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. We study the self-dual class in length at most 196. We use three competing methods of generation: Exhaustion, Linear Algebra and Gröbner bases. Regular Hadamard matrices and Bush-type Hadamard matrices provide many examples. We conjecture that if v is an even perfect square, a self-dual bent sequence of length v always exists. We introduce the strong automorphism group of Hadamard matrices, which acts on their associated self-dual bent sequences. We give an efficient algorithm to compute that group.

Introduction

Bent functions and bent sequences are classical objects in algebraic combinatorics with sundry connections to design theory, distance regular graphs, and symmetric cryptography [START_REF] Mesnager | Bent Functions. Fundamentals and Results[END_REF], [START_REF] Tokareva | Bent Functions. Results and Applications to Cryptography[END_REF]. In [START_REF] Solé | Bent sequences over Hadamard codes for physically unclonable functions[END_REF] a new notion of bent sequence was introduced as a solution in X, Y to the system

HX = Y,
where H is a Hadamard matrix of order v, normalized to H = H/ √ v and X, Y ∈ {±1} v . Given H the vector X defines a Hadamard bent (binary) sequence by the correspondence x → (X x + 1)/2. When v is a power of 2 and H is the Hadamard matrix of Sylvester type, we recover the classical notion of bent sequence [START_REF] Mesnager | Bent Functions. Fundamentals and Results[END_REF], [START_REF] Tokareva | Bent Functions. Results and Applications to Cryptography[END_REF]. They meet the covering radius of Hadamard codes (see §2, Lemma 1) in the same way that classical bent functions meet the covering radius of the first order Reed-Muller code [START_REF] Macwilliams | The Theory of Error-Correcting Codes[END_REF]Chap.14,Th.6]. Beyond generalization for the sake of generalization, this notion was introduced in [START_REF] Solé | Bent sequences over Hadamard codes for physically unclonable functions[END_REF] from a cryptographic perspective (see §6 for details). We believe this concept has a combinatorial interest of its own, as it pertains to the fine print of Hadamard matrix theory: regular matrices, and automorphism groups.

It is proved in [START_REF] Solé | Bent sequences over Hadamard codes for physically unclonable functions[END_REF] that this kind of bent sequence can only exist if v is a perfect square. As is well-known, Hadamard matrices of order v > 2 only exist for v a multiple of 4. Thus we reduce to v = 4m 2 = (2m) 2 with m an integer (in practice 1 ≤ m ≤ 7).

In [START_REF] Carlet | Self-dual bent functions[END_REF], when H is of Sylvester type, a linear algebra technique is used to find self-dual bent sequences, a situation which corresponds to the case X = Y in the above equation. Namely X is, in particular, an eigenvector associated to the eigenvalue 1 of H. The condition X ∈ {±1} v has to be checked independently, using a basis of the eigenspace.

In order for the approach of [START_REF] Carlet | Self-dual bent functions[END_REF] to work for more general Hadamard matrices than Sylvester type, we need to assume that H has the eigenvalue 1 in its spectrum, and that the dimension of the associated eigenspace is not too large, as this parameter controls the complexity of the search. Another algebraic technique consists in reducing the existence of a sequence of length v to a quadratic system in v variables, which can be solved by using Gröbner bases. This second method works well as long as the number of variables is less than one hundred. The brute force approach which consists in checking all 2 v possible X's is not feasible for v > 30, say.

A connection with regular Hadamard matrices is pointed out. Every regular Hadamard matrix admits the all-one vector as a self-dual bent sequence. In particular, Bush-type Hadamard matrices of order v = 4u 2 afford at least 2 2u self-dual bent sequences. The Karaghani conjecture [START_REF] Kharaghani | On the twin designs with the Ionin-type parameters[END_REF] on the existence of regular Hadamard matrices suggests then that self-dual bent sequences exist for all even perfect square orders (Conjecture 1). This conjecture is satisfied for all even square orders where a regular Hadamard matrix exists. The first unknown order seems to be v = 4u 2 for u = 47.

We introduce the notion of strong automorphism group of a Hadamard matrix. This group acts on the associated self-dual bent sequences. We give an efficient algorithm to compute it, based on a digraph defined from the matrix. We also connect this group to the group of polarities of the Menon design defined by the matrix.

