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ABSTRACT: This work presents a data-driven machine learning framework for the so-
lution of statistical inverse problems in multiscale computational solid mechanics. The
proposed identification method is based on the design of an artificial neural network
[Haykin, 1994, Demuth et al., 2014] in order to learn the nonlinear mapping between the
hyperparameters of a prior stochastic model of the random compliance field [Soize, 2006]
and dedicated quantities of interest of an ad hoc multiscale computational model. An initial
database containing input and target data is first generated using the multiscale computa-
tional model. A processed database is then constructed by conditioning the input data with
respect to the target data using classical kernel smoothing techniques in nonparametric statis-
tics [Bowman and Azzalini, 1997] in order to derive an efficient trained neural network for
identification purposes. Multilayer feedforward neural networks are then trained from each
of the two databases and optimized by considering different network configurations in order
to construct a fine-tuned surrogate model of the nonlinear relationship between the hyperpa-
rameters (network outputs) and the quantities of interest (network inputs). The performances
of the trained neural networks are evaluated in terms of mean squared error, linear regres-
sion fit and probability distribution between network outputs and targets for both databases.
The (best) trained neural network can then directly be used to identify the output hyperpa-
rameters given input observed quantities of interest with no call to the computational model.
The efficiency of the neural network-based identification method is illustrated through two
numerical examples developed within the framework of 2D plane stress linear elasticity. The
proposed method is first validated on synthetic data obtained through numerical simulations
and then applied to real experimental data obtained through mechanical tests monitored by
digital image correlation on a real heterogeneous biological material (beef cortical bone).

1 INTRODUCTION

This paper adresses the inverse identifica-
tion of the apparent elastic properties for
heterogeneous materials with complex mi-
crostructures that can be considered as ran-
dom linear elastic media, such as some engi-
neered/synthetic and biological/natural com-
posite materials (e.g. rock- and wood-
like materials, concretes and cementitious

materials, living biological tissues). For
such random heterogeneous materials, the
uncertainties on the mechanical properties
at a given mesoscale are modeled by a
non-Gaussian random elasticity (or compli-
ance) field [Soize, 2006, Soize, 2008] whose
stochastic model is constructed within the
framework of probability theory and infor-
mation theory. The statistical inverse prob-
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lem related to the identification of stochas-
tic models using experimental or numerical
data is a very challenging problem with re-
spect to the current available computational
resources. Indeed, in classical inverse iden-
tification methods, such a statistical inverse
problem is typically formulated as a stochas-
tic optimization problem whose solution re-
quires many calls to the underlying forward
stochastic computational models, resulting
in expensive computational costs even us-
ing parallel and high-performance comput-
ing. In this work, we propose an innova-
tive data-driven identification method based
on neural networks for solving the statisti-
cal inverse problem related to the identifica-
tion of an ad hoc stochastic model of the ran-
dom compliance field within the framework
of 2D plane stress linear elasticity theory. The
statistical inverse problem is formulated as
a function approximation (nonlinear regres-
sion) problem and solved using a neural net-
work trained from a numerical database con-
structed from the stochastic computational
model. The proposed neural network-based
identification method consists in (i) generat-
ing a numerical database using the stochastic
computational model to collect a dataset of
input vectors of hyperparameters and output
vectors of quantities of interest of the stochas-
tic computational model, (ii) postprocessing
this initial database by conditioning the quan-
tities of interest with respect to the hyperpa-
rameters using the nonparametric statistics to
construct a processed database adapted to the
identification through a neural network, (iii)
constructing a surrogate model based on neu-
ral network to learn the nonlinear mapping
between the network input vectors of quanti-
ties of interest and the network output vectors
of hyperparameters, (iv) assessing the perfor-
mances of the trained neural network, and (v)
using the best trained neural network to accu-
rately predict the hyperparameters from given
observed quantities of interest. This paper is
organized as follows. The construction and
analysis of the initial and processed databases
are first presented in Section 2. The design

of the neural network is next addressed in
Section 3. The performances of the neural
networks trained from each of the initial and
processed databases are compared and ana-
lyzed in terms of normalized mean squared
error, linear regression fit and marginal proba-
bility density functions between network out-
puts and targets. Numerical identification re-
sults are finally provided in Section 4. The
proposed neural network-based identification
method is first validated on synthetic data and
then applied to real experimental data.

