) and nominal control q̄
introduce an error. The results are shown in Figs. 5-7. The

tracking error is able again to compensate the unbounded

disturbance and force the trajectories to follow this new

1See [6, Chapter 12] for more details on how to obtain the analytic
nominal expressions for exponential and sinusoidal references.
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Fig. 3. Norm of the error.

Fig. 4. Control signal q.

wrong reference, that is why the norm of the error is not

zero. The magnitude of the error depends on how close

the nominal values are from the real system parameters

and the kind of reference to be followed. This shows how

the proposed control strategy is able to get a bounded

error tracking despite the wrong reference from the motion

planning.
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Fig. 5. Tracking of the output y = u(0, t) with uncertainties in the
trajectory generation.

VI. CONCLUSIONS

The diffusion equation with boundary control is anal-

ysed, and robust output tracking is developed. The proposed

boundary control requires the state at the boundary only and

it is composed of a PI control and an extra discontinuous

term, passing through an integrator. Such a controller is

typically used the sliding mode control theory and it is

derived from a Lyapunov approach. The controller, thus

composed, compensates Lipschitz-in-time disturbances and

uncertainties in the system. It generates sliding modes in
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Fig. 6. Norm of the error with uncertainties in the trajectory generation.

Fig. 7. Control signal q with uncertainties in the trajectory generation.

the actuator dynamics so that after passing through the

integrator, a continuous control signal is applied to the

underlying system, thereby diminishing the chattering effect.

Capabilities of tracking diffusion dynamics along different

kinds of boundary references and good robustness properties

of the developed design are illustrated in the simulation

study. The reference profiles are obtained for the nominal

diffusion model using the flatness approach. In the case of

the presence of uncertainties in the model parameters, the

references obtained from the motion planning introduce a

new error to the tracking. Nevertheless, simulations of this

case show the boundedness of the tracking error norm. A

call for further investigation to explain these results remains

as future work.
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