The material is organized as follows. The next section collects notions and notations needed in the following sections. Section 3 investigates interesting properties of self-dual bent sequences, and Section 4 develops the three search methods. Then Section 5 displays the numerical results we found. Section 6 introduces the application of Hadamard bent sequences. Section 7 concludes the article. An appendix develops the construction techniques of Hadamard matrices of order 16, 36, 64, 100, 144 and 196.

2 Background material

Hadamard matrices

A Hadamard matrix H of order v is a v by v real matrix with entries ±1 satisfying HH t = vI v , where H t is the transpose of H and I v is the identity matrix of order v. If v > 2 it is well-known that v must be a multiple of 4 [START_REF] Macwilliams | The Theory of Error-Correcting Codes[END_REF]. An important construction of Hadamard matrices, due to Sylvester is obtained for v = 2 h , when H is indexed by binary vectors of length h and H xy = (-1) x,y , where x, y = h i=1

x i y i . We denote henceforth this matrix by S v . For more general constructions, properties and applications of Hadamard matrices we refer the reader to [START_REF] Horadam | Hadamard Matrices and Their Applications[END_REF]. A Hadamard matrix of order v is normalized if both first row and first column are equal to the all-one vector. A Hadamard matrix of order v is regular if its v row and column sums are all equal to a constant σ. In that case, it is known that v = 4u 2 with u a positive integer and that σ = 2u or -2u [START_REF] Wallis | Combinatorics: Room Squares, Sum-Free Sets, Hadamard Matrices[END_REF]. A special class is that of Bush-type Hadamard matrices [START_REF] Bush | Unbalanced Hadamard matrices and finite projective planes of even order[END_REF]. A Hadamard matrix of order v = 4u 2 is said to be Bush-type if it is blocked into 2u blocks of side 2u, denoted by H ij , such that the diagonal blocks H ii are all-ones, and that the off-diagonal blocks have row and column sums zero.

Bent Boolean functions

A Boolean function f of arity h is any map from F h 2 to F 2 . The sign function of f is defined by F (x) = (-1) f (x) . The Walsh-Hadamard transform of f is defined as

f (y) = x∈F h 2 (-1) x,y +f (x) .
Thus in term of vectors

f = S v F.
A Boolean function f is said to be bent iff its Walsh-Hadamard transform takes its values in {±2 h/2 }. Such functions can only exist if h is even. The dual of a bent function f is defined by its sign function f /2 h/2 [START_REF] Carlet | Self-dual bent functions[END_REF]. A bent function is said to be self-dual if it equals its dual. In terms of the Sylvester matrix the sign function F of a self-dual bent function satisfies

S v F = F where S v = Sv 2 h/2 and v = 2 h .

Hadamard bent sequences

If H is a Hadamard matrix of order v a bent sequence of length v attached to H is any vector X ∈ {±1} v , such that

HX = Y,
where H = H/ √ v and Y ∈ {±1} v . The dual sequence of X is defined by Y = HX. If Y = X, then X is a self-dual bent sequence attached to H. It is easy to see that the vector Y is itself a bent sequence attached to H t .

When H = S v we recover the definitions of the preceding subsection.

Hadamard codes

We consider codes over the alphabet A = {±1}. If H is a Hadamard matrix of order v, we construct a code C of length v and size 2v by taking the columns of H and their opposites. Let d(., .) denote the Hamming distance on A. The covering radius of a code C of length v over A is defined by the formula

r(C) = max y∈A v min x∈C d(x, y).
The following lemma is immediate by Theorems 1 and 2 of [START_REF] Solé | Bent sequences over Hadamard codes for physically unclonable functions[END_REF].

Lemma 1 Let v be an even perfect square, and let H be a Hadamard matrix of order v, with the associated Hadamard code C. The vector

X ∈ A v is a bent sequence attached to H iff min Y ∈C d(X, Y ) = r(C) = v - √ v 2
.

Remark 1 This lemma generalizes nicely Theorem 6 of [30, Chap.14].

Graphs

A directed graph (digraph for short) on a set V of vertices is determined by a set of arcs E ⊆ V × V . Declare two vertices x, y adjacent and write x ∼ y iff (x, y) ∈ E. The adjacency matrix A is then defined by

A xy = 1 if x ∼ y, 0 if x y.
The automorphism group of such a digraph is the group of permutations on V that preserve incidence.