2 CONSTRUCTION AND ANALYSIS OF
THE DATABASE

Within the framework of linear elasticity the-
ory, we consider the statistical inverse prob-
lem related to the identification of an ad hoc
prior stochastic model of the random com-
pliance field [SSS] of a heterogeneous elastic
medium at a given mesoscale parameterized
by a four-dimensional vector-valued hyperpa-
rameter hhh = (h1,h2,h3,h4), where h1 = δ is a
dispersion parameter controlling the level of
statistical fluctuations exhibited by [SSS] around
its mean function [S] (assumed to be indepen-
dent of spatial position and isotropic here),
h2 = ℓ is a spatial correlation length charac-
terizing the spatial correlation structure of the
Gaussian random fields that are the stochas-
tic germs of [SSS], h3 = κ and h4 = µ are the
mean bulk and shear moduli of the isotropic
mean compliance field [S]. The interested
reader can refer to [Soize, 2006, Soize, 2008,
Soize, 2017] for the explicit construction of
this prior stochastic model including the al-
gebraic representation of [SSS] and the random
generator of independent realizations of [SSS].

We introduce the random vector QQQ =
(Q1, . . . ,Q9) of quantities of interest with val-
ues in R9, corresponding to relevant ran-
dom outputs of a multiscale stochastic for-
ward computational model which are adapted
to the inverse identification of the uncertain
vector-valued hyperparameter hhh. A complete
description of the multiscale stochastic for-
ward computational model and the defini-
tion of random vector QQQ can be found in
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[Pled et al., 2021].

2.1 Constructing the initial database by us-
ing the stochastic computational model

The statistical inverse identification of the
prior stochastic model of [SSS] can be per-
formed through the use of a neural network
trained from a sufficiently large database.
For the construction of such a database, the
unknown vector-valued hyperparameter hhh =
(h1,h2,h3,h4) is modeled as a random vector
HHH = (H1,H2,H3,H4) uniformly distributed in
a given compact subset H =H1×H2×H3×
H4 of R4 with mutually statistically indepen-
dent random components H1, H2, H3 and H4.
In the following, we consider the following
admissible set H = [0.25 ,0.65]×[20 ,250]×
[8.5 ,17]×[2.15 ,5.00] in [−]×[µm]×[GPa]×
[GPa], which is adapted to the biological ap-
plication presented in Section 4.2 and cor-
responding to a random heterogeneous mi-
crostructure made up of a biological tissue
(bovine cortical bone).

The numerical database is constructed by
using the multiscale stochastic forward com-
putational model with the prior stochas-
tic model of random compliance field [SSS].
First, Nd = 200,000 independent realiza-
tions hhh(1), . . . ,hhh(Nd) of random hyperparame-
ters vector HHH are uniformly drawn in its ad-
missible set H . Then, for each realization
hhh(i) of random vector HHH, one realization of
random compliance field [SSS] is generated ac-
cording to its prior stochastic model and asso-
ciated random generator, then one realization
qqq(i) of random vector QQQ is computed using
the stochastic forward computational model.
The complete initial database then contains
the Nd independent realizations xxx(1), . . . ,xxx(Nd)

of the random vector XXX = (QQQ,HHH) with xxx(i) =
(qqq(i),hhh(i)) for i = 1, . . . ,Nd . The Nd inde-
pendent realizations qqq(1), . . . ,qqq(Nd) of random
vector QQQ correspond to the network input
data, while the Nd independent realizations
hhh(1), . . . ,hhh(Nd) of random vector HHH correspond
to the network target (desired output) data. It
should be noted that such an initial database
cannot be directly used to train an efficient

neural network for identification purposes,
since the nonlinear mapping between QQQ and
HHH is stochastic by nature. As a consequence,
a post-processing of the initial database is
proposed in the next section and allows the
construction of an ad hoc processed database.

2.2 Constructing the processed database by
conditioning the initial database

The Nd network input vectors qqq(1), . . . ,qqq(Nd)

contained in the initial database are postpro-
cessed and replaced with the Nd new input
vectors q̃qq(1), . . . , q̃qq(Nd) corresponding to inde-
pendent realizations of a new input random
vector Q̃QQ defined as the conditional mathe-
matical expectation E{QQQ|HHH} of random vec-
tor QQQ given random vector HHH evaluated at
hhh(1), . . . ,hhh(Nd), respectively. The i-th realiza-
tion q̃qq(i) of Q̃QQ is then defined by

q̃qq(i)=E{QQQ|HHH = hhh(i)}=
∫
Rn

qqq pQQQ|HHH(qqq|hhh(i))dqqq,

(1)

where qqq 7→ pQQQ|HHH(qqq|hhh) is the conditional pdf
of random vector QQQ given random vector HHH
is equal to hhh for any hhh ∈ H . The conditional
pdf qqq 7→ pQQQ|HHH(qqq|hhh) has been computed and
estimated by using the multivariate kernel
density estimation method with a Gaussian
kernel function and the usual multidimen-
sional Silverman bandwidth parameters, that
is one of the most efficient and popular kernel
smoothing techniques in nonparametric
statistics [Bowman and Azzalini, 1997,
Horová et al., 2012,
Givens and Hoeting, 2013, Scott, 2015,
Soize, 2017], and the Nd independent re-
alizations qqq(1), . . . ,qqq(Nd) and hhh(1), . . . ,hhh(Nd)

of QQQ and HHH, respectively. The processed
database then contains the Nd independent
realizations x̃xx(1), . . . , x̃xx(Nd) of the random
vector X̃XX = (Q̃QQ,HHH) with x̃xx(i) = (q̃qq(i),hhh(i))
for i = 1, . . . ,Nd . The Nd independent
realizations q̃qq(1), . . . , q̃qq(Nd) of random vector
Q̃QQ contained in the processed database
correspond to the new network input data,
while the Nd independent realizations
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hhh(1), . . . ,hhh(Nd) of random vector HHH contained
in the processed database correspond to the
network target data that are the same as the
ones contained in the initial database.

2.3 Analyzing the initial and processed
databases

A sensitivity analysis of the network target
data with respect to the network input data has
been performed for both the initial and pro-
cessed databases. Figure 1 shows the usual
statistical estimate of the matrix of correla-
tion coefficients between each of the nine
components Q1, . . . ,Q9 (resp. Q̃1, . . . , Q̃9)
of input random vector QQQ (resp. Q̃QQ) and
each of the four components H1, . . . ,H4 of
target random vector HHH computed from the
Nd independent realizations qqq(1), . . . ,qqq(Nd) of
QQQ (resp. q̃qq(1), . . . , q̃qq(Nd) of Q̃QQ) and the ones
hhh(1), . . . ,hhh(Nd) of HHH for the initial (resp. pro-
cessed) database. We observe that the first
component H1 of HHH is highly correlated to
the first component Q1 of QQQ (resp. Q̃1 of Q̃QQ)
and is almost not correlated with the other
components of QQQ (resp. Q̃QQ) for the initial
(resp. processed) database. Then, the sec-
ond component H2 of HHH is strongly correlated
to the second and third components Q2 and
Q3 of QQQ (resp. Q̃2 and Q̃3 of Q̃QQ) and have
very small correlations with the other com-
ponents of QQQ (resp. Q̃QQ) for the initial (resp.
processed) database. Lastly, the third com-
ponent H3 of HHH is mostly correlated with the
fifth component Q5 of QQQ (resp. Q̃5 of Q̃QQ) and
to a lesser extent with the fourth component
Q4 of QQQ (resp. Q̃4 of Q̃QQ), while the fourth
component H4 of HHH is highly correlated with
the fourth, seventh and ninth components Q4,
Q7 and Q9 of QQQ (resp. Q̃4, Q̃7 and Q̃9 of Q̃QQ)
and to a lesser extent with the fifth component
Q5 of QQQ (resp. Q̃5 of Q̃QQ) for the initial (resp.
processed) database. It should be noted that
the values of the significant correlation coef-
ficients are higher for the processed database
than for the initial database, and therefore the
target random vector HHH is more sensitive to
the processed input random vector Q̃QQ than to