3 Properties of self-dual bent sequences

Automorphism groups

The class of Hadamard matrix of order v is preserved by the three following operations:

• row permutation,

• column permutation,

• row or column negation, which form a group G(v) with structure {Sym(v) Sym(2)} 2 , where Sym(n) denotes the symmetric group on n letters, and denotes the wreath product . We denote by S(v) the group of diagonal matrices of order v with diagonal elements in {±1}, and by M (v) the matrix group generated by P (v), the group of permutation matrices of order v, and S(v). The action of G(v) on a Hadamard matrix H is of the form

H → P HQ, with P, Q ∈ M (v).
The automorphism group Aut(H) of a Hadamard matrix H is defined classically as the set of all pairs (P, Q) ∈ G(v) such that P HQ = H [START_REF] Hall | Note on the mathieu group M 12[END_REF]. Some information on this group in the case of Paley matrices can be found in [START_REF] Crnković | Orbit matrices of Hadamard matrices and related codes[END_REF], [START_REF] Kantor | Automorphism groups of Hadamard matrices[END_REF], [START_REF] De Launey | Algebraic Design Theory[END_REF]. The cases of type I and type II (i.e., q ≡ 3 (mod 4) and q ≡ 1 (mod 4) where q is the prime power in the definition of Paley matrix) were exactly determined in [START_REF] Kantor | Automorphism groups of Hadamard matrices[END_REF] and [START_REF] De Launey | On the automorphisms of Paley's type II Hadamard matrix[END_REF], respectively. The automorphism group of (a generalization of) the Sylvester matrix can be found in [15, p. 101-103]. We give a characterization of Aut(H) for the Sylvester matrix S v .

Consider the action of an extended affine transform T A,b,d,c on a Boolean function f , i.e.,

f (x) → f (A -1 x + A -1 b) • (-1) d,x • c, where A is an m-by-m invertible matrix over F 2 , b ∈ F m 2 , d ∈ F m 2 , c ∈ {1, -1}. Theorem 1 The pair (T A,b,d,c , T (A -1 ) t ,d,b,c(-1) b,d ) is in Aut(S v ). Proof. By definition of S v , with v = 2 m , we have g = S v f iff g(y) = x∈F m 2 f • (-1) x,y . We compute S v T A,b,d,c (f ) by the same formula. x∈F m 2 T A,b,d,c f (x) • (-1) x,y = x∈F m 2 f (A -1 x + A -1 b) • (-1) d,x • c • (-1) x,y = c • x ∈F m 2 f (x ) • (-1) Ax +b,y+d //By taking x = Ax + b = c • (-1) b,y+d • x ∈F m 2 f (x ) • (-1) Ax ,y+d = c(-1) b,d • (-1) b,y • x ∈F m 2 f (x ) • (-1) x ,A t y+A t d = T (A -1 ) t ,d,b,c(-1) b,d g(y) Thus S v T A,b,d,c f = T (A -1 ) t ,d,b,c(-1) b,d g, and the pair (T A,b,d,c , T (A -1 ) t ,d,b,c(-1) b,d ) is in Aut(S v ).
To work on the symmetries of bent sequences we will require the notion of strong automorphism group SAut(H) of H defined as the set of P ∈ M (v) such that P H = HP . Then we can state the following result.

Proposition 1 If X is self-dual bent sequence for H, and if P ∈ M (v) is a strong automorphism of H, then P X is also self-dual bent sequence for H. Proof.

By hypothesis HX = X. Multiplying on left this equation by P we get P X = P HX = HP X.

Letting Y = P X, we see that HY = Y . A partial characterization in the case of SAut(S v ) is as follows. It is an immediate corollary of the preceding theorem and its proof is omitted.

Corollary 1 An extended affine transform T A,b,d,c is in SAut(S v ) iff A t = A -1 , b = d and wt H (b) is even. Remark 2 In particular, the number of such transforms is |O m |2 m where O m = {A ∈ GL(m, F 2 ) | AA t = I m }. By [24, Theorem 4], we know that • |O m | = 2 k 2 k-1 i=1 (2 2i -1) if m = 2k, • |O m | = 2 k 2 k i=1 (2 2i -1) if m = 2k + 1.
For the first few values of m, we get 1, 2, 8, 48, 768, 23040, 1474560, 185794560.