the initial one QQQ. Also, let us mention that
the sixth and eighth components Q6 and Q8

of QQQ (resp. Q̃6 and Q̃8 of Q̃QQ) are almost un-
correlated with any component of HHH for the
initial (resp. processed) database, so that the
corresponding Nd independent realizations
q(1)6 , . . . ,q(Nd)

6 and q(1)8 , . . . ,q(Nd)
8 of Q6 and Q8

(resp. q̃(1)6 , . . . , q̃(Nd)
6 and q̃(1)8 , . . . , q̃(Nd)

8 of Q̃6

and Q̃8) could have been removed from the
initial (resp. processed) database.
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(a) Initial database with input random vector QQQ = (Q1, . . . ,Q9)
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(b) Processed database with input random vector Q̃QQ = (Q̃1, . . . , Q̃9)

Figure 1. Matrix of correlation coefficients between
each of the components of input random vector QQQ
(resp. Q̃QQ) and of target random vector HHH for the ini-
tial database (a) (resp. the processed database (b)).
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3 DESIGN OF THE NEURAL NET-

WORK

3.1 Defining the neural network architec-
ture, data division and training algo-
rithm

In this work, we consider multilayer feed-
forward static neural networks composed of
an input layer with 9 neurons, an output
layer with 4 neurons, and one (or two) hid-
den layer(s) of neurons in between. A tan-
sigmoid transfer function is used in the hid-
den layer(s) and a linear transfer function
in the output layer. Different configura-
tions have been tested for the two-layer (resp.
three-layer) neural network with one (resp.
two) hidden layer(s) and one output layer,
by considering a number of hidden neurons
varying from 4 to 500 (resp. from 4 to 75)
in the hidden layer (resp. each of the two
hidden layers). The complete dataset con-
taining the Nd input and target vectors has
been randomly divided into three distinct sub-
sets for training, validation and testing. The
first subset (training set) consisting of 70%
of the data is used to train the neural net-
work with the backpropagation training algo-
rithm [Hagan et al., 1996] by performing gra-
dient (or Jacobian) computations and updat-
ing the network parameters (weights and bi-
ases). The second subset (validation set) con-
sisting of 15% of the data is used to monitor
the training progress by computing the mean
squared error on the validation set during the
training iterations in order to stop the training
before overfitting the data for a good network
generalization. The third subset (test set) con-
sisting of 15% of the data is used to asses the
network performance after training and vali-
dation. Both the network input and target vec-
tors are preprocessed and normalized in the
standard range [−1 ,1] before presenting and
applying them to the neural network. After
training, the network output vectors are then
transformed back to the original scale (units)
of the network target vectors for future use.
The initial weight and bias values in the hid-
den layer(s) and in the output layer have been
generated using the Nguyen-Widrow initial-

ization method [Nguyen and Widrow, 1990].
The scaled conjugate gradient (SCG) opti-
mization algorithm has been used as back-
propagation algorithm to train both the two-
and three-layer neural networks. All the
computations have been performed using
the MATLAB Neural Network Toolbox™
[Beale et al., 1992] (now part of the Deep
Learning Toolbox™), the Parallel Computing
Toolbox™, the Statistics and Machine Learn-
ing Toolbox™ and the Optimization Tool-
box™. The multilayer neural networks have
been trained and simulated by using a high-
performance GPU on a single computer with
three GPUs and a hundred CPUs.

3.2 Measuring the neural network perfor-
mances

The performances of the trained two- and
three-layer neural networks have been as-
sessed by (i) computing the normalized mean
squared error (mse) between the network out-
puts and corresponding targets, (ii) perform-
ing a linear regression analysis, and (iii)
comparing the marginal probability density
functions (pdfs) of each component of ran-
dom vector HHH = (H1,H2,H3,H4) of hyper-
parameters estimated by using the univariate
Gaussian kernel density estimation method
[Bowman and Azzalini, 1997] with the net-
work output data on the one hand and with
the network target data on the other hand.