A stronger characterization of the automorphism group of the set of selfdual bent functions within all Hamming isometric maps is in [START_REF] Kutsenko | The group of automorphisms of the set of self-dual bent functions[END_REF]. A weaker form of our corollary appears in [START_REF] Feulner | Towards the classification of self-dual bent functions in eight variables[END_REF]Theorem 1] where the group of invertible matrices A satisfying A t = A -1 is called the orthogonal group. An algorithm to compute the strong automorphism group is given at the end of the section.

Two Hadamard matrices H and K are strongly equivalent if there is P ∈ M (v) such that P HP t = K. (This relation is an equivalence relation on the set of Hadamard matrices). Then they share the same self-dual bent sequences, up to a monomial transform, as the next result, the main motivation for this new concept, shows.

Proposition 2 If H and K are strongly equivalent Hadamard matrices, satisfying K = P HP t , with P ∈ M (v) then their respective sets of self-dual bent sequences, say S(H) and S(K), satisfy S(H) = P t S(K).

Proof.

If KX = √ vX for some X ∈ {±1} v , then let Y = P t X. We see that HY = √ vY and that Y ∈ {±1} v . The result follows. The database of Magma collects the orbits of Hadamard matrices under G(v) by their normalized representative. It is plain to see that the action of G(v) does not preserve the self-dual bentness property. A simple example is given by the pair of equivalent matrices H and -H who cannot allow a common nonzero self-dual bent sequence. In fact, the action of G(v) can produce self-dual bent sequences as the next result shows.

Proposition 3 If X is bent sequence for H, then there is an equivalent Hadamard matrix H such that X is self-dual bent sequence for H . Proof.

By hypothesis HX = Y . There is a matrix S ∈ S(v) such that Y = SX. Since S is an involution we have

X = SHX = H X,
where H = SH.

Regular Hadamard matrices

A direct connection between Hadamard bent sequences and regular Hadamard matrices is as follows.

Proposition 4 If H is a regular Hadamard matrix of order v = 4u 2 , with σ = 2u, then j is a self-dual bent sequence for H where j is the all-one vector of length v.

Proof.

By definition of regular Hadamard matrices Hj = σj = √ vj, yielding Hj = j.

Any construction of regular Hadamard matrices implies the existence of self-dual Hadamard bent sequences. The reference [START_REF] Crnković | A series of regular Hadamard matrices[END_REF] yields the following result.

Corollary 2 Let p and 2p -1 be prime powers and p ≡ 3 (mod 4), then there exists a self-dual Hadamard bent sequence of length 4p 2 . In particular p = 3 yields a self-dual Hadamard bent sequence of length 36, and p = 7 yields a self-dual Hadamard bent sequence of length 196.

Another construction, valid for some primes ≡ 7 (mod 16) can be found in [START_REF] Leung | New Hadamard matrices of order 4p 2 obtained from Jacobi sums of order 16[END_REF].

In fact each Bush-type Hadamard matrix implies the existence of many self-dual bent sequences.

Proposition 5 If H is a Bush-type Hadamard matrix of order v = 4u 2 , then there are at least 2 2u self-dual bent sequences for H. Proof. From the definition, we see that the sequence X defined by X t = (±j, . . . , ±j), where j is the all-one vector of length 2u, and the 2u signs ±1 are arbitrary, is self-dual bent sequence.

In view of Kharagani's conjecture that Bush-type Hadamard matrices exist for all even perfect square orders [START_REF] Kharaghani | On the twin designs with the Ionin-type parameters[END_REF], the two previous propositions suggest the following.

Conjecture 1 If v is an even perfect square, then there exists a self-dual Hadamard bent sequence for some Hadamard matrix of order v.

We show that the Kronecker product of two self-dual bent sequences is also self-dual bent sequence. Recall that the Kronecker product K = X ⊗ Y of two sequences X and Y of respective lengths v and w is defined by K (i,j) = X i Y j . Similarly, the Kronecker product of two Hadamard matrices U and V of respective orders v and w can be defined as

(U ⊗ V ) (i,j),(k, ) = U ij V k .
Proposition 6 If X and Y are two self-dual bent sequences with respective Hadamard matrices U and V , then X ⊗Y is a self-dual bent sequence attached to U ⊗ V . Proof.

As is well-known [START_REF] Wallis | Combinatorics: Room Squares, Sum-Free Sets, Hadamard Matrices[END_REF], if both U and V are Hadamard matrices then so is (U ⊗ V ). Now the relations X

√ v = U X and Y √ w = V Y entail (U ⊗ V )(X ⊗ Y ) = √ vw(X ⊗ Y ).
This completes the proof. This implies for instance, the existence of self-dual bent sequences of length 64 = 4 × 16, from the existence of self-dual bent sequences in lengths 4 and 16.

Computing the strong automorphism group 3.3.1 The strong automorphism group

Define a digraph G(H) by its adjacency matrix A(H) as follows. This matrix is obtained by replacing in H

• the 1's by 1 0 0 1 ,

• the -1's by 0 1 1 0 .

Theorem 2 The group SAut(H) is isomorphic to the automorphism group of G(H).

Proof. First, we note that any automorphism of G(H) do not break the blocks {0, 1}, {1, 2}, . . . , {2n -2, 2n -1} (we assume that the vertices of G(H) are the indices of the corresponding columns/rows in A(H)). Indeed, two vertices are in the same block if and only if their neighborhoods do not intersect.

The rest is straightforward. Permuting blocks of vertices in G(H) corresponds to permuting the column/row indices of H, while swapping two vertices in the same block corresponds to the negation of the corresponding row and column in H.

Remark 3 This graphical method can also be used to check if two Hadamard matrices are strongly equivalent.

The permutation part

The permutation part C(H) of the strong automorphism group SAut(H) defined by C(H) = {P ∈ P (v) | P H = HP } admits an intuitive interpretation in terms of directed graphs (digraphs).

Let Γ(H) denote the digraph with adjacency matrix A where H = J -2A, and J denote the v by v all-one matrix.

Theorem 3 The group C(H) is the group of isomorphisms of Γ(H).

Proof.

Since P ∈ P (v), we have P J = JP = J. Thus HP = P H iff P A = AP . Assume now that i, j have respective preimages h and k under P . Computing matrix products we get

(P A) hj = a ij = (AP ) hj = a hk .
Thus i ∼ j iff h ∼ k which shows that P preserves adjacency in Γ(H) .

Remark 4

The above proof is a direct extension of the proof of [START_REF] Biggs | Algebraic Graph Theory, ser. Camb. Tracts Math[END_REF]Prop. 15.2] from graphs to digraphs.

Example 1 Let H be the Paley type II Hadamard matrix of order 36. Then Magma [START_REF] Bosma | Handbook of Magma functions[END_REF] commands HadamardAutomorphismGroup and AutomorphismGroup allow us to compute

• |Aut(H)| = 2 7 × 3 2 × 17, • |SAut(H)| = 2 5 × 3 2 × 17, • |C(H)| = 2 3 × 17.
Note that the latter number divides the former, as it should, since C(H) can be embedded in a subgroup of Aut(H) by writing P HP t = H. More generally |C(H)| divides |SAut(H)| which divides |Aut(H)|. In the next table we give the same information for the 5 matrices of order 16 in Magma database. The first row is the index j of H in the Magma database.

j 1 2 3 4 5 |Aut(H)| 2 15 × 3 2 × 5 × 7 2 12 × 3 × 7 2 12 × 3 × 7 2 15 × 3 2 2 14 × 3 |SAut(H)| 2 9 × 3 2 × 5 2 2 2 2 2 |C(H)| 2 4 × 3 2 × 5 1 1 1 1 

Involutions

Define further the group C 2 (H) = {P ∈ C(H) | P 2 = I}, consisting of the identity and of the involutions in C(H). This can be interpreted in terms of combinatorial designs. Consider the incidence system (V, B, I) defined by the following three rules:

• V is the set of rows of H,
• B is the set of columns of H,

• i I j iff H ij = -1.
A duality π of this incidence system on its dual (B, V, I) is then defined as a bijection π between V and B that preserves incidence: B and V are swapped by π and iIj iff π(i)Iπ(j) (Cf [2, (4.1.b) p. 34, Def. 4.9]). The set of all dualities form a group for map composition. Furthermore if a duality is an involution, it is called a polarity. In terms of the incidence matrix A of I, a permutation matrix P is a polarity if P A = A t P t and P t = P , or, equivalently, if P A = A t P and P t = P .