As a first measure of the network per-
formance, the normalized mean squared er-
rors obtained for the trained two- and three-
layer neural networks have been computed
for the training, validation, test and complete
datasets. The best trained neural networks ob-
tained with the SCG algorithm have been cho-
sen as the ones with the lowest normalized
mse on the test set. For the initial (resp. pro-
cessed) database, the best trained two-layer
neural network contains 50 (resp. 400) hid-
den neurons in the hidden layer with 704
(resp. 5604) weights and biases, while the
best trained three-layer neural network con-
tains 75 and 20 (resp. 75 and 50) hidden
neurons in the first and second hidden lay-
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ers, respectively, with a total of 2354 (resp.
4754) weights and biases. Table 1 shows the
normalized mean squared errors obtained for
the best two-layer and three-layer neural net-
works trained from the initial and processed
databases, for the complete dataset and each
of the training, validation and test subsets.
For both initial and processed databases and
both two- and three-layer neural networks,
the network performances (normalized mse)
are similar for each of the training, valida-
tion, test and complete datasets. However,
the network performances obtained with the
processed database (around 10−5) are sig-
nificantly better than that obtained with the
initial database (around 10−2). Also, the
best three-layer neural network shows slightly
better performances than the best two-layer
neural network for both the initial and pro-
cessed databases. Finally, the best overall
network performance (normalized mse com-
puted on the complete dataset) is obtained
with the three-layer neural network trained
from the processed database and is equal to
3.48×10−5, and the corresponding training,
validation and test performances are equal to
3.47×10−5, 3.53×10−5 and 3.48×10−5, re-
spectively.

Table 1. Normalized mean squared errors obtained
for the best two-layer and three-layer neural networks
trained from the initial and processed databases.

Initial database

Dataset
Two-layer Three-layer
neural network neural network

Training 1.46×10−2 1.44×10−2

Validation 1.48×10−2 1.46×10−2

Test 1.45×10−2 1.44×10−2

Complete 1.46×10−2 1.45×10−2

Processed database

Dataset
Two-layer Three-layer
neural network neural network

Training 4.55×10−5 3.47×10−5

Validation 4.66×10−5 3.53×10−5

Test 4.55×10−5 3.48×10−5

Complete 4.57×10−5 3.48×10−5

As a second measure of the network per-
formance, a linear regression analysis is per-
formed between the network outputs and cor-
responding targets. The regression plots
across the complete dataset are shown in Fig-
ures 2 and 3 for the best three-layer neural
network trained from the initial and processed
databases, respectively. In each plot, the net-
work outputs and corresponding targets are
represented by open black circles, the perfect
fit (outputs exactly equal to targets) is repre-
sented by a dashed green line, and the best
linear fit (linear regression between outputs
and targets) is represented by a solid red line.
The regression value (R-value), defined as the
usual statistical estimate of the correlation co-
efficient between each output and the corre-
sponding target, is given at the top of each
regression plot. For the initial database, the
best linear fit between network outputs and
corresponding targets, although not perfect, is
fairly good with R-values over 0.95 for dis-
persion parameter H1, 0.96 for spatial corre-
lation length H2, 0.70 for mean bulk mod-
ulus H3, and 0.98 for mean shear modulus
H4. Nevertheless, the scatter plots of the net-
work outputs and corresponding targets ex-
hibit a large dispersion, showing that some
data points in the dataset have poor fits, espe-
cially for H3. For the processed database, the
best linear fit between network outputs and
corresponding targets is almost perfect with
R-values very close to 1 for all random hy-
perparameters H1, H2, H3 and H4. Also, the
scatter plots of the network outputs and corre-
sponding targets exhibit a very small disper-
sion for all random hyperparameters H1, H2,
H3 and H4, showing a significantly better fit
for the processed database than for the initial
database.
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(a) dispersion parameter H1 (b) correlation length H2 [µm]

(c) mean bulk modulus H3 [GPa] (d) mean shear modulus H4 [GPa]

Figure 2. Initial database: linear regression between
network outputs and corresponding targets for each
random hyperparameter H1, H2, H3 and H4.