Theorem 4 If H is symmetric, then the group C 2 (H) coincides with the group of polarities of the above incidence structure.

Proof.

The incidence matrix A of (V, B, I) satisfies by definition H = J -2A, where J denotes the v by v all-one matrix. If H is symmetric, then H = H t , and, since J = J t , we have A = A t . Since P ∈ P (v), we have P J = JP = J. Thus HP = P H iff P A = AP , or, equivalently, iff P A = A t P . The result follows.

Search Methods

Exhaustion

This method is only applicable for small v's.

(1) Construct H a Hadamard matrix of order v.

Compute H = 1 √ v H. (2) For all X ∈ {±1} v compute Y = HX. If Y = X, then X is self-dual bent sequence attached to H. Complexity: Exponential in v since |{±1} v | = 2 v .

Gröbner bases

The system HX = X with X ∈ {±1} v can be thought of as the real quadratic system HX = X, ∀i ∈ [1, v], X 2 i = 1. For background material on Gröbner bases we refer the reader to [START_REF] Adams | An Introduction to Gröbner Bases[END_REF].

More concretely, we can consider the following steps.

(i) Construct the ring P of polynomial functions in v variables X i , i = 1, . . . v.

(ii) Construct the linear constraints HX = X.

(iii) Construct the quadratic constraints ∀i ∈ [1, v], X 2 i = 1.
(iv) Compute a Gröbner basis for the ideal I of P determined by constraints (ii) and (iii).

(v) Compute the solutions as the zeros determined by I.

With a tip from Delphine Boucher we produced the following program in Magma [START_REF] Bosma | Handbook of Magma functions[END_REF] in the case v = 4. This program is easy to adapt for higher v's. We give it here for exposition purpose only.

F:=RationalField(); //Polynomial ring defining the variables var := 4; P< w, x, y, z > := PolynomialRing(F,var);

//The equations of the system one wants to solve over F

sys := [w+x+y+z-2 * w, w-x+y-z-2 * x, w+x-y-z-2 * y, w-x-y+z-2 * z, w 2 -1, x 2 -1, y 2 -1, z 2 -1];
//The ideal of the relations I := ideal< P |sys >;

//Computation of a Gröbner basis (for the lexicographical order if no other order is specified) Gröbner(I:Faugere:=true); //The set of solutions, S S:=Variety(I); S; Complexity: In general the complexity of computing a Gröbner basis in v variables can be doubly exponential in v [START_REF] Adams | An Introduction to Gröbner Bases[END_REF]. However, for the systems at hand the complexity is at most singly exponential [START_REF] Caminata | Solving multivariate polynomial systems and an invariant from commutative algebra[END_REF]Th.10]. The authors are grateful to Elisa Gorla for pointing this out.

Numerics

The following Table 1 gives an upper bound on the dimension of the eigenspace attached to the eigenvalue 1 of H. The row # gives the number of non-Sylvester Hadamard matrices of given order in the Magma database [START_REF] Bosma | Handbook of Magma functions[END_REF]. Given how small these upper bounds are, the method of Subsection 4.2 is very successful. By using linear algebra method, we verify that there is no self-dual bent sequence in above (non-Sylvester) Hadamard matrices. In particular, the Magma database contains only one matrix for v ∈ {100, 144, 196}, respectively. We thus have to construct extra matrices as explained in the Appendix. In Table 2, each column corresponds to one type of matrix from the Appendix1 .

All detailed self-dual bent sequences for the above Hadamard matrices in Table 2 are publicly available on Github: https://github.com/ Qomo-CHENG/Hadamard_bent.