(a) dispersion parameter H1 (b) correlation length H2 [µm]

(c) mean bulk modulus H3 [GPa] (d) mean shear modulus H4 [GPa]

Figure 3. Processed database: linear regression be-
tween network outputs and corresponding targets for
each random hyperparameter H1, H2, H3 and H4.

As a third measure of the network per-
formance, the marginal pdfs pH1 , pH2 ,
pH3 and pH4 of random hyperparame-
ters H1, H2, H3, H4, respectively, which
are assumed to be uniform random vari-
ables, are estimated by using the univariate
Gaussian kernel density estimation method
[Bowman and Azzalini, 1997] with the Nd
network output data obtained using the best
three-layer neural network trained from the
initial database on the one hand and from the
processed database on the other hand. These
output pdfs are compared in Figure 4 to the

uniform target pdfs and to the target pdfs esti-
mated by using the univariate Gaussian kernel
density estimation method with the Nd associ-
ated target data. The output pdfs constructed
from the output vectors of the best neural net-
work trained with the processed database per-
fectly match the associated target pdfs, while
the output pdfs constructed from the output
vectors of the best neural network trained
with the initial database have a worse fit, es-
pecially for H3.

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8
0

0.5

1

1.5

2

2.5

3

3.5

h1

p
H

1
(h

1
)

(a) pH1 (h1)

−50 0 50 100 150 200 250 300
0

1 000

2 000

3 000

4 000

5 000

6 000

7 000

h2 [µm]

p
H

2
(h

2
)

(b) pH2 (h2)

6 8 10 12 14 16 18
0

0.5

1

1.5

2

2.5
×10−10

h3 [GPa]

p
H

3
(h

3
)

(c) pH3 (h3)

2 3 4 5
0

1

2

3

4

×10−10

h4 [GPa]

p
H

4
(h

4
)

Uniform

Target

Output (initial database)

Output (processed database)

(d) pH4 (h4)

Figure 4. Probability density functions (pdfs) pH1 , pH2 ,
pH3 and pH4 of random variables H1, H2, H3 and H4,
respectively, with the uniform target pdfs (green), the
estimated target pdfs (red), and the estimated output
pdfs computed by using the best neural network trained
with the initial database (black) and with the processed
database (blue)

Finally, the best neural network trained
with the processed database (obtained by con-
ditioning the network input vectors contained
in the initial database with respect to the net-
work target vectors) can directly be used for
identifying the value hhhout of random hyperpa-
rameters vector HHH corresponding to a given
observed vector qqqobs of quantities of interest.
The conditioning of the initial database then
appears to be a key step in obtaining an ef-
ficient trained neural network for solving the
statistical inverse problem.
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4 NUMERICAL RESULTS

The proposed neural network-based identifi-
cation method is first validated on synthetic
data obtained through numerical simulations
and then applied to real experimental data
obtained through mechanical tests monitored
by digital image correlation on a real het-
erogeneous biological material (beef cortical
bone). Based on the numerical results ob-
tained in Section 3.2, we now consider the
best three-layer neural network trained with
the processed database for identification pur-
poses.

4.1 Validation on synthetic data

We first consider a given input vector qqqobs

of quantities of interest contained in the test
dataset of the processed database for validat-
ing the proposed neural network-based iden-
tification method. The network output vector
hhhout is directly computed by using the trained
neural network with qqqobs as input vector and
compared to the corresponding target vector
hhhtarget. The identification results are given in
Table 2.

Table 2. Synthetic data: comparison of output vector
hhhout = (hout

1 ,hout
3 ,hout

3 ,hout
4 ) with associated target vec-

tor hhhtarget = (htarget
1 ,htarget

3 ,htarget
3 ,htarget

4 ) obtained for a
given input vector qqqobs contained in the test dataset.

Hyperparameter h1 h2 h3 h4

[-] [µm] [GPa] [GPa]
Target value 0.5514 172.36 12.398 4.672
Output value 0.5501 172.61 12.322 4.693
Relative error 0.24% 0.14% 0.61% 0.46%

We observe that the values of output vector
hhhout computed by using the trained neural net-
work with qqqobs as input vector are very close
to the corresponding values of target vector
hhhtarget with relative errors less than 1% for
each of the hyperparameters h1, h2, h3 and h4.

4.2 Application to real experimental data

We now consider a given input vector qqqobs of
observed quantities of interest coming from

experimental measurements of 2D displace-
ment fields obtained from a single static ver-
tical uniaxial compression test performed on
a cubic specimen (with dimensions 1×1×
1 cm3) made of a biological tissue (beef
femur cortical bone) and monitored by 2D
digital image correlation (DIC) on one ob-
served side of the cubic specimen correspond-
ing to a 2D square domain with dimensions
1×1 cm2. Such experimental kinematic
field measurements have been carried out
in [Nguyen et al., 2016] and already used in
[Nguyen et al., 2015, Zhang et al., 2020] for
identifying the apparent elastic properties of
bovine cortical bone at mesoscale. As for
the previous validation example on synthetic
data, the trained neural network is used to
compute the output vector hhhout for the exper-
imentally observed input vector qqqobs. Table 3
reports the values of output vector hhhout.

Table 3. Real experimental data: output vector hhhout =
(hout

1 ,hout
3 ,hout

3 ,hout
4 ) obtained for a given input vector

qqqobs of experimentally observed quantities of interest.

Hyperparameter h1 h2 h3 h4

[-] [µm] [GPa] [GPa]
Output value 0.6106 65.906 10.448 4.598

The values of the output vector
hhhout = (0.6106,65.906,10.448,4.598)
in ([−], [µm], [GPa], [GPa]) obtained
for the input vector qqqobs are close
to the values of the optimal vector
hhhopt = (0.533,61.111,10.500,4.667) in
([−], [µm], [GPa], [GPa]) obtained in the pre-
vious work [Zhang et al., 2020] by solving a
costly multi-objective optimization problem
using a fixed-point iterative algorithm with
the same experimental measurements as
those used in the present work. The identified
values obtained with the previous method
in [Zhang et al., 2020] result from a com-
promise between computational efficiency
and numerical accuracy and are therefore
less accurate than the ones obtained with the
neural network-based identification method
proposed in this work. Finally, the network
output values are in agreement with the
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identified values already published in the
literature for this type of biological tissue
(bovine cortical bone).

5 CONCLUSION

A data-driven identification method based on
artificial neural networks has been presented
in this paper for solving the statistical inverse
problem related to the identification of the
hyperparameters of a prior stochastic model
of the random compliance field characteriz-
ing the apparent elastic properties of hetero-
geneous materials with complex random mi-
crostructure. This statistical inverse problem
has been formulated as a function approxi-
mation problem and solved by using an ar-
tificial neural network trained from a large
numerical database. An initial database has
first been constructed by using forward nu-
merical simulations of a multiscale stochas-
tic forward computational model. A pro-
cessed database has then been derived by con-
ditioning the input data contained in the ini-
tial database with respect to the target data. A
sensitivity analysis of the target data with re-
spect to the input data contained in each of the
two databases has been performed. Two- and
three-layer feedforward neural networks have
been trained with each of the two databases
and optimized by considering different net-
work configurations. Numerical results show
that the neural networks trained with the pro-
cessed database exhibit much better perfor-
mances in terms of mean squared error, linear
regression fit and marginal probability distri-
butions between network outputs and targets
compared to the ones trained with the ini-
tial database. The conditioning of the ini-
tial database turns out to be an essential step
in obtaining an efficient trained neural net-
work for solving the underlying statistical in-
verse problem. Finally, the proposed neural-
network based identification method has been
validated on synthetic data coming from nu-
merical simulations and then applied to real
experimental data coming from physical ex-
periments on a biological tissue (beef cortical

bone).
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