Application

A recent and original application of Hadamard bent sequences, first introduced in [START_REF] Solé | Bent sequences over Hadamard codes for physically unclonable functions[END_REF], lies in Physical Unclonable Functions (PUFs). PUFs can be Types Sylvester Bush [START_REF] Janko | The existence of a Bush-type Hadamard matrix of order 36 and two new infinite classes of symmetric designs[END_REF], [START_REF] Janko | A block negacyclic Bush-type Hadamard matrix and two strongly regular graphs[END_REF] Paley Regular [START_REF] Crnković | Some new symmetric designs with parameters[END_REF] Regular by Switching Regular [START_REF] Crnković | Orbit matrices of Hadamard matrices and related codes[END_REF] Regular [START_REF] Pavčević | Symmetric designs of Menon series admitting an action of Frobenius groups[END_REF] Regular Menon [START_REF] Crnković | Orbit matrices of Hadamard matrices and related codes[END_REF] Bush [START_REF] Crnković | A construction of some symmetric (144, 66, 30) designs[END_REF], [START_REF] Pavčević | Symmetric designs of Menon series admitting an action of Frobenius groups[END_REF] Regular [START_REF] Crnković | A construction of some symmetric designs with parameters (196, 91, 42[END_REF] # of H viewed as the fingerprint of a circuit, which generate unique outputs because of uncontrollable technological dispersions during the manufacturing process of silicon chips. They are employed for many security purposes like authentications [START_REF] Delvaux | A survey on lightweight entity authentication with strong PUFs[END_REF], cryptographic key generations [START_REF] Shamsoshoara | A survey on physical unclonable function (PUF)-based security solutions for Internet of Things[END_REF], etc. A PUF usually generates a series of random bits (by feeding customized inputs) that uniquely depends on the corresponding circuit. Therefore, one of the metrics of the performance of a PUF is the entropy of the generated random bits [START_REF] Rioul | On the entropy of physically unclonable functions[END_REF]. For instance, we expect to generate cryptographic keys as randomly as possible in practice, leading to as high entropy as possible. It is demonstrated in [START_REF] Rioul | On the entropy of physically unclonable functions[END_REF] that v inputs generated from a Hadamard matrix (e.g, v row vectors) can achieve the maximal entropy of v bits in PUFs. Later on, as demonstrated in [START_REF] Solé | Bent sequences over Hadamard codes for physically unclonable functions[END_REF], bent sequences maximize the entropy of outputs when adding one more sequence (then v + 1 sequences in total) to the Hadamard code (v, 2v). When they exist, bent sequences reach the covering radius of the Hadamard code constructed from a Hadamard matrix as in §2 (Cf. Lemma 1). The main conjecture of [START_REF] Solé | Bent sequences over Hadamard codes for physically unclonable functions[END_REF], checked numerically for small v (e.g., v ≤ 16), is that maximizing the entropy of outputs is equivalent to adding a new codeword at distance the covering radius of the Hadamard code. In this respect, we construct various Hadamard matrices for different v up to 196 and verify the existence of self-dual bent sequences in this paper.

Conclusion

We have considered the self-dual bent sequences attached to Hadamard matrices from the viewpoints of generation and symmetry. Our generation method based on linear algebra works especially well when the eigenvalue 1 of the normalized Hadamard matrix has low geometric multiplicity. For some matrices of order 100 this method performs well, while the Gröbner basis method cannot finish. The lack of Hadamard matrices of order > 36 in Magma database [START_REF] Bosma | Handbook of Magma functions[END_REF] has led us to use the switching method of [START_REF] Crnković | Switching for 2-designs[END_REF] to generate more matrices. In general, it would be a worthy research project to enrich the known databases, even in the cases where complete enumeration of equivalence classes is unfeasible. In the same vein, refining the classification of Hadamard matrices for v ≤ 28 from equivalence to strong equivalence would be of interest.

We note that the concept of self-dual bent sequences being not invariant by Hadamard equivalence, classification of these become infeasible, even for matrices of small order. In general, classification at order v would require to consider (v!2 v ) 2 matrices for each orbit representative. This makes already 147456 for v = 4.

A Appendix on Hadamard matrices

In this section we indicate that how to construct Hadamard matrices of orders not sufficiently covered in Magma Hadamard database [START_REF] Bosma | Handbook of Magma functions[END_REF].

A.1 Order 16

There are five Hadamard matrices in Magma database and the first one is of the Sylvester type.

A.2 Order 36

Bush-type Hadamard matrices can be found in [START_REF] Janko | The existence of a Bush-type Hadamard matrix of order 36 and two new infinite classes of symmetric designs[END_REF], [START_REF] Janko | A block negacyclic Bush-type Hadamard matrix and two strongly regular graphs[END_REF]. More can be generated by switching [START_REF] Crnković | Switching for 2-designs[END_REF].

A.3 Order 64

16 regular Hadamard matrices were obtained from the symmetric (64, 28, 12) designs constructed in [START_REF] Crnković | Some new symmetric designs with parameters[END_REF]. One regular Hadamard matrix was obtained by switching [START_REF] Crnković | Switching for 2-designs[END_REF].

A.4 Order 100

Two Hadamard matrices can be obtained from symmetric designs (100, 45, 20) constructed in [START_REF] Crnković | Orbit matrices of Hadamard matrices and related codes[END_REF]. One Hadamard matrix can be obtained from the symmetric design (100, 45, 20) obtained in the reference [START_REF] Pavčević | Symmetric designs of Menon series admitting an action of Frobenius groups[END_REF].

The switching method described in [START_REF] Crnković | Switching for 2-designs[END_REF] applied to the Janko-Kharaghani-Tonchev symmetric (100, 45, 20) design of [START_REF] Janko | Bush-type Hadamard matrices and symmetric designs[END_REF] corresponding to a Bush-type Hadamard matrix of order 100 gives 2 10 designs (including the original one), 208 of them are pairwise non-isomorphic. These 208 symmetric (100, 45, 20) designs give rise to 120 pairwise non-equivalent regular Hadamard matrices. In particular, 115 of them have dimensions of the eigenspace attached to the eigenvalue 1 of H smaller than 27.

A.5 Order 144

Four Bush-type Hadamard matrices can be constructed from the symmetric (144, 66, 30) designs in [START_REF] Crnković | A construction of some symmetric (144, 66, 30) designs[END_REF], [START_REF] Pavčević | Symmetric designs of Menon series admitting an action of Frobenius groups[END_REF]. Note that one of them has dimensions of the eigenspace attached to the eigenvalue 1 of H equal to 28.

A.6 Order 196

Four regular Hadamard matrices were obtained from the symmetric (196,91,42) designs built in [START_REF] Crnković | A construction of some symmetric designs with parameters (196, 91, 42[END_REF], and additional two regular Hadamard matrices were obtained from the symmetric (196,91,42) designs constructed in [START_REF] Crnković | Some new Menon designs with parameters (196, 91, 42[END_REF]. However, the latter two have dimensions of eigensapce attached to the eigenvalue 1 of H equal to 33, so we omit them in Table 2.

Table 1 :

 1 Hadamard matrices with different orders in Magma database.

	v	4 16 36 64 100 144 196
	#	0 4 219 394 1	1	1
	dim ≤ -7	4	3	2	1	2

Table 2 :

 2 Number of self-dual bent sequences in various Hadamard matrices with dimensions of the eigenspace attached to the eigenvalue 1 of H smaller than 30.

	v	16	36	64	100	144	196

For the sake of computational complexity, in Table

2, we focus on Hadamard matrices with dimensions of the eigenspace attached to the eigenvalue 1 of H smaller than 30.
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Linear algebra

This method is more complex to program than the others but allow to reach higher v s.

(1) Construct H a Hadamard matrix of order v.

(2) Compute a basis of the eigenspace associated to the eigenvalue 1 of H.

(3) Let B denote a matrix with rows such a basis of size k ≤ v. Pick B k a k-by-k submatrix of B that is invertible, by the algorithm given below.

(4) For all Z ∈ {±1} k solve the system in C given by Z = CB k .

(5) Compute the remaining v -k entries of CB.

(6) If these entries are in {±1} declare CB a self-dual bent sequence attached to H.

To construct B k we apply a greedy algorithm. We construct the list J of the indices of the columns of B k as follows.

(i) Initialize J at J = [START_REF] Adams | An Introduction to Gröbner Bases[END_REF].

(ii) Given a column of index we compute the ranks r and r of the submatrices of B with k rows and columns defined by the respective lists J and J = Append(J, ).

(iii) If r < r then update J := J .

(iv) Repeat until |J| = rank(B).

Remark 5

The matrix in step (1) can be constructed by using Magma database [START_REF] Bosma | Handbook of Magma functions[END_REF] or by the techniques in the Appendix.

Remark 6 If the first column of B is zero, step (i) does not make sense, but then there is no self-dual bent sequence in that situation, as all eigenvectors have first coordinate zero. This happens for the unique circulant core Hadamard matrix of order 36 [START_REF] Kotsireas | Hadamard ideals and Hadamard matrices with circulant core[END_REF].

Complexity: Roughly of order v 3 2 k . In this count v 3 is the complexity of computing an echelonized basis of H -√ vI. The complexity of the invertible minor finding algorithm is of the same order or less.